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Abstract

Introduction

Lifestyle improvements are key modifiable risk factors for Type 2 diabetes mellitus (DM)

however specific influences of biologically active dietary metabolites remain unclear. Our

objective was to compare non-targeted plasma metabolomic profiles of women with versus

without confirmed incident DM. We focused on three lipid classes (fatty acyls, prenol lipids,

polyketides).

Materials and methods

Fifty DM cases and 100 individually matched control participants (80% with human immuno-

deficiency virus [HIV]) were enrolled in a case-control study nested within the Women’s

Interagency HIV Study. Stored blood samples (1–2 years prior to DM diagnosis among

cases; at the corresponding timepoint among matched controls) were assayed in triplicate

for metabolomics. Time-of-flight liquid chromatography mass spectrometry with dual

electrospray ionization modes was utilized. We considered 743 metabolomic features in a
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two-stage feature selection approach with conditional logistic regression models that

accounted for matching strata.

Results

Seven features differed by DM case status (all false discovery rate-adjusted q<0.05). Three

flavonoids (two flavanones, one isoflavone) were respectively associated with lower odds of

DM (all q<0.05), and sorbic acid was associated with greater odds of DM (all q<0.05).

Conclusion

Flavonoids were associated with lower odds of incident DM while sorbic acid was associated

with greater odds of incident DM.

Introduction

Diabetes mellitus (DM) is associated with an increasingly heavy burden of disease globally

[1,2], including among people with human immunodeficiency virus (HIV) [3,4]. Over the last

three decades, the number of people with DM more than doubled from 211 million in 1990 to

476 million in 2017 [1]. This increase largely reflects the growing number of people with Type

2 diabetes mellitus (T2DM), which also accounts for most DM cases [1]. A major obstacle to

reducing T2DM incidence, prevalence, and mortality is increasing the effectiveness of preven-

tion strategies, including through an improved understanding of modifiable risk factors [5] in

diverse phenotypic subgroups.

Lifestyle modifications, including healthier dietary patterns with more fruits and vegetables

and fewer processed foods, are key prevention recommendations for reducing the risk of

T2DM [2]. Despite a large literature regarding specific diets [6] and nutrients [7] in association

with diabetes outcomes, findings across some previous studies are inconsistent [8]. It remains

a challenge to account for the extensive inter- and intra-individual heterogeneity in consump-

tion patterns, nutritional requirements, dietary responses (e.g., nutrient absorption) [9] as well

as the roles of non-nutrients and other dietary components [10]. Evaluation of dietary inter-

ventions, particularly long-term adherence, is a major obstacle. Circulating biomarkers of die-

tary intake could circumvent these issues and potentially serve as improved metrics of specific

biologically-active metabolites and earlier predictors of long-term metabolic health [11–13].

Metabolomics can provide high-throughput, comprehensive, and relatively non-biased

examination of low molecular weight metabolites [14]. Metabolomic data have the potential to

characterize overall dietary intake and to identify earlier, modifiable dietary risk factors for

DM [14]. Branched-chain amino acids and sphingolipids have been extensively evaluated in

the context of insulin resistance and DM [15,16]. In a recent study among Women’s Inter-

agency HIV Study (WIHS) participants, cholesteryl esters, diacylglycerols, lysophosphatidyl-

cholines, phosphatidylcholines, and phosphatidylethanolamines were associated with diabetes

risk [17].

This individually matched nested case-control study compared non-targeted plasma meta-

bolomic profiles among women with versus without confirmed, incident DM. We evaluated

lipids and lipid classes that represent potential dietary modifiable risk factors of DM. Specifi-

cally, our focus was on three classes of lipids (fatty acyls, prenol lipids, polyketides) [18].
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Materials and methods

Study participants

WIHS was a multicenter prospective cohort study among U.S. women with HIV and women

without HIV who had similar risk behaviors as HIV-seropositive women [19,20]. WIHS

merged with the Multicenter AIDS Cohort Study (MACS) in 2019 to form the MACS/WIHS

Combined Cohort Study [21]. In WIHS, HIV-seronegative women were enrolled based upon

having similar risk behaviors as HIV-seropositive women [19,20]. This study included data

collected from 3,772 women enrolled at six WIHS consortia (Bronx/Manhattan, NY; Brook-

lyn, NY; Los Angeles/Southern California/Hawaii; San Francisco/Bay Area, CA; Chicago, IL;

Washington, DC) [19]. This nested-case control study included 50 cases and 100 matched con-

trols in the final analytic dataset (S1 Fig).

Data collection

As part of the parent cohort study, participants completed in study visits every six months

from October 2000 to April 2008. At baseline and at each semi-annual follow-up visit, women

completed questionnaires regarding self-reported sociodemographics, behavioral risk and life-

style factors. During study visits, trained study staff conducted interviews of medical history

including antiretroviral treatment history, and performed physical examinations (e.g., anthro-

pometry) and phlebotomy.

Case (incident diabetes mellitus) and control definitions

We defined women as cases with incident, confirmed DM if they met any of the following cri-

teria: a)� two fasting blood glucose (FBG)�126 mg/dL; b) one FBG� 126 mg/dL and one

random blood glucose (RBG)� 200 mg/dL; c) one FBG� 126 mg/dL and self-reported DM

medications (S1 Table). For each case, the index visit (visit 0) was the visit of DM diagnosis. If

participants had two FBG measurements, visit 0 was considered the first date of DM presenta-

tion (i.e., first of two DM measurements). All FBG concentrations prior to the index visit were

<126 mg/dL. Semiannual visits immediately preceding visit 0 were denoted by the corre-

sponding negative study visit number (e.g., -1 for six months prior, -2 for 12 months prior).

We assayed a single stored plasma sample from a study visit between one to two years before

the index visit of each case.

We matched every DM case to two controls based on blood glucose, HIV serostatus, use of

antiretroviral therapy, race and ethnicity, age ± 15 years, and availability of stored blood sam-

ple. To control for metabolic parameters potentially associated with impaired fasting glucose,

the first control (“FBG-matched control”) was matched on the case’s FBG ± 10 mg/dL at the

same calendar period visit that their corresponding case had an available stored plasma sam-

ple. The second control (“normoglycemic control”) had all prior longitudinal glucose values

<100 mg/dL and was selected without matching by FBG at the same visit as their correspond-

ing case; this control had a plasma sample available at the same calendar period visit as the

case.

Glucose assays

Fasting blood samples were assayed for glucose concentrations by hexokinase assay (Olympus

5200, 5400 and AU600 automated instruments; Olympus America, Inc., Melville, NY), as pre-

viously detailed [22].
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Metabolomic profiling

Plasma samples were collected in sodium citrate (CPT) vacutainers, centrifuged, and stored at

-80˚C until thawed for non-targeted metabolomic assays. Plasma samples were randomly

sorted by matching strata (DM case, FBG-matched and normoglycemic control) into three

sets. Samples in each set were assayed for metabolomic data in a separate run; these three

batches are subsequently referred to as WIHS1-3. All sample processing and metabolomic

assays were conducted by laboratory technicians blinded to the case or control status of each

sample. Initial sample processing to extract metabolites followed the same protocol, which has

been previously detailed [23]. Standard operating procedures and quality assurance/quality

control of metabolomic assays have also been described [24].

Liquid chromatography-mass spectrometry. Plasma samples were assayed in triplicate

for metabolomic profiles by time-of-flight liquid chromatography mass spectrometry (LC-MS;

Model 6250; Agilent Technologies, Santa Clara, CA) with dual electrospray ionization (ESI)

modes [24]. Analytes were separated by C18-based reverse phase column (2 mm x 150 mm

Zorbax SB Aq 3.5 um column) in positive and negative ESI modes, which enables greater cov-

erage of features [25]. LC parameters included: autosampler temperature 4˚C, 5 μL injection

volume, column temperature 55˚C, and flow rate 0.4 ml/L. The linear gradient was 2–98% of

0.2% (v/v) acetic acid in water (solvent A) to 0.2% (v/v) acetic acid in methanol over 15 min,

followed by 2 min hold of solvent B and 5 min post-time. ESI settings included: capillary volt-

age (Vcap) at 4000 V for positive ion mode and 3500 V for negative ion mode, fragmentor

voltage at 135 V, liquid nebulizer at 45 psi, N2 drying gas at 12 L/min and 250˚C. Data were

acquired by Agilent MassHunter Qual Workstation Data Acquisition software with the follow-

ing settings: rate 2.5 spectra/s, centroid mode, and mass scan range 15–2250 [26].

Metabolomic data extraction and preprocessing. Each metabolomic feature was defined

by a unique mass-to-charge ratio (m/z) and retention time (RT) combination; relative abun-

dance of feature ion intensities were reported as peak areas. An internal reference standard

mix included six standard masses ranging from 112.985587 to 1633.949753; this was utilized

for mass axis calibration, error assessments and corrections. Major pre-processing steps

included: feature detection and extraction; correlation (co-varying ions within each chromato-

gram); accounting for adducts, isomers, and fragments.

In terms of data-filtering, metabolomic features with ion counts in >80% across participant

samples in each data subset (by assay batch [WIHS1-3] and ESI mode [+, -]) were retained for

analysis [27]. Missing relative abundance values (e.g.�1) were set to the limit of detection

(LOD)/2. All feature ion counts were log2 normalized prior to analysis.

Statistical and bioinformatic analysis

Analysis was conducted utilizing R (version 4.0.3; R Foundation for Statistical Computing;

Vienna, Austria), including MetaboAnalystR [28], and SAS (version 9.4; SAS Institute Inc.;

Cary, NC, US). Statistical significance was based on two-sided hypothesis tests, and α< 0.05.

We initially screened metabolomic features with feature-by-feature unadjusted regressions

(Stage 0); since this was a screening criterion, features remained eligible with a p<0.05 that

was not false discovery rate adjusted. Subsequently, eligible features were evaluated in feature-

by-feature adjusted regressions with metabolomic data (Stage 1); false discovery rate (FDR)

adjusted q-value <0.05 was considered significant (S2 Fig). We used a complete-case approach

for all key variables aside from metabolomic data (S1 Fig).

Descriptive analysis and visualizations. Continuous and categorical variables were sum-

marized as medians (interquartile ranges [IQR]) or N’s (percentages). Metabolomic features

(i.e., log2 relative abundance) were compared across subgroups by non-parametric test
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statistics (e.g. Kruskal-Wallis). Log2-normalized feature relative abundances and clinical indi-

cators were evaluated by Spearman rank-order correlation coefficients. We visually compared

differences of log2-normalized feature relative abundances between the three case-control

groups via unsupervised dimensionality reduction (principal components analysis [PCA]),

supervised discriminant analysis approaches (e.g. partial least squares discriminant analysis

[PLS-DA], orthogonal PLS-DA [OPLS-DA]), and hierarchical clustering in heatmaps. Heat-

maps were based on calculated Euclidean distances as the similarity index with Ward’s linkage

as the agglomeration method (clustering based on minimizing sum of squares between any

two clusters). We considered permutation test statistics for PLS-DA due to potential overfit-

ting issues.

Metabolomic feature selection approach. We utilized a two-stage metabolomic feature

selection approach to evaluate the associations between features and case-control status in

each data subset (by assay batch [WIHS1-3] and ESI mode [+, -]; (S2 Fig). All conditional

logistic models considered a binary categorization of DM cases versus both controls as the pri-

mary dependent variable of interest and accounted for matching strata, which reflect individ-

ual-matching by blood glucose (FBG-matched, normoglycemic), HIV serostatus, use of

antiretroviral therapy, race and ethnicity, age ± 15 years, and availability of stored blood sam-

ple. In Stage 0 screening, unadjusted conditional logistic regressions models assessed the asso-

ciations between case-control status and log2 feature relative abundance. Metabolomic

features differing across groups (p<0.05) were considered eligible for Stage 1 regression

models.

In Stage 1, multivariable conditional logistic regressions evaluated associations between

case-control status and log2 feature relative abundance while accounting for the matching

strata and additional covariates. The model equation was:

log pDM case= 1 � pDM case

� �� �
¼ a1 þ a2z2 þ � � � þ aSzS þ b0þ

b1X1 log
2
feature relative abundance

� �
þ b2X2 BMIð Þ þ b3X3 age years½ �ð Þ;

ð1Þ

where p = probability of DM case study group, and z = stratum indicator variables (Eq (1)).

Metabolomic features were considered associated with the study group (DM cases vs controls)

across groups based on β1 (FDR-adjusted q<0.05). We only reported Stage 1 results from

three lipid classes of interest (fatty acyls, prenol lipids, polyketides), in light of recent lipido-

mics studies focusing on other lipids classes.

Feature annotations. The putative chemical compound identities of metabolomic fea-

tures were annotated by comparison with lipids curated from METLIN [29]. Annotations

were based on monoisotopic accurate mass match (within ± 10−5). Selected feature annota-

tions were subsequently manually cross-referenced with Lipid Maps [30] and Human Metabo-

lome Database reference database information [31]. We evaluated feature annotation

confidence according to the multi-level system proposed by the Schymanski et al [32], which

was based on the Metabolomics Standards Initiative (MSI) scoring [33]. Annotations of

selected metabolomic features (from adjusted regressions) were considered Levels 2 or 3 [33].

Ethical conduct of research

The Institutional Review Boards (IRBs) at each WIHS site approved of the study protocol and

consent forms (IRB approval numbers: Georgetown University #1993–077, Johns Hopkins

University H.34.97.05.19.A2, Montefiore Medical Center #03-07-174, Rush University #13–

184, State University of New York Downstate Health Sciences University #266921–64,

University of California, San Francisco #21–33925, University of Southern California #
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HS-21-00496). All study participants provided written informed consent in English or Spanish

prior to voluntary enrollment and data collection.

Results

One-hundred and fifty women met the inclusion and exclusion criteria and were included in

the final analytic dataset. Among these participants, 50 had DM, 50 were FBG-matched con-

trols, and 50 were normoglycemic controls (S1 Fig). Ages ranged from 19 to 62 years at the

index study visit; across the three case-control groups, median age ranged from 42 (IQR 36,

48) to 43 (IQR 38, 48; Table 1). In all case-control groups, 80.0% of women had HIV infection

(Table 1). Comparing women with HIV infection across the three case-control groups, CD4

cell counts (p = 0.93) and the proportions of women with HIV RNA <400 copies/mL

(p = 0.79) were similar (Table 1). Percentages of women on combination antiretroviral therapy

Table 1. Sociodemographic, clinical, and anthropometric indicators among WIHS participants a.

DM cases

(n = 50)

FBG-matched controls

(n = 50)

Normoglycemic controls

(n = 50)

p b

Sociodemographic Median (IQR) or n (%)
Age (years) 43.3 (37.5, 47.9) 42.7 (36.6, 46.4) 41.8 (35.8, 48.0) 0.66 b

Race

White 12 (24.0) 12 (24.0) 12 (24.0) 1.00 d

Black 31 (62.0) 31 (62.0) 31 (62.0)

Other 7 (14.0) 7 (14.0) 7 (14.0)

Clinical

HIV infection 40 (80.0) 40 (80.0) 40 (80.0) 1.00 d

HIV RNA < 400 copies/ml e 18 (45.0) 16 (40.0) 15 (37.5) 0.79 d

CD4 cell count (cells/mm3) e 476.0 (230.5, 610.0) 465.5 (238.0, 729.0) 387.5 (248.5, 646.5) 0.93 c

cART e 19 (47.5) 23 (57.5) 22 (55.0) 0.65 d

Protease inhibitor e 10 (25.0) 8 (20.0) 11 (27.5) 0.72 d

Stavudine e 8 (20.0) 8 (20.0) 7 (17.5) 0.95 d

Zidovudine e 12 (30.0) 13 (32.5) 11 (27.5) 0.89 d

Total # of visits on NRTI e, f 7.5 (1.5, 11.0) 8.5 (1.0, 11.5) 6.0 (1.0, 11.0) 0.96 c

Family history of DM g 25 (61.0) 12 (28.6) 19 (43.2) 0.01 d

FBG (mg/dL) 92.0 (89.0, 104.0) 93.5 (85.0, 100.0) 81.0 (76.0, 86.0) <0.01c

HCV infection 17 (34.0) 13 (26.0) 13 (26.0) 0.60 d

Anthropometric

BMI (kg/m2) g 29.7 (27.6, 36.5) 28.4 (23.8, 33.5) 26.0 (22.4, 31.7) 0.02 c

Waist circumference (cm) g 97.4 (90.1, 106.5) 92.4 (82.4, 102.4) 85.8 (78.7, 98.7) <0.01 c

a At study visit 0 (date of DM diagnosis of cases, and corresponding date of controls in each matching stratum) unless stated otherwise.
b Subgroup comparisons based on one-way ANOVA test statistic among continuous variables with normal distribution (Shapiro-Wilk, p>0.05).
c Kruskal-Wallis test statistic among non-normally distributed continuous variables (Shapiro-Wilk, p�0.05).
d Likelihood ratio chi-square test statistic among categorical variables.
e Only among women with HIV.
f Total number of visits from study inception to index visit.
g The following covariates were missing among the specified number of participants: Family history of DM (n = 9 cases, n = 8 FBG-matched controls, n = 6

normoglycemic controls), BMI (n = 1 case, n = 2 normoglycemic controls), waist circumference (n = 8 cases, n = 13 FBG-matched controls, n = 7 normoglycemic

controls).

Abbreviations: BMI, body mass index; cART, combination antiretroviral therapy; DM, diabetes mellitus; FBG, fasting blood glucose; HIV, human immunodeficiency

virus; NRTI, nucleoside reverse transcriptase inhibitor; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0271207.t001

PLOS ONE Metabolomics and diabetes among women

PLOS ONE | https://doi.org/10.1371/journal.pone.0271207 July 8, 2022 6 / 16

https://doi.org/10.1371/journal.pone.0271207.t001
https://doi.org/10.1371/journal.pone.0271207


(cART), protease inhibitors, stavudine, zidovudine were similar across the three subgroups (all

p>0.05; Table 1). Family history of DM was highest among women with DM (61.0%), com-

pared to those in the control subgroups (FBG-matched 28.6%; normoglycemic 43.2%;

p = 0.01; Table 1). Median BMI (p = 0.02) and waist circumference (p<0.01) differed across

the 3 subgroups (Table 1). Women with DM had the highest median BMI (29.7 kg/m2 [IQR

27.6, 36.5]) and waist circumference (97.4 cm [90.1, 106.5]), compared to the control sub-

groups (Table 1).

Comparing relative abundance of metabolomic features by diabetes case

and controls status

After data-filtering, 743 metabolomic features remained (S1 and S3 Figs). Stratifying by the six

data subsets (based on assay batch [WIHS1-3] and ESI mode [+, -]), the number of remaining

metabolomic features ranged between 23 and 273 (S1 and S3 Figs). Considering these metabo-

lomic features in a hierarchical clustering heatmap, the similarity indices (Euclidean distances)

appeared distinct across the three case-control groups (WIHS1 participants, positive ESI

mode; Fig 1A). Visualizing metabolomic features in each data subset, unsupervised (PCA) and

supervised (OPLS-DA) approaches showed similar clustering across the three case-control

Fig 1. Comparing metabolomic profiles by DM case and control (FBG-matched, normoglycemic) groups among

WIHS 1 participants (n = 51), based on data from C18 (positive ESI). A: Hierarchical clustering heatmap was based

on calculated Euclidean distances as the similarity index with Ward’s linkage as the agglomeration method (clustering

based on minimizing sum of squares between any two clusters). Log2-normalized relative abundance of metabolomic

features are represented in rows; study groups of participants are indicated in columns. DM cases are indicated in red

(n = 17), FBG-matched controls in green (n = 17), and normoglycemic controls in blue (n = 17). B: Supervised

dimensionality reduction was conducted by PLS-DA, in order to visualize clustering across metabolomic features.

Study groups are represented as Δ (DM cases), + (FBG-matched controls), and X (normoglycemic controls).

Abbreviations: DM, diabetes mellitus; ESI, electrospray ionization; FBG, fasting blood glucose; PLS-DA, partial least

squares discriminant analysis; WIHS, Women’s Interagency HIV Study.

https://doi.org/10.1371/journal.pone.0271207.g001
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groups (S4 and S5 Figs). Fig 1B shows the first three components from PLS-DA of metabolo-

mic features among WIHS1 participants (positive ESI mode; permutation test statistic

p>0.05).

Table 2 summarizes associations between metabolomic features and case-control status

(DM cases versus controls), based on unadjusted logistic regressions (Stage 0) with condi-

tional likelihood, stratified by data subset. In WIHS1, three metabolomic features (0 in positive

ESI mode; 3 in negative ESI mode) were associated with case-control status (all p<0.05). In

WIHS2, seven metabolomic features (2 in positive ESI mode; 5 in negative ESI mode) were

associated with case-control status (all p<0.05). In WIHS3, 14 metabolomic features (13 in

positive ESI mode; 1 in negative ESI mode) were associated with case-control status (all

p<0.05).

Adjusted associations between metabolomic features and diabetogenic subgroups. In

conditional multivariable logistic regressions (Stage 1), 7 metabolomic features were respec-

tively associated with case-control status, accounting for matching strata, BMI, and age (all

FDR-adjusted q<0.05; Table 2). Per unit increase, two fatty acyls, 6-methyloctan-3one

(adjusted odds ratio [aOR] 1.5 [95% CI 1.0, 2.1]; q = 0.04) and sorbic acid (aOR 2.8 [95% CI

1.1, 7.2]; q = 0.04) were associated with elevated odds of diabetes (Table 3). Per unit increases,

four polyketides were respectively associated with odds of diabetes, specifically including het-

eroflavanone C (aOR 0.1 [95% CI <0.1, 0.8); q = 0.04), rotenonic acid (aOR 0.1 [95% CI <0.1,

0.8); q = 0.04), louisfieserone A (0.2 [95% CI <0.1, 0.8); q = 0.04), and (E)-4-nitrostilbene

(aOR 1.5 [95% CI 1.0, 2.4]; q = 0.04; Table 3). Podocarpic acid was associated with increased

Table 2. Summary of features differing across DM case and control groups.

DM case, FBG-matched and normoglycemic controls

(# of differing features)

Regressions Details

WIHS discovery, validation

sets

WIHS1 WIHS2 WIHS3

Analytical columns (ESI

mode)

+ - + - + -

N (# of participants) 51 48 48 42 48 51 - - - - - -

Feature selection c Type Model equation and details

Nf
b 45 59 273 122 221 23

Stage 0 p<0.05 0 3 2 5 13 1 Unadjusted regressions Conditional logistic regression: log

(p DM case / (1-p DM case)) = α1 + α2z2

+ � � � + αSzS + β0 + β1X1 (log2 feature

relative abundance), where

p = probability of DM case study

group, and z = stratum indicator

variables

Stage 1 p<0.05 0 0 2 5 8 1 Adjusted regressions;

among features

associated with study

group (p<0.05) in

unadjusted regressions

Conditional logistic regression:: log

(p DM case / (1-p DM case)) = α1 + α2z2

+ � � � + αSzS + β0 + β1X1 (log2 feature

relative abundance) + β2X2 (BMI) +

β3X3 (age [years]), where

p = probability of DM case study

group, and z = stratum indicator

variables

q<0.05 0 0 2 5 0 N/

A

Abbreviations: BMI, body mass index; DM, diabetes mellitus; ESI, electrospray ionization; FBG, fasting blood glucose; WIHS, Women’s Interagency HIV Study.
a Values in this table indicate the number of metabolomic features with log2 relative abundance values, which differed by DM case or control (FBG-matched,

normoglycemic) group status.
b After data filtering, the total number of features considered in each data subset are in S1 Fig. These features were considered via the feature selection approach.

https://doi.org/10.1371/journal.pone.0271207.t002
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odds of diabetes (aOR 7.1 [95% CI 1.5, 33.4]; q = 0.02; Table 3). Relative abundance of podo-

carpic acid was compared by case-control status (Fig 2). Data subsets (assay batch [WIHS1-3],

ESI mode [+, -]) are specified in Tables 2 and 3.

Discussion

A total of 743 metabolomic features were observed among participants with DM and their

controls matched by blood glucose (FBG-matched, normoglycemic), HIV serostatus, use of

antiretroviral therapy, race and ethnicity, age ± 15 years, and availability of stored blood sam-

ple. Overall, seven features were significantly associated with odds of DM incidence, account-

ing for matching strata and after FDR adjustment (all q<0.05). Three flavonoids were

associated with lower odds of DM incidence, and sorbic acid was associated with greater odds

of DM incidence. Our results indicate the need for confirmation of flavonoids, sorbic acid,

Table 3. Associations between selected features and study groups (DM cases versus controls).

Lipid

category a
WIHS data

subset b
Log2 feature (relative abundance) Unadjusted c Adjusted d Lipid Maps ID

Variable Chemical Compound OR 95% CI P e aOR 95% CI p e FDR-adjusted

q f

Fatty acyls WIHS1 - Aminocaproic acid 4.3 1.2,

15.4

0.03 2.7 0.6,

13.0

0.20 0.20 LMFA01100035

WIHS2 - 6-Methyloctan-3-one 1.4 1.0, 2.0 <0.05 1.5 1.0, 2.1 0.04 0.04 LMFA12000129

Sorbic acid 2.8 1.1, 7.1 0.03 2.8 1.1, 7.2 0.04 0.04 LMFA01030100

WIHS3 + 3-Oxo-4-methyl-pentanoic acid 0.6 0.4, 0.9 0.02 0.6 0.4, 0.9 0.03 0.07 LMFA01020276

5,11-Dodecadiynoic acid 0.5 0.3,

<1.0

<0.05 0.5 0.2,

<1.0

0.04 0.07 LMFA01030464

10,12-Tetradecadiene-4,6-diynoic

acid, (E,E)-

0.6 0.4, 0.9 0.02 0.5 0.3, 0.9 0.03 0.07 LMFA01030583

Polyketides WIHS1 - Isosativan 3 1.1, 8.4 0.04 - - - g - - - g - - -
g

- - - LMPK12080030

WIHS2 + (E)-4-Nitrostilbene 2 1.1, 3.6 0.03 1.5 1.0, 2.4 0.04 0.04 LMPK13090020

WIHS2 - Heteroflavanone C 0.1 <0.1,

0.7

0.02 0.1 <0.1,

0.8

0.03 0.04 LMPK12140478

Rotenonic Acid 0.1 <0.1,

0.7

0.02 0.1 <0.1,

0.8

0.02 0.04 LMPK12060018

Louisfieserone A 0.2 <0.1,

0.8

0.02 0.2 <0.1,

0.8

0.03 0.04 LMPK12140697

Prenol Lipids WIHS2 + Podocarpic acid 7 1.5,

23.7

0.01 7.1 1.5,

33.4

0.01 0.02 LMPR0104120002

WIHS3 + Etretinate 0.2 0.1, 0.9 0.04 0.2 0.1,

<1.0

0.04 0.07 LMPR01090046

a Lipid categorization per Lipid Maps classification [30]. Features were selected if: 1) associated with case-control status in unadjusted models (p<0.05); and 2) with

annotations in lipid classes of interest (fatty acyls, polyketides, prenol lipids).
b Data subsets based on metabolomic assay run (WIHS sets 1–3) and ESI mode (+, -).
c Unadjusted conditional logistic regression model equation: log (p DM case / (1-p DM case)) = α1 + α2z2 + � � � + αSzS + β0 + β1X1 (log2 feature relative abundance), where

p = probability of DM case study group, and z = stratum indicator variables.
d Adjusted conditional logistic regression model equation: log (p DM case / (1-p DM case)) = α1 + α2z2 + � � � + αSzS + β0 + β1X1 (log2 feature relative abundance) + β2X2

(BMI) + β3X3 (age [years]), where p = probability of DM case study group, and z = stratum indicator variables.
e P value based on Wald chi-square statistic.
f Post-hoc FDR adjustment among each data subset (e.g., WIHS1 +) of features evaluated in Stage 1 regressions and with annotations in lipid classes of interest.
g Results not reported due to model instability.

Abbreviations: aOR, adjusted odds ratio; DM, diabetes mellitus; ESI, electrospray ionization; OR, odds ratio; WIHS, Women’s Interagency HIV Study.

https://doi.org/10.1371/journal.pone.0271207.t003
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and their related metabolites via targeted validation with absolute quantitation and mechanis-

tic studies to elucidate their potential respective influences on DM risk.

Protective effects of flavonoids in diabetes

Phytochemicals synthesized by plants and ubiquitous in the human diet, including many flavo-

noids [34], are hypothesized to be protective against insulin resistance [35] and DM [36], as

well as modulate glucose metabolism [37,38]. Our finding that three flavonoids were associ-

ated with lower odds of DM is consistent with the directionality of associations found in

Fig 2. Boxplots of selected features (relative abundances), stratified by DM case and control groups a. a Data subset

(e.g. WIHS1 +) specified in Table 3. Abbreviations: DM, diabetes mellitus; FBG, fasting blood glucose.

https://doi.org/10.1371/journal.pone.0271207.g002
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previous studies [36,39], though our exposure assessment was based on circulating metabolites

which differs from dietary intake in other studies. In a meta-analysis including 284,806 partici-

pants, dietary intake of total flavonoids was associated with lower risk of T2DM [36]. High die-

tary intake of flavonoids [39] and adherence to plant-based dietary patterns [40] have also

been associated with reduced T2DM risk. Prior studies have suggested potential mechanisms

to explain this association, including the ability of some individual flavonoids to inhibit oxida-

tive stress [41] and glycogen phosphorylase, which is a primary enzymatic regulator of glucose

and glycogen homeostasis [37]. More broadly, polyphenols have been found to affect glucose

and insulin metabolism [42], as well as inhibit glycation and advanced glycation end products

production [43].

Previous studies have reported mixed associations, including null results, between diabeto-

genic indicators and dietary supplementation of isoflavones [44,45]. We found that a circulat-

ing isoflavan (isosativan) was associated with greater odds of DM, which contrasts with the

null or protective associations observed in other observational studies of dietary isoflavonoid

intake on DM-related biomarkers [35,45,46]. These inconsistent findings are potentially

explained by the unclear mechanisms linking isoflavonoids and DM, which could include

mediators and covariates that need to be accounted for (e.g., extensive heterogeneity of DM

pathophysiology, observed pleiotropic influences and differing bioavailabilities of isoflavo-

noids) [34,35,45].

Elucidating sorbic acid in diabetes

Sorbic acid, or sorbate, is a common synthetic food preservative and metabolite of potassium

sorbate, which is a food and pharmaceutical additive [47]. Our finding that sorbate was associ-

ated with greater odds of DM is consistent with preliminary evidence of potential explanatory

mechanisms [47,48]. Potassium sorbate is completely absorbed after oral ingestion and has

cytotoxic and genotoxic influences, which could contribute to elevated risk of a diabetogenic

state [47]. Preliminary mechanistic evidence has also shown sorbate to be linked with dysregu-

lated hepatic fatty acid metabolism [48]. Sorbate has also been hypothesized to be an upstream

substrate of AGEs [47], which upregulate inflammation and oxidative stress [49] and poten-

tially function as endocrine disrupting chemicals [50]. Future directions of research could

examine the: specific metabolic pathways by which sorbic acid and other sorbate additives

(e.g., calcium sorbate, potassium sorbate) and other food additives might affect long-term risk

of DM incidence, as well as influences of frequency, quantity, timing, and types of sorbates

consumed over the human life course on metabolic health.

Strengths and limitations

A major strength of this study was the nested case-control design within a large ongoing pro-

spective cohort study with standardized protocols [19,20]. Specifically, the study design

included the confirmation of each participant with incident DM diagnosis after the measure-

ment of metabolomic features; selection of two individually matched controls based on clinical

and sociodemographic criteria; and comparison of stored blood samples collected at the same

earlier study visit within each matching stratum. The broad consideration of metabolomic fea-

tures from non-targeted profiling provided a relatively non-biased perspective. This approach

was advantageous given limited prior literature regarding the specific lipid classes of interest in

context of DM. Furthermore, the inclusion of only women was a strength in light of sex-based

differences in metabolism and DM [51]. Simply controlling for biological sex as a variable in

regression models does not preclude residual confounding from other related factors (e.g., sex
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hormone differences), since the etiology of many observed sex-linked differences remains

incompletely understood [51].

Several limitations should be noted in interpreting results, particularly the modest sample

size, inability to determine causal inferences, and single timepoint evaluation of metabolomic

data. In the final analysis, we categorized the two control groups into one group, given the

sample size per metabolomic assay batch (WIHS1-3). Further validation of metabolites with

authentic reference standards and absolute quantification (plasma concentrations) are needed,

in order to confirm feature annotations with higher confidence (e.g., Level 1 [32]) and to facili-

tate comparisons with other populations. We were not able to consider other covariates, such

as inflammation, socioeconomic factors, and ART type, and inter-individual variability of gut

microbiota [52,53], that potentially influence our associations of interest; future studies should

consider these additional covariates. For example, commensal bacteria have been hypothesized

to metabolize dietary flavonoids [54] and to be modulated by polyphenols [55] which may sub-

sequently affect metabolic health. Since HIV status was a matching criterion for selecting con-

trols, this study was not designed to evaluate the role of HIV as a comorbidity. However, some

flavonoids have antioxidant functions [34] and a recent study demonstrated that two flavonoid

glycosides can activate Vδ1+ T cells to suppress HIV-1 [56], emphasizing the need for future

studies to consider the associations of individual flavonoids with DM, HIV, and other

comorbidities.

Conclusions

In summary, seven plasma metabolomic features differed among women with DM incidence,

compared to their matched controls. Three flavonoids were associated with lower odds of DM

incidence. Sorbic acid, a common food preservative, was associated with greater odds of DM.

Further studies are needed to validate and delineate the underlying mechanisms of flavonoids

and food additives as potential modifiable dietary factors associated with DM, which could

improve DM prevention efforts.

Supporting information

S1 Fig. Inclusion and exclusion criteria for WIHS study participants, and data filtering of

metabolomic features.

(TIF)

S2 Fig. Two-stage feature selection approach.

(TIF)

S3 Fig. Proportions of feature peak areas observed across participants, stratified by meta-

bolomic assay batch (WIHS1-3) and analytical column (+, - ESI). In each of the six data sub-

sets, the final analytic subset of participants was considered those individuals in complete

matching strata. Features were included below if remaining after data filtering (observed

among�80% of participant samples).

(TIF)

S4 Fig. Unsupervised clustering (PCA) of metabolomic features in each data subset (WIHS

sets 1–3, positive and negative ESI modes).

(TIF)

S5 Fig. Supervised clustering (OPLS-DA) of metabolomic features in each data subset

(WIHS sets 1–3, positive and negative ESI modes).

(TIF)
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Formal analysis: Elaine A. Yu, José O. Alemán, Qiuhu Shi, Michael Verano.

Funding acquisition: Kathryn Anastos, Phyllis C. Tien, Mardge H. Cohen, Marshall J. Glesby.

Investigation: Michael Verano, Kathryn Anastos, Phyllis C. Tien, Anjali Sharma, Marshall J.

Glesby.
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