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Abstract

Many statistical models have been proposed to analyse small area disease data with the

aim of describing spatial variation in disease risk. In this paper, we propose a Bayesian hier-

archical model that simultaneously allows for risk estimation and cluster identification. Our

model formulation assumes that there is an unknown number of risk classes and small

areas are assigned to a risk class by means of independent allocation variables. Therefore,

areas within each cluster are assumed to share a common risk but they may be geographi-

cally separated. The posterior distribution of the parameter representing the number of risk

classes is estimated using a novel procedure that combines its prior distribution with an effi-

cient estimate of the marginal likelihood of the data given this parameter. An extension of

the model incorporating covariates is also shown. These covariates may incorporate addi-

tional information on the problem or they may account for spatial correlation in the data. We

illustrate the performance of the proposed model through both a simulation study and a

case study of reported cases of varicella in the city of Valencia, Spain.

Introduction

In the last decades there has been an increasing interest in the area of disease mapping, with

the consequent development of numerous statistical techniques for the analysis of public

health data. Health data usually consist of aggregated counts of disease within administrative

units (small areas) such as zip codes, municipalities, etc. The objective of disease mapping is

then to investigate geographic disease variation across the predefined study region.

It is usually assumed that disease counts are described by a discrete probability model. For

relatively rare diseases, we can assume a Poisson likelihood with a mean which is a function of

the expected counts of disease and the area-specific relative risks. The expected counts of dis-

ease represent the background population effect and they are usually estimated using a stan-

dard population rate. Once estimated, they are assumed fixed and known and the emphasis is

placed on the study of the unknown relative risks, which measure the local deviation of the dis-

ease. For finite populations, we could consider a Binomial distribution instead ([1], chapter 5).
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A wide range of statistical models have been developed to provide suitable relative risk esti-

mates. By borrowing information across the areas, these models provide smoothed risk sur-

faces and improve local estimates. The most common approach to relative risk modeling is to

assume a logarithm link to a linear predictor which is a function of spatial random effects and

possible covariate effects. For instance, the convolution model decomposes the log of the rela-

tive risk as a function of spatially correlated and uncorrelated random effects [2]. This formu-

lation has been found to be a robust and an appropriate model to describe disease variation

and it is widely used in practice [3, 4]. On some occasions, a spatial trend model capturing

large-scale variation of risk over the study region may provide an accurate description of the

data ([1], chapter 5). Distance-risk models can be used when a specific point source is sus-

pected to be responsible for an increased disease risk [5]. An alternative model-based approach

for smoothing risks in a spatial context is based on the use of splines. Recently, penalized

splines and area-specific random effects have been combined to model large-scale spatial trend

together with individual variation [6, 7]. Goicoa et al. [8] provide a comparison of CAR and P-

spline models in terms of smoothing and detection of high risk areas.

Identification of areas of significantly elevated risk also plays an important role in public

health, since it facilitates the implementation of targeted public health interventions. One of

the most widely used tests for cluster detection is the spatial scan statistic [9] and its extensions

(see, for instance, [10]). Often, it is convenient to consider clusters as a residual feature of the

data, and so different residual diagnostics have been proposed to identify extreme regions ([1],

chapter 6). The posterior probability that the relative risk exceeds a reference threshold has

also been used to classify areas as high risk areas [11, 12]. A major concern with the usefulness

of these measures is that they are sensitive to the model chosen. Besides, they attempt to detect

clusters from a spatially smoothed risk surface, which may be problematic.

Models that explicitly describe the clustering behaviour of the data have also been designed.

Some recent studies address risk estimation and cluster identification simultaneously. In [13]

the authors propose a non-parametric mixture model within an empirical Bayes context to

identify population heterogeneity. Knorr-Held and Raßer [14] propose a Bayesian partition

model where small areas are combined in clusters attending a distance measure that ensures

that clusters are connected. Denison and Holmes [15] present a similar Bayesian model to esti-

mate the risk surface. The main difference is that clusters are defined using the Voronoi tessel-

lation. A related partition model is proposed in [16], where the authors introduce a class of

Markov connected component field priors to incorporate some prior information about clus-

ters. However, the model is not intended to provide a flexible modeling of the risk surface.

Hidden Markov models have also been proposed in a disease mapping context to analyze spa-

tial heterogeneity of disease count data. For instance, [17] present a class of hidden Markov

random field (HMRF) models related to an underlying finite-mixture model for the Poisson

rates. To allow for spatial correlation, the allocation variables are modeled through a Potts

model. One feature of this model is that disconnected areas can have the same label. An alter-

native frequentist approach for direct classified risk mapping based on a discrete HMRF

model can be found in [18]. A different approach has been recently proposed in [19]. In that

paper, the authors propose a two-step methodology where a spatially adjusted hierarchical

agglomerative clustering algorithm is applied to data prior to the study period to elicit poten-

tial cluster structures. Then, for each cluster configuration, a Bayesian hierarchical model is fit-

ted to the study data and the final cluster structure is chosen based on the deviance

information criterion. A Bayesian spatio-temporal model can be found in [20].

In this paper, we develop a flexible parametric Bayesian hierarchical model that simulta-

neously allows for risk estimation and cluster detection in a purely spatial context. We assume

that there is an unknown number k of risk levels that describe the risk surface and small area
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count data are assigned to a risk class by means of independent and identically distributed

Multinomial indicator vectors. Therefore, geographically separated small areas with a similar

risk can be grouped in the same class. It is important to emphasize that, unlike previous model

formulations, we do not impose any spatial correlation, which allows us to explore different

risk structures. Conditioning on k, we develop an MCMC algorithm to sample from the joint

posterior distribution of the model parameters. A novel procedure is then developed to esti-

mate the value of k. In particular, it is obtained from its posterior distribution, which is com-

puted as a function of the marginal likelihood of the data given k and its prior distribution.

The proposed model can be straightforwardly extended to incorporate information from

covariates. These covariates can account for spatial correlation in the data if present.

We organize this paper as follows. In Section 2 we present the model formulation and

describe our MCMC implementation. In Section 3 we analyze the performance of the model

using a simulation study. Section 4 provides an application to reported varicella cases in the

city of Valencia, Spain. We conclude with a general discussion of the proposed methodology

and provide directions for future research.

Model formulation and Bayesian analysis

Let us assume that the study region is divided in m contiguous non-overlapping small areas,

and let yi represent the count of disease observed in the i-th area, i = 1, 2, . . ., m. We also

assume that there is a piecewise constant risk surface that describes geographic disease varia-

tion, and so counts of disease are modeled with the following mixture of Poisson distributions:

f ðyijk; Z; p; eiÞ ¼
Xk

j¼1

PoðyijeiZjÞpj; ð1Þ

where ei is the expected count of disease, k is the number of risk classes (that can be viewed as

clusters), η = (η1, η2, . . ., ηk)0 is the vector of risks, and p = (p1, p2, . . ., pk)
0 is the vector of prob-

abilities associated with the risk classes, with pj� 0 and
Pk

j¼1
pj ¼ 1. If the small areas in the

study region have a similar disease risk, then the components of the risk vector ηwill take simi-

lar values. It may even be the case that only one latent risk (k = 1) suffices to describe counts of

disease across the entire study region. On the other hand, a risk surface exhibiting abrupt

jumps will dominate.

Let zi = (zi1, zi2, . . ., zik)0 be the latent indicator vector that assigns the small area i to one of

the k risk classes; that is, zij is equal to one if the relative risk for area i corresponds to ηj and

zero otherwise. Eq (1) can then be formulated as:

yijk; zi; Z; ei � Poðyijeiz0iZÞ;

zijp � Multðzijn ¼ 1; pÞ:
ð2Þ

Since a common prior distribution is assumed for all the indicator vectors zi, i = 1, 2, . . ., m,

this model formulation implies that the prior probabilities of the areas belonging to every pos-

sible class are the same.

Bayesian analysis of the model when k is known

Let us suppose first that the number of risk classes k is known. Prior distributions for the

model parameters η and p can be specified as follows. In order to mitigate the label switching

problem common in mixture models, we propose to order the risk classes. This can be easily
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achieved by using the transformation:

Z�j ¼
Zj

1þ Zj
; j ¼ 1; . . . ; k;

which transforms the interval [0, +1) into [0, 1], and introducing a vector of cut-off points v
= (v0 = 0, v1, . . ., vk−1, vk = 1)0 so that:

f ðZ�jvÞ ¼
Yk

j¼1

Unðvj� 1; vjÞ ¼
Yk

j¼1

1

vj � vj� 1

Iðvj� 1 ;vjÞ
ðZ�j Þ;

where IA(.) denotes the indicator function of the set A. The prior distribution for the risk vector

η is then given by:

f ðZjvÞ ¼
Yk

j¼1

1

ðvj � vj� 1Þ

1

ð1þ ZjÞ
2
I vj� 1

1� vj� 1
;

vj
1� vj

� �ðZjÞ: ð3Þ

The prior distribution that we propose for the vector v is based on the distances between a

cut-off point and the following, that is dj = vj − vj−1. Note that these distances are positive and

add up to one, so a natural prior distribution for the vector d = (d1, d2, . . ., dk)
0 is the Dirichlet

distribution, d* Dir(d|γ). We assign γ a particular value, specifically γj = 1 8j, which corre-

sponds to the flat Dirichlet distribution. Under that assumption, E(dj) = 1/k. However, other

values of γ are also possible. The prior distribution for the vector v is then given by:

f ðvÞ ¼
Yk

j¼1

ðvj � vj� 1Þ
gj� 1 ; ð4Þ

if v0 = 0� v1� . . .� vk−1� vk = 1.

As a prior distribution for p we consider the Dirichlet distribution:

p � DirðpjaÞ; ð5Þ

where α is also assigned a particular value. The choice of α here is important, since it may affect

the posterior results. Values larger than 1 may prevent some classes from being empty (see, for

instance, [21] and the references therein). Under the assumption that the number of risk clas-

ses k is known, we can use a weakly informative prior, such as αj = 2 8j, which facilitates the

estimation of the risks within each class and, consequently, convergence of MCMC chains.

Other values of α are also possible (for more details, see the sensitivity analysis performed in

the case study section).
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The joint posterior distribution for the model parameters is given by:

f ðz; p; Z; vjy; k; eÞ / f ðyjk; z; Z; eÞf ðzjpÞf ðpÞf ðZjvÞf ðvÞ

/
Ym

i¼1

ðz0iZÞ
yiexpf� eiz

0

iZg

" #
Ym

i¼1

z0ip

" #
Yk

j¼1

paj � 1

j

" #

Yk

j¼1

1

ðvj � vj� 1Þ

1

ð1þ ZjÞ
2
I vj� 1

1 � vj� 1

;
vj

1 � vj

 !ðZjÞ

Yk

j¼1

ðvj � vj� 1Þ
gj � 1Iðvj� 1 ;vjþ1Þ

ðvjÞ:

ð6Þ

This posterior distribution is analytically intractable but can be sampled using MCMC sim-

ulation techniques.

MCMC algorithm. To sample from the joint posterior distribution of the model parame-

ters, we suggest an MCMC simulation algorithm based on the Gibbs sampling procedure,

which requires the full conditional posterior distributions to be known [22].

The latent indicator vector zi 2 {E1, E2, . . ., Ek}, Ej being the j-th column of the identity

matrix Ik. The probability of each value is given by:

f ðzi ¼ Ejjy; k; p; Z; v; eÞ / f ðyijk; zi ¼ Ej; Z; eiÞf ðzi ¼ EjjpÞ

/ Z
yi
j expf� eiZjgpj:

So, the full conditional posterior distribution for each vector zi, i = 1, 2, . . ., m, is the discrete

distribution defined as:

f ðzi ¼ Ejjy; k; p; Z; v; eÞ ¼
Z

yi
j expf� eiZjgpj

Xk

l¼1

ðZ
yi
l expf� eiZlgplÞ

; j ¼ 1; . . . ; k: ð7Þ

The full conditional posterior distribution for parameter p is given by:

f ðpjy; k; z; Z; v; eÞ / f ðzjpÞf ðpÞ

/
Yk

j¼1

p
ð
Pm

i¼1
zijÞþaj � 1

j ;
ð8Þ

that is, p*Dir(p|α + z+.), where z+. is the resultant vector after adding the columns of the indi-

cator matrix z.

The full conditional posterior distribution of the latent risk ηj, j = 1, 2, . . ., k, can be

obtained as:

f ðZjjy; k; z; p; Z� j; v; eÞ /
Y

i:zi¼Ej

f ðyijk; zi ¼ Ej; Zj; eiÞf ðZjjvÞ

/ ðZjÞ
yðjÞexpf� eðjÞZjg

1

ð1þ ZjÞ
2
I vj� 1

1� vj� 1
;

vj
1� vj

� �ðZjÞ

/ Ga½ZjjyðjÞ þ 1; eðjÞ�
1

ð1þ ZjÞ
2
I vj� 1

1� vj� 1
;

vj
1� vj

� �ðZjÞ;

ð9Þ

where y(j) and e(j) represent, respectively, the sum of the observed and expected counts of
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disease of those areas that are assigned to the j-th risk class. Note that if the j-th risk class is

empty, the posterior distribution of parameter ηj corresponds to the prior distribution.

Finally, the full conditional posterior distribution of each cut-off point vj, j = 1, 2, . . ., k − 1,

is given by:

f ðvjjy; k; z; p; Z; v� j; eÞ / f ðZjvÞf ðvÞ

/
1

vj � vj� 1

I vj� 1

1� vj� 1
;

vj
1� vj

� �ðZjÞ

1

vjþ1 � vj
I vj

1� vj
;

vjþ1

1� vjþ1

� �ðZjþ1Þ

ðvj � vj� 1Þ
gj � 1
ðvjþ1 � vjÞ

gjþ1 � 1Iðvj� 1 ;vjþ1Þ
ðvjÞ

/ ðvj � vj� 1Þ
gj � 2
ðvjþ1 � vjÞ

gjþ1 � 2I
Zj

1þZj
;
Zjþ1

1þZjþ1

� �ðvjÞ:

ð10Þ

Note that only the last indicator function is necessary, since the previous ones imply

vj� 1 <
Zj

1þZj
< vj and vj <

Zjþ1

1þZjþ1
< vjþ1.

Details on how to simulate from these full conditional posterior distributions are given in

S1 Appendix.

Bayesian analysis of the model when k is unknown

In practice, however, the number of risk classes is unknown and so it has to be estimated. Pre-

vious approaches to estimation of k include the use of a reversible jump MCMC algorithm [14,

17], randomized model search strategies [16] or a penalty based approach that fixes k to be

overly large and penalises values in the extreme risk classes [20]. In the context of Bayesian

finite mixture models, [21] propose a criterion to determine the appropriate number of latent

classes based on the posterior distribution of the class proportions. Concretely, the mixture

model is first estimated with a relatively large number of latent classes. The true number of

latent classes is then estimated as the posterior mode of the number of non-empty classes

(where a class is defined as empty in an MCMC iteration if the proportion of observations

assigned to that class is below a certain cut-off). This criterion, which can be easily computed

using standard software for Bayesian analysis, has proved to perform well if the hyperpara-

meters of the Dirichlet prior on the class proportions is sufficiently vague.

Here, we pursue a novel alternative methodology, which provides a discrete posterior distri-

bution f(k|y, e) on the integers {1, 2, . . ., K}. Our alternative is based on the marginal likelihood

of the data given the parameter k:

f ðyjk; eÞ ¼
Z Z

f ðyjk; p; Z; eÞf ðp; ZjkÞ dpdZ: ð11Þ

Note that this marginal likelihood can be approximated by Monte-Carlo integration using a

sample fpðnÞ; ZðnÞgNn¼1
from the prior distribution of parameters p and η. However, this

approach may not be efficient if the prior distribution is non-informative. In order to reduce

the Monte-Carlo error, we define the following procedure. Let us first assume that k = 1. In

that case, the only parameter of the model is η, and the marginal likelihood can be formulated
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as:

f ðyjk ¼ 1; eÞ ¼
Qm

i¼1
eyi
iQm

i¼1
yi!

Z 1

0

Z

Pm

i¼1
yiexpf� Z

Xm

i¼1

eig
1

ð1þ ZÞ
2
dZ

¼

Qm
i¼1

eyi
iQm

i¼1
yi!
G 1þ

Xm

i¼1

yi

 !

ð
Xm

i¼1

eiÞ
� ð1þ
Pm

i¼1
yiÞ
Z 1

0

1

ð1þ ZÞ
2
Ga Zj1þ

Xm

i¼1

yi;
Xm

i¼1

ei

 !

dZ

¼

Qm
i¼1

eyi
iQm

i¼1
yi!
G 1þ

Xm

i¼1

yi

 !

ð
Xm

i¼1

eiÞ
� ð1þ
Pm

i¼1
yiÞEðð1þ ZÞ� 2

Þ:

ð12Þ

Given a sample fZðnÞg
N
n¼1

from GaðZj1þ
Pm

i¼1
yi;
Pm

i¼1
eiÞ, Eq (12) can be estimated as:

f̂ ðyjk ¼ 1; eÞ ¼
Qm

i¼1
eyi
iQm

i¼1
yi!
G 1þ

Xm

i¼1

yi

 !

ð
Xm

i¼1

eiÞ
� ð1þ
Pm

i¼1
yiÞ 1

N

XN

n¼1

1

ð1þ ZðnÞÞ
2
:

In the general case k> 1, g(η, p, d|y, k, e) = g(η|y, k, d, e)g(p|y, k, d, e)g(d|k, e) is defined as

a naive approximation to the posterior distribution of the model parameters and it is used

as an importance function. We next describe this importance function when k = 2. Its gener-

alization for values of k> 2 is straightforward. If k = 2, η = (η1, η2)0, p = (p1, 1 − p1)0, and

d = (d1, 1 − d1)0. In particular, we assume that g(d1|k) = Be(d1|γ1, γ2). Once the value of d1 has

been observed, each small area is assigned to the first risk class if
yi
ei
<

d1

1� d1
. Let m1 be the num-

ber of small areas assigned to the first risk class, and m2 = m − m1 the number of small areas

assigned to the second risk class. Function g(p1|y, k, d, e) is defined as Be(p1|α1+ m1, α2+ m2).

Finally, g(η1|y, k, d, e) and g(η2|y, k, d, e) are defined, respectively, from the empirical distri-

bution of fyijeigi:yi=ei<d1=ð1� d1Þ
and fyijeigi:yi=ei>d1=ð1� d1Þ

. The marginal likelihood function can

then be expressed as:

f ðyjk; eÞ ¼
Z Z Z

f ðyjk; p; Z; d; eÞf ðp; Z; djkÞdpdZdd

¼

Z Z Z

f ðyjk; p; Z; eÞf ðp; Zjk; dÞf ðdjkÞdpdZdd

¼

Z Z Z

f ðyjk; p; Z; eÞf ðp; Zjk; dÞ
gðZ; p; djy; k; eÞ
gðZ; pjy; k; d; eÞ

dpdZdd

¼ E
f ðyjk; p; Z; eÞf ðp; Zjk; dÞ

gðZ; pjy; k; d; eÞ

� �

;

ð13Þ

which can be easily estimated using a sample from g(η, p, d|y, k, e).

Once the marginal likelihood function of the data given the parameter k has been estimated

for k = 1, 2, . . ., K, the value of k can be obtained from its posterior distribution:

f ðkjy; eÞ / f̂ ðyjk; eÞf ðkÞ ð14Þ

where f(k) = qk is a discrete prior distribution on the integers {1, 2, . . ., K}.

The advantage of this procedure is that it allows for cluster identification and risk estima-

tion simultaneously. If we are interested in identifying the number of risk classes, we can select

the value of k within the set {1, 2, . . ., K} with the highest posterior probability. This criterion is

similar to the one proposed in [21] in the sense that one value of k is selected from the poste-

rior distribution. However, if the final objective of the study is to estimate the relative risk of

each small area i, i = 1, 2, . . ., m, we can derive relative risk estimates accounting for model
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uncertainty through posterior averaging. That is, given the parameters of the model, the rela-

tive risk of area i is:

yi ¼
Xk

j¼1

ZjPðzi ¼ Ejjy; k; p; Z; v; eÞ ð15Þ

Using a sample generated from the joint posterior distribution of the model parameters

with the Gibbs sampling procedure, the relative risks can be estimated as:

Êðyijy; k; eÞ ¼
1

N

XN

n¼1

y
ðnÞ
i ¼

1

N

XN

n¼1

ðzðnÞi Þ
0
ZðnÞ:

In the general case of k unknown, we can use the posterior distribution of parameter k to

estimate the relative risk for area i as:

Êðyijy; eÞ ¼
XK

k¼1

Êðyijy; k; eÞf ðkjy; eÞ: ð16Þ

Extension of the model with covariates

Let us know assume that we have information from L covariates, xi being the L × 1 vector of

covariate information corresponding to the i-th small area, i = 1, 2, . . ., m. In this case, counts

of disease are modeled as:

yijk; zi; Z; b; ei; xi � Poðyijei � expfx0ibg � z
0
iZÞ;

zijp � Multðzijn ¼ 1; pÞ;
ð17Þ

where the difference with respect to Eq (2) is the incorporation of the extra term expfx0ibg in

the mean of the Poisson distribution.

The prior distribution assumed for parameter β is the multivariate Gaussian distribution

with zero mean vector and covariance matrix S. As hyperprior for parameter S, we propose

an inverse Wishart distribution with ν degrees of freedom and scale matrix C. A typically used

relatively uninformative inverse Wishart prior sets ν = L + 1 and C = IL (see, for instance,

[23]). The particular case L = 1 corresponds to an inverted Gamma distribution s2
b
�

Ga� 1ða; bÞ with a = ν/2 and b =C/2.

The full conditional posterior distributions for parameters zi, i = 1, 2, . . ., m, p, ηj, and vj,
j = 1, 2, . . ., k, remain as those in Eqs (7)–(10), the only difference is that ei is substituted by

ei � expfx0ibg.
The full conditional posterior distributions for parameters β and S are given by:

f ðbjy; k; z; p; Z; v;S; e; xÞ / exp
Xm

i¼1

yixi

 !0

b

( )

exp �
Xm

i¼1

ei � expfx
0

ibg � z
0

iZ

( )

expf�
1

2
b
0
S� 1bg:

ð18Þ

f ðSjy; k; z; p; Z; v; b; e; xÞ / jSj
� nþLþ2

2 exp �
1

2
tr ðbb0 þCÞS� 1
� �

� �

: ð19Þ

Simulation from the full conditional posterior distribution of parameter β can be done

using the Metropolis algorithm. In particular, we propose to use the uniform distribution in a
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ball in RL centered at the previous simulated value of β and radius r as the proposal density.

The full conditional posterior distribution of parameter S is an inverse Wishart distribution

with ν+ 1 degrees of freedom and scale matrix ββ0 +C. Simulation from this distribution is

straightforward.

As explained in the introduction, most of the statistical models that have been proposed to

explain the spatial pattern in small area disease data incorporate spatially autocorrelated ran-

dom effects, which account for any spatial autocorrelation remaining in the data after the

known covariate effects have been accounted for. Because many covariates vary spatially, spa-

tial confounding between spatially structured random effects and fixed effects is a well-known

problem. One possible solution is to use a multi-stage modelling process (see, for instance,

[24]). It is important to emphasize here that, because the proposed model does not impose any

spatial correlation, it is not affected by collinearity problems, and so fixed-effects can be prop-

erly estimated.

Simulation study

We present here some of the results obtained in an extensive simulation study that we con-

ducted to assess the effectiveness of the proposed model to recover the true underlying risk

surface (for more details, see [25]). All the analysis was performed using the free statistical soft-

ware R.

Data

We used the city of Valencia (Spain), which consists of m = 86 contiguous boroughs, as the

base map to generate the observed disease count data at borough level. To calculate the

expected counts of disease, we used the population size of each borough and assumed an inci-

dence rate r = 30 per 104 persons. In Scenario 1, the parameters assumed for the simulation

were k = 3, η = (0.5, 1.0, 3.5), and p = (0.2, 0.3, 0.5). In Scenario 2, the parameters assumed for

the simulation were k = 7, η = (0.2, 0.5, 0.8, 1.0, 1.5, 2.5, 3.5), and p = (1/7, 1/7, 1/7, 1/7, 1/7, 1/

7, 1/7). To generate the observed disease counts within each scenario, we first assigned the

small areas to the different risk levels simulating from a discrete distribution with probabilities

given by the corresponding vector p. Then, each yi, i = 1, 2, . . ., m = 86, was simulated from a

Poisson distribution with mean eiz0iZ, where ei was calculated taking into account the popula-

tion size of the i-th borough and the assumed value of r, and z0iZ is the risk corresponding to

the risk class where the i-th borough was assigned.

For comparative purposes, we also simulated data from the convolution model [2]. In Sce-
nario 3, the relative risk for the i-th borough (θi) was simulated as:

yi ¼ expfrþ ui þ vig ð20Þ

where r � Nð0; s2
r
Þ is the overall level of the relative risk in the study region; u = (u1, u2, . . .,

um)0 represents the spatially correlated random effect, following a CAR model with variance

s2
u; and v = (v1, v2, . . ., vm)0 is assumed to be a realization of a multivariate Gaussian distribu-

tion with zero mean vector and covariance matrix s2
vIm. The values of the standard deviances

were (σρ, σu, σv) = (0.01, 0.05, 0.1). The observed disease count for the i-th borough was then

simulated from a Poisson distribution with mean ei θi, where ei was calculated taking into

account the population size of the borough and an incidence rate r = 30 per 104 persons.

Finally, we also considered a scenario where different risks were assigned to each borough

without imposing any spatial correlation between risks in nearby areas. In particular, in
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Scenario 4, the relative risk for the i-th borough was simulated as:

yi ¼ expfrþ vig ð21Þ

where parameters ρ and vi are defined as those in Eq (20). The values of the standard deviances

were (σρ, σv) = (0.01, 0.1). This scenario represents a situation where the relative risks are not

spatially correlated but, unlike our model formulation, the small areas are not assigned to risk

classes.

To allow for sampling variability, we simulated 100 data sets for each scenario. The results

presented are averaged over these 100 realizations.

Evaluation measures

We mainly used two measures to evaluate the performance of our model: The root mean

squared error (RMSE) and the percentage of correspondence.

Let θi and ŷ i be the true and the estimated relative risk for the i-th small area, i = 1, 2, . . ., m.

The RMSE is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Pm
i¼1
ðyi � ŷiÞ

2

q

.

In the analysis of each data set with our model, we first assumed that the value of k was

known and simulated 5000 samples from the posterior distribution of the model parameters

using the MCMC simulation algorithm described in S1 Appendix. The values of k that we con-

sidered ranged from k = 1 to k = 10; that is, we sequentially implemented the MCMC algo-

rithm for k = 1, 2, . . ., K = 10. We calculated then the posterior distribution of parameter k as

previously explained (see Eq (14)) using 100000 samples in the Monte-Carlo integration step.

Finally, the estimated relative risk for each borough was calculated using Eq (16). The resulting

RMSE is represented by RMSEmod. For comparative purposes, we also show the RMSEsmr

based on the standardized mortality rate (ŷ i ¼ yi=ei) and the RMSEBYM that was obtained by

fitting the convolution model to the simulated dataset. To carry out this analysis, we used the

free statistical software WinBUGS.

The percentage of correspondence is calculated as the percentage of data sets within each

scenario that satisfy that the value of k with the highest posterior probability corresponds to

the true value of k. Note that this measure can only be calculated for Scenario 1 and Scenario 2,

since the data were simulated from our model and so we know the true value of k.

Results

For Scenario 1, the median and interquartile range of the estimated values of η and p when we

assume that k is known and equal to 3 are displayed in Table 1. As can be seen, when we condi-

tion on the true number of risk classes, the risks within each class are accurately estimated and

the proportion of areas assigned to each risk class coincide with the real probabilities of the

classes.

We next consider k as an additional parameter of the model and compute its posterior dis-

tribution. Table 2 shows the percentage of data sets (out of the 100) that select each possible

Table 1. Scenario 1: Median (interquartile range) of the estimated values of η and p when we assume k = 3. True

values are η = (0.5, 1.0, 3.5) and p = (0.2, 0.3, 0.5).

Ẑ1 Ẑ2 Ẑ3

0.49 (0.06) 1.00 (0.06) 3.50 (0.07)

p̂1 p̂2 p̂3

0.22 (0.07) 0.29 (0.07) 0.49 (0.06)

https://doi.org/10.1371/journal.pone.0231935.t001
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value of k considered (from 1 to 10) as the most probable value. In this scenario, a percentage

of correspondence equal to 94% is achieved, being the mean of the posterior probability of the

value k = 3 equal to 0.79.

The corresponding results for Scenario 2 are presented in Tables 3 and 4. As in the previous

scenario, when we condition on the true number of risk classes (k = 7 here), the estimated

risks within each class and the probabilities of these classes are close to the real values. As

expected, however, the difficulty of identifying the risk classes increases with the number of

risk classes used in the simulation and also when there is a low separation between the risks.

Under this scenario, the values of k that are most often selected are k = 7, 8, and 9. In this case,

the mean of the posterior probability of the value k = 7 is 0.20.

A comparison with the results provided by the criterion proposed in [21] to select the num-

ber of risk classes is shown in S2 Appendix.

The mean of three RMSE previously described are shown in Table 5. This table also displays

the 95% Bayesian prediction interval for the difference between the RMSEBYM and the RMSE-

mod that would be obtained after applying the convolution model and the proposed model to a

new data set. As expected, the RMSEsmr is the highest one, while the differences between the

RMSEmod and the RMSEBYM are not significant except when the data show a marked cluster-

ing behaviour. On those occasions, the proposed model provides more satisfactory results.

Table 2. Scenario 1: Percentage of data sets that satisfy that the highest probability of the posterior distribution of k coincides with each possible value of k
considered.

k 1 2 3 4 5 6 7 8 9 10

0% 0% 94% 4% 2% 0% 0% 0% 0% 0%

https://doi.org/10.1371/journal.pone.0231935.t002

Table 3. Scenario 2: Median (interquartile range) of the estimated values of η and p when we assume k = 7. True values are η = (0.2, 0.5, 0.8, 1.0, 1.5, 2.5, 3.5) and p =

(1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7).

Ẑ1 Ẑ2 Ẑ3 Ẑ4 Ẑ5 Ẑ6 Ẑ7

0.18 (0.05) 0.46 (0.08) 0.75 (0.08) 1.09 (0.12) 1.65 (0.14) 2.56 (0.18) 4.38 (3.38)

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

0.13 (0.03) 0.14 (0.03) 0.16 (0.04) 0.16 (0.04) 0.13 (0.03) 0.14 (0.04) 0.14 (0.05)

https://doi.org/10.1371/journal.pone.0231935.t003

Table 4. Scenario 2: Percentage of data sets that satisfy that the highest probability of the posterior distribution of k coincides with each possible value of k
considered.

k 1 2 3 4 5 6 7 8 9 10

0% 0% 0% 0% 3% 12% 19% 25% 27% 14%

https://doi.org/10.1371/journal.pone.0231935.t004

Table 5. Mean of the RMSEs obtained in the estimation of the relative risks for the small areas and 95% Bayesian prediction interval for the difference between the

RMSEBYM and the RMSEmod that would be obtained after applying the convolution model and the proposed model to a new data set.

RMSEsmr RMSEmod RMSEBYM 95% Pred Int

Scenario 1 0.422 0.204 0.397 [0.063,0.322]

Scenario 2 0.342 0.293 0.320 [-0.033,0.088]

Scenario 3 0.286 0.105 0.100 [-0.023,0.012]

Scenario 4 0.284 0.098 0.094 [-0.020,0.011]

https://doi.org/10.1371/journal.pone.0231935.t005
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When counts of disease are either spatially correlated or do not show a clustering behaviour,

the proposed model is able to capture such behaviour and the relative risk estimates are similar

to those provided by the convolution model.

Case study

In this section we study the number of reported varicella cases in the city of Valencia for year

2013. These data were obtained from the Surveillance Service and Epidemiological Control,

General Division of Epidemiology and Health Surveillance—Department of Public Health,

Generalitat Valenciana. Since the data provided were aggregated counts of disease at borough

level, we did not have access to any identifying information of patients.

Varicella, also known as chickenpox, is an acute and highly contagious viral, airborne dis-

ease. It is primarily a disease of children, characterized by blister-like rash, itching, tiredness,

and fever. It usually resolves by itself within a couple of weeks. Immunity following infection is

considered to be long-lasting and reinfections are rare.

The city of Valencia (the third largest city in Spain) consists of 19 districts divided into 87

boroughs. Districts 17, 18 and 19 are thinly populated and far from the urban core. Hence, we

consider here the analysis of varicella data in 70 boroughs of Valencia (corresponding to dis-

tricts 1-16) for year 2013. The number of cases registered in these districts represents over 98%

of the total.

In our analysis of the data, we have first assumed that the value of k is known and we have

simulated 5000 samples from the posterior distribution of the model parameters using the

MCMC simulation algorithm described in S1 Appendix. We performed a sensitivity analysis

to assess the influence of the values assumed for the hyperparameters on posterior results. We

considered values of γ and α different to the ones proposed in the description of the Bayesian

analysis of the model. Concretely, we also assumed γj = 2 and αj = 0.4 or αj = 1, 8j. In all cases,

the correlation among the posterior estimates of the parameters was greater than 0.998. The

results presented here correspond to the values γj = 1 and αj = 2. The values of k that we have

considered range from k = 1 to k = 10. We have calculated then the posterior distribution of

parameter k using 100000 samples in the Monte-Carlo integration step. This posterior distri-

bution is shown in Table 6.

If the objective of the study is to identify clusters of disease, we would select the value of

k = 5 as the number of risk classes. The posterior estimates of the risks and the probabilities

associated with the risk classes are given in Table 7.

The estimated posterior probabilities f(zi = Ej|y, k = 5, e), Ej being the j-th column of the

identity matrix I5, allow us to assign each small area i to the risk class corresponding to the

highest probability. Fig 1 maps the clustering behavior of the data, where each color

Table 6. Case study: Posterior distribution of parameter k.

k 1 2 3 4 5 6 7 8 9 10

0 0 0.01 0.10 0.40 0.20 0.13 0.08 0.05 0.03

https://doi.org/10.1371/journal.pone.0231935.t006

Table 7. Case study: Median (interquartile range) of the estimated values of η and p when we assume k = 5.

Ẑ1 Ẑ2 Ẑ3
Ẑ4 Ẑ5

0.46 (0.22) 0.82 (0.26) 1.12 (0.30) 1.85 (0.84) 5.34 (0.62)

p̂1 p̂2 p̂3 p̂4 p̂5

0.19 (0.19) 0.34 (0.21) 0.26 (0.24) 0.10 (0.12) 0.05 (0.03)

https://doi.org/10.1371/journal.pone.0231935.t007
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corresponds to a risk level and areas represented with the same color indicate that they belong

to the same risk class. Hence, geographic disease variation is described by a piecewise constant

risk surface.

If we are interested in obtaining relative risk estimates for each borough, we can derive them

using Eq (16), which allows us to incorporate model uncertainty. A summary of the estimated

relative risks for the 70 boroughs of Valencia is shown in Table 8. Fig 2 maps the estimated rela-

tive risks. For comparative purposes, we also include the results obtained by the convolution

model. Note that the estimated relative risks with our model are very similar to those provided

by the convolution model. The log-pseudo marginal likelihood (
Pm

i¼1
logðCPOiÞ) correspond-

ing to our model and that of the convolution model are, respectively, -178.30 and -213.41. So,

the fit provided by the proposed model is slightly better than that of the convolution model. It is

important to emphasize here that, even though our model does not impose any spatial correla-

tion, it properly describes the spatial distribution of varicella in the city of Valencia.

Fig 1. Case study: Clustering behavior of the varicella data for the 70 boroughs of the city of Valencia. The value of

k = 5 has been selected as the number of risk classes.

https://doi.org/10.1371/journal.pone.0231935.g001

Table 8. Case study: Summary of the estimated relative risks for the 70 boroughs of Valencia. The results obtained with the convolution model are also included.

Min Q1 Median Mean Q3 Max

Proposed model 0.46 0.74 0.89 1.06 1.06 5.34

Convolution model 0.49 0.67 0.89 1.06 1.11 5.62

https://doi.org/10.1371/journal.pone.0231935.t008
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We now show the results obtained in the analysis of the data when we include one covari-

ate. In particular, for each borough, we have information corresponding to the percentage of

population aged 0-4, which constitutes one of the high-risk age groups. Posterior point esti-

mate of parameter β is 0.19, being the 95% confidence interval equal to [0.05, 0.31]. This esti-

mate is consistent with the estimate obtained after fitting a model including the covariate

effect and uncorrelated random effects (namely, log(θi) = α + βxi + vi, vi � Nð0; s2
vÞ):

b̂ ¼ 0:15, and CI95%(β) = [−0.007, 0.309]. From 2006 to 2013, varicella vaccine was available in

pharmacies and young children could be vaccinated according to parents’ criteria. A more

informative covariate would be the percentage of unvaccinated population aged 0-4. However,

this information is not available at the borough level. Nevertheless, the proposed model is

capable of estimating the effect of the available covariate and the residual relative risks for each

borough. Fig 3 maps the total impact of covariate (E(exp{βxi}|y, e, x)) and the mean of the Pois-

son distribution without the term ei (that is, Eðexpfbxig � z0iZjy; e; xÞ). As expected, for each

borough, the estimated mean of the Poisson distribution is practically the same as the relative

Fig 2. Case study: Estimated relative risks for the 70 boroughs of the city of Valencia. Left: Results obtained with our

model. Right: Results obtained by applying the convolution model.

https://doi.org/10.1371/journal.pone.0231935.g002

Fig 3. Case study. Left: Total impact of covariate. Right: Estimated mean of the Poisson distribution without the term ei
for the 70 boroughs of the city of Valencia.

https://doi.org/10.1371/journal.pone.0231935.g003
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risks estimated with the proposed model without covariate information. The corresponding

log-pseudo marginal likelihood is -176.45.

Discussion

We have proposed a Bayesian Poisson mixture model that allows for relative risk estimation

and cluster detection. By looking at the posterior distribution of each indicator vector zi, the

small areas can be grouped together in, possibly multiple, risk classes. However, posterior aver-

aging over both the generated samples and the number of risks classes considered leads to a

smoothly varying risk surface.

Our model formulation allows that areas belonging to a specific risk class are disconnected.

This idea has been explored in previous papers, but some kind of spatial dependence in the

definition of the prior distributions for the allocation variables is always assumed [17, 18]. A

major novelty of the proposed methodology is that we do not impose any spatial correlation at

any level of the model hierarchy. However, as shown in the case study, the model can properly

explain the spatial distribution of the data under study. The results obtained in a simulation

study also demonstrate the good performance of our procedure in a variety of situations

encompassing both smooth and discontinuous cases. This flexibility is of utter importance

because, in practice, there is little prior information about the underlying risk surface.

It is also important to emphasize that we have treated the number of risks classes k as an

additional parameter of the model. We have proposed here a novel methodology based on the

marginal likelihood of the data given parameter k to estimate its posterior distribution. The

integral to obtain such marginal distribution is solved by Monte Carlo integration using an

approximation to the posterior distribution of the model parameters. As shown, this is an effi-

cient and straightforward to program procedure.

If the effect of known explicative variables is taken into account, the proposed model aids in

the identification of unexplained components of risk. Because our model formulation does not

impose spatial correlation, it avoids the spatial confounding problem and provides a suitable

framework to estimate the fixed-effect coefficients associated with spatially-structured covari-

ates. Covariate information could also be used to introduce some spatial correlation in the

model (for instance distance to putative foci of risk) or to define informative prior distribu-

tions for the indicator vectors. A very fruitful area for further research would be the incorpo-

ration and selection of multiple covariates.

It would also be valuable to extend the model to the spatio-temporal domain. This would

allow us to describe the spatial distribution of disease risk and also its evolution over time. A

possible extension can be obtained by defining, for each small area, a set of temporally corre-

lated indicator vectors fzitg
T
t¼1

. Because the assignment of each small area to a risk class can

change, the model so defined would allow the relative risks to evolve in time.

Supporting information

S1 Appendix. Gibbs sampling procedure.

(PDF)

S2 Appendix. Identification of the number of risk classes: A comparison.

(PDF)

S1 File.

(ZIP)

PLOS ONE A Bayesian unified framework for risk estimation and cluster identification in small area health data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0231935 May 7, 2020 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231935.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231935.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231935.s003
https://doi.org/10.1371/journal.pone.0231935


Acknowledgments

We thank the Surveillance Service and Epidemiological Control, General Division of Epidemi-

ology and Health Surveillance—Department of Public Health, Generalitat Valenciana, for pro-

viding the varicella data.

Author Contributions

Data curation: A. Iftimi.
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25. Flórez-Lozano KC. Modelo de conglomerados para el análisis bayesiano de datos epidemiológicos en
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