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27.1 A Brief History of SARS

As outlined in Table 27.1, the first reported case of “atypical pneumonia,” now

known as severe acute respiratory syndrome (SARS), occurred in Guangzhou,

Guangdong province, China, on November 16, 2002. Before the end of February

2003, a total of 11 index cases occurred independently in 9 cities of Guangdong

Province, which was the early phase of the SARS epidemic (Chinese, 2004). These

index cases spread the virus to their close relatives and hospital staffs and provided

the early demonstration of the respiratory transmission mode of the disease. The

clinical symptoms of SARS are nonspecific. The index cases all began to have

fever higher than 38�C and displayed common respiratory symptoms such as

cough, headache, and shortness of breath.

The dynamics of the outbreak was largely shaped by the presents of the so-

called super spread event (SSE), in which a single patient was shown to spread the

virus to a large number of contacts (Chinese, 2004). It was the SSEs that triggered

the large-scale SARS pandemic in China. The first SSE patient is a businessman

specialized in fishery wholesale. He was treated in three hospitals from January 30,

2003 to February 10, 2003 and along the way infected at least 78 other individuals

including hospital staffs, patients, and close relatives and friends (Chinese, 2004).

The second SSE individual, who caused the major spread of the disease out of

Guangdong, was a native of Shanxi province. She went to Guangdong for business

in late February and become sick while traveling. She went back to her home prov-

ince and infected eight family members as well as five hospital staff members. The

spread continued to Beijing when she decided to seek better treatment in Beijing

(Chinese, 2004; Zhao, 2007).
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The beginning of the global transmission occurred in Metropole Hotel of Hong

Kong where a visiting urologist from a Guangdong hospital stayed during a private

visit. Without his knowledge, the urologist was infected with SARS coronavirus

(SARS-CoV) a few days before he traveled to Hong Kong. It is later found that he

spread the virus to at least 15 other persons in the hotel and in the hospital where he

was treated. Among them, five of the hotel contacts continued to their international

journey and further transmitted the disease to Vietnam and Singapore. This marks the

true beginning of a disastrous worldwide pandemic (http://www.who.int/csr/sars/en/).

WHO played a key role in the investigation and control of the SARS outbreak

from the very beginning. For the first time in history, WHO issued a global travel

alert on March 12, 2003, which greatly reduced the rate of long-distance transmis-

sion of the disease. On March 17, 2003, WHO established a 9-nation/11-institute

SARS network, which played a major role in the rapid identification of the

Table 27.1 Chronological Events of the SARS Outbreaks

Date Event

Nov 16, 2002 The first recognized SARS patient, in Foshan, Guangdong province,

China

Nov 16,

2002�Mar 10, 2003

Eleven independent index cases in Foshan, Heyuan, Jiangmen,

Zhongshan, Shunde, Guanzhou, Zhaoqing, Shenzhen, Dongguan,

China, resulting in more than 50 secondary infections

Jan 22, 2003 SARS spreading in Guangdong province

Mar 22, 2003 SARS spreading to Shanxi and Beijing

Feb 21, 2003 SARS spreading to Hong Kong, marking the beginning of the

global pandemic

Feb 28, 2003 SARS spreading to Vietnam

Mar 12, 2003 WHO Global travel alert for the SARS pandemic

Mar 14, 2003 SARS spreading to Canada

Mar 6, 2003 SARS spreading to Singapore

Mar 17, 2003 WHO established a 9-nation/11-institute international laboratory

network

Mar 24, 2003 Coronavirus was isolated from SARS patient

Apr 4, 2003 SARS spreading to Philippines

Apr 12, 2003 Full-length genome of SARS-CoV determined

Apr 17, 2003 The international laboratory network announced conclusive

identification of SARS-CoV as the causative agent

May 23, 2003 Detected SARS coronavirus in market animals

July 5, 2003 WHO removed the last region from the effected list, effectively

marking the end of the outbreak

Aug 7, 2003 WHO reported a total of 8,096 cases and 774 deaths covering the

major 2002�2003 outbreaks

Sep 2003�Apr 2004 Outbreaks caused by laboratory incidents in Singapore, Taiwan, and

Beijing

Dec 16, 2003�Jan 8,

2004

Four independent SARS cases in Guangdong, causing mild disease

with no death
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causative agent and development of diagnostic tests. Thanks to the international

effort coordinated by WHO, the SARS outbreaks were effectively under control by

July 5, 2003. This was the first powerful demonstration of the kind of devastation a

new infectious disease can cause worldwide and the effectiveness of an interna-

tional organization when it is running at its peak.

Following the major SARS outbreaks of 2003�2004, there were several minor

outbreaks with much smaller impacts. In December 2003 and January 2004, four

independent SARS cases were reported in Guangdong, and none of them led to

fetal infection or widespread transmission. Subsequent epidemiological tracing

revealed that all cases could be linked to civet trading activities (Wang et al.,

2005). In addition, there were laboratory outbreaks reported in September 2003,

December 2003, and April 2004 in Singapore, Taiwan, and Beijing, respectively.

The most severe outbreak was associated with the incident in Beijing, which

resulted in a total of nine infection cases with one death. None of the other two lab-

oratory infections resulted in further spread of the virus (Lim et al., 2006).

27.2 SARS Coronavirus

Rapid identification of causative agent in an outbreak caused by unknown pathogen is

the key for an effective response. However, in the case of SARS outbreak, this was

not the case. Due to the association of nonspecific clinical symptoms associated with

SARS patients, several pathogens were initially “identified” as the potential causes of

SARS, which included Chlamydia, influenza virus, and paramyxovirus (WHO, 2003).

The confusion continued until March 2003, when three laboratories independently

confirmed that a previously unknown coronavirus was the most likely etiological

agent of SARS (Drosten et al., 2003; Ksiazek et al., 2003; Peiris et al., 2003).

Coronaviruses are enveloped viruses with the largest single-stranded, positive-

sense RNA genomes currently known, ranging in size from 27 to nearly 32 kb in

length. Coronaviruses can infect and cause disease in a broad array of avian and

mammal species, including humans. The name “coronavirus” is derived from the

Greek word for crown, as the virus envelope appears under electron microscopy to

be crowned by a characteristic ring of small bulbous structures. Within the virion,

the ssRNA genome is encased in a helical nucleocapsid composed of many copies

of the nucleocapsid (N) protein. The lipid bilayer envelope contains three proteins:

envelope (E) and membrane (M), which coordinate virion assembly and release,

and the large spike protein (S), which confers the virus’s characteristic corona

shape and serves as the principle mediator of host cell attachment and entry via

virus- and host-specific cell receptors. The size of the SARS-CoV viral particle is

approximately 80�90 nm and its genomic size is around 29.7 kb (Marra et al.,

2003; Rota et al., 2003). The SARS-CoV genome contains 14 open reading frames

(ORFs) flanked by 50- and 30-untranslated regions of 265 and 342 nucleotides (nt),

respectively. While all CoVs carry strain-specific accessory genes in their down-

stream ORFs, the order of essential genes—the replicase/transcriptase gene,

S gene, E gene, M gene, and N are highly conserved (Graham and Baric, 2010).
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Similar to other known coronaviruses, the SARS-CoV genome expression starts

with two long ORFs, ORF1a and ORF1b, which account for two thirds of the geno-

mic capacity, followed by ORFs encoding S, E, M, and N proteins (Figure 27.1).

In addition to these conserved core genes in coronaviruses, the SARS-CoV genome

contains several accessory genes that are specific to SARS-CoV and have no homo-

log to known proteins. Phylogenetic analysis based on the most conserved gene

ORF1b indicated that SARS-CoV is distantly related to the group 2 coronaviruses

in the family Coronaviridae and represents a distinct cluster, named group 2b

(Figure 27.2) (Snijder et al., 2003).
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Figure 27.1 Genomic structure of SARS-CoV and bat SL-CoV. The highly conserved

genes present in all coronaviruses are shown in dark-colored arrows and the group 2b-

specific ORFs in light-colored arrows. The most variable regions were marked with shaded

boxes. The asterisk (*) indicates the host of Rp3 was previously identified as Rhinolophus

pearsoni and later corrected to be R. sinicus.

Source: Yuan et al. (2010).
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Figure 27.2 (Continued)
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27.3 The Animal Link

Due to the rapid spread of the disease and the delay in the identification of the

causative agent, there was no detailed epidemiological tracing done at the begin-

ning of the outbreaks, and it was therefore impossible to trace the origin of the

virus. However, through retrospective investigation, it emerged that the majority of

the early index cases were limited in several cities of the Guangdong province and

most of them have a history of contact directly or indirectly with wild animals,

including handling, killing and selling them, as well as preparing and serving ani-

mal meat in restaurants (He et al., 2003; Xu et al., 2004a,b).

As these epidemic regions have a unique dietary tradition favoring freshly

slaughtered game meat, there is a huge trafficking and trading industry dedicated to

live animal trading in specialized market, the “wet market.” So naturally, immedi-

ately after SARS-CoV was identified as the etiological agent of SARS, studies

were conducted in those markets for evidence of SARS-CoV. One of the earliest

and most important studies was conducted by a joint team from Hong Kong and

Shenzhen in mainland China (Guan et al., 2003). In this investigation, out of 25

samples collected from market animals, SARS-CoV like viruses were isolated from

4 out of 6 masked palm civets (Paguma larvata) and one raccoon dog (Nyctereutes

procyonoides). Antibodies against SARS-CoV were detected in masked palm

civets, raccoon dogs, and Chinese ferret-badgers (Melogale moschata). Genome

sequencing indicated that the viruses isolated from civets were almost identical to

those from human, suggesting a highly possible zoonotic transmission of SARS-

CoV from animal(s) to human (Guan et al., 2003). These data indicated that at least

three different animal species were infected by a coronavirus that is closely related

to SARS-CoV. This important study provided the first direct evidence that SARS-

CoV existed in animals, pointing to an animal link of the SARS outbreaks.

Figure 27.2 (Cont.) Phylogenetic tree of representative coronaviruses. The phylogenetic

tree is generated based on full-length genome sequences of selected coronaviruses using the

Neighbor-Joining algorithm in the MEGA4 program (Tamura et al., 2007) with a bootstrap

of 1000 replicates. Numbers above branches indicate bootstrap values from 1000 replicates.

Scale bar, 0.5 substitutions per site. GD01: SARS-CoV isolate from early phase patient

during 2002�2003 SARS ourbreak; Tor2, BJ01: SARS-CoV isolate from late phase patient

during 2002�2003 SARS ourbreak; SZ: SARS-CoV isolate from civet during 2002�2003

SARS ourbreak; GZ0401/02: SARS-CoV isolate from patient during 2003�2004 SARS

ourbreak; PC4-13, PC4-227: SARS-CoV isolate from civet during 2003�2004 SARS

ourbreak. HCoV, human coronavirus; PEDV, porcine epidemic diarrhea virus; TGEV,

porcine transmissible gastroenteritis virus; PRCV, porcine respiratory coronavirus; BtSL-

CoV, bat SARS-like CoV; BtCoV, bat coronavirus; MHV, mouse hepatitis virus; BCoV,

bovine coronavirus; FIPV, feline infectious peritonitis virus; PHEV, porcine

hemagglutinating encephalomyelitis virus; ECoV, equine coronavirus; AIBV, avian

infectious bronchitis virus; TCoV, turkey coronavirus; BWCoV, beluga whale coronavirus;

BuCoV, bulbul coronavirus; ThCoV, thrush coronavirus; MuCoV, munia coronavirus.
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Although three animals were identified as susceptible to SARS-CoV infection,

the larger sale volume of civets in comparison to other animals in the market led to

them being the focus of subsequent surveillance studies. The role of civets as a

major carrier of SARS-CoV in the markets was further confirmed by serological

studies involving much large samples (Tu et al., 2004; Kan et al., 2005).

The most detailed epidemiological data proving a direct civet to human trans-

mission of SARS-CoV was obtained during the investigation of the second wave of

SARS outbreaks during December 2003 and January 2004. There were two lines of

evidences suggesting a direct transmission. First, all four independent cases had the

history of direct or indirect contact with civets. Second, sequencing analysis indi-

cated that sequences derived from human samples were more closely related to

those in the civets during that period than those from human samples obtained in

the major 2002�2003 outbreaks (Wang et al., 2005).

In summary, there is little doubt now that the civet to human transmission is a

major source of SARS-CoV introduction into the human population (Wang et al.,

2006; Wang and Eaton, 2007; Shi and Hu, 2008).

27.4 Natural Reservoirs of SARS-CoV

A natural reservoir is a long-term host of the pathogen of an infectious disease.

It is often the case that hosts do not get the disease carried by the pathogen or

the infection in the reservoir host is subclinical, asymptomatic, and nonlethal.

Once discovered, natural reservoirs elucidate the complete life cycle of infectious

diseases, which in turn will help to provide effective prevention and control

strategies.

As stated earlier, it is clear that civets played a pivotal role in the 2002�2004

outbreaks of SARS in southern China. Culling of civets seemed to be effective in

controlling further outbreaks in the region. However, the role of civets as a poten-

tial natural reservoir host was less evident and eventually ruled out by several stud-

ies. Serological studies indicated that only civets in the markets were infected with

SARS-CoV, whereas the populations of civets in the wild or on farms are free of

major infections (Tu et al., 2004; Lan et al., 2005; Poon et al., 2005). Civets pro-

duced overt clinical syndromes when experimentally infected with SARS-CoV

(Wu et al., 2005). Comparative genome sequence analysis indicated that SARS-

CoVs civets experience rapid ongoing mutation, suggesting that the viruses were

still adapting to the host rather than persisting in equilibrium expected for viruses

in their natural reservoir species (Kan et al., 2005; Song et al., 2005).

Continuing searching for potential reservoir host of SARS-CoV resulted in the

simultaneous discovery of SARS-like coronaviruses (SL-CoVs) in bats by two

independent teams in 2005. Using serological and PCR surveillance, both groups

discovered that SL-CoVs were present in different horseshoe bats in the genus

Rhinolophus (Lau et al., 2005; Li et al., 2005c). While neither team was able to iso-

late live virus from any bat samples, the high level of viral RNA materials enabled

them to determine the whole length genome sequence from several different
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samples. Complete genome sequence analysis revealed that bat SL-CoVs have an

identical genome organization and a nucleotide sequence identity of 88�92% to

SARS-CoV (Figure 27.1, Table 27.2). Except for the S, ORF3, and ORF8 gene

products, all deduced amino acid (aa) sequences of the other gene products have a

sequence identity above 93% with those of SARS-CoV. The variable regions

between SARS-CoV and bat SL-CoV are mainly located in the coding regions for

the nonstructural protein 3 (Nsp 3), S protein, ORF3, and ORF8, the products of

these genes have aa sequence identity of 87�95%, 76�78%, 82�90%, 34�80%,

respectively. Among the different bat SL-CoVs, the coding regions for these pro-

teins also represent the most variable regions (Ren et al., 2006; Lau et al., 2010;

Yuan et al., 2010).

The phylogenetic analysis indicated that bat SL-CoVs were grouped in the same

cluster of SARS-CoV and only distantly related to other previously known corona-

viruses (Figure 27.2). To date, these bat SL-CoVs represent naturally occurring CoVs,

which are most closely related to the SARS-CoVs isolated from humans and civets.

Table 27.2 Comparison of Gene Products Between SARS-CoV and Bat SL-CoV

Gene/

ORF Gene Product Size (aa)

Amino Acid Sequence Identity

with Tor2/SZ3 (%)a

Tor2 SZ3 Rf1 Rp3 Rm1 HKU3-1 Rs1 Rf1 Rp3 Rm1 HKU3-1 Rs672

P1a 4382 4382 4377 4380 4388 4376 4189 94 96 93 94 94

P1b 2628 2628 2628 2628 2628 2628 2628 98 99 98 98 99

nsp3b 1922 1922 1917 1920 1928 1916 1729 92 95 90 92 87

S 1255 1255 1241 1241 1241 1242 1241 76 78 78 78 79

S1 680 680 666 666 666 667 666 63 63 64 6 64

S2 575 575 575 575 575 575 575 92 96 96 94 96

ORF3a 274 274 274 274 274 274 274 86 83 83 82 90

ORF3b 154 154 113 56 56 39 114 89 NA NA NA 97

ORF3c NP NP 32 NP NP NP NP NA NA NA NA NA

E 76 76 76 76 76 76 76 96 100 98 100 100

M 221 221 221 221 221 221 221 97 97 97 99 99

ORF6 63 63 63 63 63 63 63 93 92 92 94 98

ORF7a 122 122 122 122 122 122 122 91 95 93 94 96

ORF7b 44 44 44 44 44 44 44 90 93 93 93 93

ORF8a 39 NP NP NP NP NP NP NA NA NA NA NA

ORF8b 84 NP NP NP NP NP NP NA NA NA NA NA

ORF8 NP 122 122 121 121 121 121 80 35 35 34 36

N 422 422 421 421 420 421 422 95 97 97 96 99

ORF9a 98 98 96 97 97 97 98 81 85 90 88 92

ORF9b 70 70 70 70 70 70 70 80 91 91 88 94

NP, not present; NA, not applicable.
aTor2 was used for all homology calculations with the exception of ORF8, which is absent in Tor2, the SZ3 was used
instead.
bThe region of nsp3 is high variable and was calculated alone.
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Analysis of nonsynonymous and synonymous substitution rates in bat SL-CoVs

suggests that these viruses are not experiencing a positive selection pressure that

would be expected if horseshoe bats are new hosts to these viruses. Instead, these

data would argue that these viruses have been associated with the bat hosts for a

long time (Ren et al., 2006; Tang et al., 2009; Lau et al., 2010). These observations

would support the notion that bats in the genus Rhinolophus are the likely natural

reservoir hosts of bat SL-CoVs. It can be further postulated that similar bat species

may serve as natural reservoirs of viruses with closer evolutionary relationship to

the viruses that were responsible for the 2002�2004 SARS outbreaks.

27.5 Molecular Evolution of SARS-CoV in Humans
and Animals

Analysis of the large number of SARS-CoV and SL-CoV sequence datasets accu-

mulated during the last few years has clearly demonstrated the importance of virus

evolution in cross-species transmission and in pathogenesis. The following is a

review of the major evolutionary findings in host switching, recombination, and

virus�receptor interactions.

27.5.1 Rapid Adaptation of SARS-CoVs in Humans

On the basis of the epidemiological data, the Chinese SARS molecular epidemiol-

ogy consortium divided the course of the 2002�2004 outbreaks into three stages:

early, middle, and late (Chinese, 2004). The early phase is defined as the period

from the first emergence of SARS to the first documented SSE. The middle phase

refers to the ensuing events up to the first cluster of SARS cases in a hotel (Hotel M)

in Hong Kong, while cases following this cluster fall into the late phase.

Analysis of all the viral sequences available from human patients and animals

revealed two major hallmarks of rapid virus evolution during the initial stages of

the 2002�2003 outbreaks: (1) All isolates from early patients and market animals

contained a 29-nt sequence in ORF8 that is absent in most of the publicly available

human SARS-CoV sequences derived from later phases of the outbreaks; (2) a

characteristic motif of single-nucleotide variations (SNVs) were identified in

SARS-CoV of different phases, and all these SNVs were located in the S gene that

codes for the spike protein responsible for attachment to host cellular receptor

(Song et al., 2005). All SARS-CoV isolates from epidemic countries and regions

outside the mainland China could be traced to Guangdong or Hong Kong based on

the S-gene SNV motif (Lan et al., 2005; Tang et al., 2007).

During the second sporadic outbreaks of 2003�2004, it was shown that the

SARS-CoV sequences from index patients were almost identical to that from civets

collected in the same period and all retained the 29-nt sequence in the ORF8 gene.

The mild disease symptoms associated with these viruses and the lack of rapid

human-to-human transmission provided further evidence that the rapid adaptation
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of the SARS-CoV in the first major outbreak of 2002�2003 was essential for its

establishment and pathogenesis in the humans.

With the available genomic variation data and the sampling time, it is now pos-

sible to calculate the neutral mutation rate and to estimate the date for the most

recent common ancestors (MRCAs) of SARS-CoV. The estimate obtained is

around 8.003 1026/nt/day, suggesting that SARS-CoV evolves at a relatively con-

stant neutral rate both in human and palm civet. From these calculations, it was

estimated that the MRCAs for palm civet and human of different transmission

lineages lie in mid-November 2002. This estimate was consistent with the first

observed SARS case around November 16, 2002 in Foshan, Guangdong (Chinese,

2004; Song et al., 2005; Zhao, 2007).

27.5.2 Generation of Viral Genetic Diversity by Recombination

At the present time, a total of 18 full-length genome sequences of bat SL-CoVs are

determined (Lau et al., 2005, 2010; Li et al., 2005c; Ren et al., 2006; Yuan et al.,

2010). Figure 27.1 shows a comparison of the genome structures for five selected

bat SL-CoVs and one each of civet and human SARS-CoV isolates. All bat SL-

CoVs with the exception of HKU3-8 (Lau et al., 2010) contain the 29-nt sequence

in ORF8, which is present in SARS-CoV from early phase patients and civets, indi-

cating the common ancestor between civet SARS-CoV and bat SL-CoV. The SL-

CoV HKU3-8 contained a 26-nt deletion, which is located 14-nt downstream from

the commonly observed 29-nt deletion, indicating that the ORF8 coding region is a

“hotspot” for deletions (Lau et al., 2010).

SL-CoVs from different bat species share 88�92% nt identity among themselves,

indicating that the genetic diversity of SL-CoVs in bats is much greater than that

observed among civet or human isolates, which provides further support that bats

are likely the natural reservoir of this group of coronaviruses. The most dramatic

sequence difference between human SARS-CoV and bat SL-CoV is in the S protein,

which has only 76�78% aa identity for the whole S protein and 64% aa identity if

the N-terminal region (or the S1 region) was compared (Table 27.2). This observed

great genetic diversity among bat SL-CoVs and the major difference between the S1

regions of SL-CoV and SARS-CoV S proteins imply that the currently identified

SL-CoVs are not the direct progenitor of human SARS-CoV and continued search is

required to find a bat SL-CoV that is much closely related to SARS-CoV. It can also

be concluded from the earlier observations that genetic recombination may be

required to bridge the gap between SL-CoV and SARS-CoV.

It is well documented that the positive-sense ssRNA genomes of coronaviruses

are prone to homologous recombination during co infection of two different corona-

viruses and that recombination plays an important role in generating new coronavirus

species, in facilitating cross-species transmission and in modulating virus virulence

(Brian and Baric, 2005; Woo et al., 2005a; Decaro et al., 2009; Woo et al., 2009a;

Graham and Baric, 2010).

The first line of evidence for co infection and recombination came from analysis

of SL-CoVs in bats (Tang et al., 2006; Cui et al., 2007; Vijaykrishna et al., 2007;
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Hon et al., 2008; Lau et al., 2010). Several studies have also confirmed that recom-

bination can occur at multiple sites along the SL-CoV genome (Hon et al., 2008;

Graham and Baric, 2010; Lau et al., 2010; Yuan et al., 2010). For example,

detailed sequence analysis of two genotypes of bat SL-CoV, Rp3, and Rs672 (both

were identified from R. sinicus) suggested that they may represent a recombinant

of two bat SL-CoVs and one of them is more closely related to the human SARS-

CoVs (Hon et al., 2008; Yuan et al., 2010).

Although the exact origin of SARS-CoV remains elusive, it appears reasonable

to hypothesize that the virus that successfully infected civets and humans may have

evolved from multiple progenitor viruses through mutation and recombination

events in one or more reservoir and intermediate hosts.

27.5.3 Receptor Usage and Evolutionary Selection

The S protein of coronavirus is responsible for attachment to cellular receptor to

initiate the first step of virus infection. The angiotensin-converting enzyme 2

(ACE2) was identified as a main functional receptor for SARS-CoV (Li et al.,

2003). Further analysis demonstrated that the region covering aa 318�520 of S

protein is the key receptor binding domain (RBD), which is both essential and suf-

ficient to bind the human ACE2 molecule (Wong et al., 2004). Detailed analysis of

the crystal structure of the RBD-ACE2 complex revealed that 19 key residues have

close contact with the receptor molecules, which are located from aa 424 to 474.

This region is termed the receptor binding motif (RBM) (Li et al., 2005a).

When the existing epidemiological data were analyzed in combination with the

data on infectivity of SARS-CoV isolated in humans at the different phases of the

outbreaks and SARS-CoV isolates in civets, a clear correlation could be established

between the evolution of the S proteins and virus infectivity. It was observed that

the S protein is the fastest-evolving protein of SARS-CoV during interspecies trans-

mission from animal to human and in the following phases of human-to-human

transmission. The majority of the mutations are located in the S1 domain (31 out of

a total of 48 SNVs), particularly in the RBD (Chinese, 2004; Wong et al., 2004).

The interaction analysis between the S proteins of different isolates and the ACE2

molecules demonstrated that two aa residues in the S protein, aa 479 and aa 487,

played a key role in virus infectivity (Li et al., 2005b; Qu et al., 2005). For aa resi-

due 479, all 2002�2003 human isolates and some 2003�2004 palm civet isolates

have a codon for asparagine (N), all 2002�2003 and some 2003�2004 civet iso-

lates have a codon for lysine (K), while some 2003�2004 civet isolates have a

codon for arginine (R). For aa residue 487, all isolates including those from early

and middle phase patient, civets of 2002�2003 and 2003�2004 have a codon for

serine (S), whereas all isolates from late phase patients have a codon for threonine

(T) (Figure 27.3). When examined using an HIV-based pseudovirus infection assay,

S proteins with all combinations of residues 487/479 could efficiently use the civet

ACE2 as an entry receptor but showed different infectivity in human ACE2-

mediated infection (Li et al., 2005b; Qu et al., 2005). The combination of N479/

T487 had the highest infectivity, N479/S487 medium infectivity, and K479/S487
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the lowest, which almost abolished the infection. These results demonstrated

elegantly at the molecular interface that the rapid evolution of the S protein, espe-

cially at the aa positions important for host receptor engagement, was essential for

the adaptation to and establishment of an effective and productive human infection.

When the genome sequences of SL-CoVs were analyzed, it immediately became

evident that the N-terminal region of their S proteins is substantially different from

that of the SARS-CoV S proteins. As shown in Figure 27.3, there is a major

sequence difference involving deletions of 17�18 aa right in the middle of RBM.

We have since demonstrated experimentally that SL-CoV S proteins are unable to

use ACE2 molecule as a functional receptor, regardless of the origin. More specifi-

cally, ACE2 from bat, civet, or human all failed to function as an entry receptor for

a pseudovirus containing the SL-CoV S protein (Ren et al., 2008). It can therefore

be concluded that the SL-CoVs identified in bats to date are unlikely to be the

direct progenitor virus of human SARS-CoV (Ren et al., 2008).

This raises two questions: (1) What is the functional receptor for SL-CoVs and

do these viruses have the potential to spill over into other animals and humans to

cause disease like SARs-CoV? (2) Can the SARS-CoV use any bat ACE2 as a

functional receptor to satisfy the precondition for bats acting as the natural reser-

voir of SARS-CoV or a closely related progenitor virus? In the absence of a live

SL-CoV, addressing the first question is difficult, and there has been no real prog-

ress made in this area. However, recent studies in our group have provided some

useful insight into the second question.

Sequence analysis revealed that ACE2 molecules from human and different ani-

mals share a significant level of sequence identities, including the key contact

points involved in S-ACE2 interaction for SARS-CoV entry (Li et al., 2003, 2005a,b,

2006; Li, 2008). This is also true for the bat ACE2 molecule derived from R. pearsonii

(Ren et al., 2008). Recently, we have demonstrated that a 3-aa change from SHE

to FYQ at aa 40�42 is sufficient for the R. pearsonii ACE2 to function as an entry

receptor for the human SARS-CoV (Yu et al., 2010). Furthermore, we have also

demonstrated that the native ACE2 molecules from other bat species, including the

Figure 27.3 Alignment of amino acid sequences covering the RBM from viruses of

different species origin. GD01, SARS-CoV isolate from early phase patient during

2002�2003 SARS ourbreak; Tor2, BJ01, SARS-CoV isolate from late phase patient during

2002�2003 SARS ourbreak; SZ, SARS-CoV isolate from civet during 2002�2003 SARS

ourbreak; GZ0402, SARS-CoV isolate from patient during 2003�2004 SARS ourbreak;

PC4-227, SARS-CoV isolate from civet during 2003�2004 SARS ourbreak. The asterisks

(*) indicate two key residues 479 and 487.
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microbat Myotis daubentonii and the megabat Rousettus leschenaultii, were fully

functional as an entry receptor for the human SARS-CoV (Yu et al., 2010; Hou

et al., unpublished results). Taking together, these studies demonstrated that a sub-

tle change in sequence was sufficient to convert a nonsusceptible horseshoe bat

ACE2 into a functional receptor for SARS-CoV. Considering that there are more

than 60 different horseshoe species around the world (Rossiter et al., 2007;

Flanders et al., 2009), it is highly conceivable that one or more of them may serve

as the natural reservoir of SARS-CoV and/or its progenitor virus(es). Moreover,

the existence of functional ACE2 receptors in other bat species would suggest that

the host range for SARS-CoV or SL-CoVs in bats may be much wider than origi-

nally thought.

27.6 Virus Surveillance in Wild Animals

Zoonosis contributes to the majority of emerging diseases in the last 30 years,

many of them originated from wild animals (Bengis et al., 2004; Woolhouse and

Gowtage-Sequeria, 2005; Chomel et al., 2007; Jones et al., 2008). The story of

SARS is just one of such examples that spectacularly demonstrated the seamless

evolution of an animal (probably a bat) virus into a human pathogen responsible

for one of the most severe global pandemic outbreaks in the modern history of

mankind. In general, pathogens carried by wildlife reservoir animals usually do not

cause clinical symptoms, and they lie dormant until they spill over into and cause

diseases in domestic animals or humans. Classical outbreak response measures,

such as those deployed during the SARS outbreaks, are still useful, but no longer

sufficient for early detection and prevention of major infectious disease outbreaks

in the twenty-first century.

With the recent demonstration of an increasing number of spillover events that

led to severe disease outbreaks in human and domestic animals, we believe it is

paramount that from now we include active surveillance of wild animals as part of

an integrated infectious disease prevention and control strategy. Surveillance of

wildlife animals has also been made more feasible and productive thanks to the

advance in modern molecular techniques including PCR with virus group-specific

primers, virus discovery using next generation high-throughput sequencing technol-

ogies, and high-density virus microarrays (Breitbart et al., 2003; Gaynor et al.,

2007; Ng et al., 2009; Yanai-Balser et al., 2010). Since the SARS outbreaks, espec-

ially after the discovery of SL-CoVs in bats, there is a significant surge in inter-

national effort for surveillance of coronaviruses in wildlife animals. Before the SARS

outbreak, there were only 10 coronaviruses with complete genomes sequenced.

This number has increased more than threefold as a result of the active surveillance

works conducted around the world (Vijgen et al., 2005; Woo et al., 2005b, 2006,

2009a,b; Ren et al., 2006; Vijgen et al., 2006; Alekseev et al., 2008; Lau et al.,

2010; Yuan et al., 2010). Although this only marks the beginning of our under-

standing coronaviruses in wildlife animals, it is fair to say that we have learned a
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lot more about coronaviruses in general than the past 50 years or so during that

period studying of viruses was only possible and called for in response to disease

outbreaks. Based on phylogenetic analysis of the large number of bat coronavirus

sequences available presently, it is postulated that all known disease-causing

coronaviruses previously identified in human or animals originated from bat strains

(Vijaykrishna et al., 2007). It is therefore likely that another outbreak could occur

on a similar scale as that of the SARS-CoV outbreaks. It is our strong belief that

our response to a future outbreak caused by any bat-borne coronavirus will be

much more effective than what was done for the SARS outbreaks.

Facilitation of new disease outbreak by prior knowledge accumulated through

wildlife surveillance played a major role in the discovery of the new zoonotic reovi-

rus. Melaka virus was a novel bat virus that jumped species and caused direct bat-to-

human transmission, followed by human-to-human transmission in a small cluster of

patients in Malaysia (Chua et al., 2007). It caused severe respiratory or enteric infec-

tions in affected humans and represented a new class of orthoreoviruses, which are

capable of infecting and causing disease in humans. The rapid identification and

characterization of Melaka virus was made possible by using exiting reagents (pri-

mers and antibodies) and knowledge (sequence and reservoir species distribution)

gained from a previous surveillance study in bats, which resulted in the discovery of

a bat orthoreovirus called Pulau virus (Pritchard et al., 2006). It turned out that the

Melaka virus was very closely related to the Pulau virus in genetic organization of

the genome segments and in antigenic cross reactivity (Chua et al., 2007). Since

then, at least two other related bat have undergone cross-species transmission and

caused diseases in humans (Chua et al., 2008; Cheng et al., 2009).

27.7 Concluding Remarks

The emergence of SARS-CoV has had a huge impact on the global health and

economy. It served as a warning to what may come out of a seemingly harmless

virus-reservoir equilibrium in bats or any other wildlife species. At the same time,

the experience gained from the SARS outbreaks and the following in-depth studies

on SARS-like coronaviruses has provided and will continue to provide invaluable

knowledge and guideline to our future fight against new and emerging infectious

diseases. One of the major lessons is that we need to pay much more attention to

the reservoir species in understanding the genetic diversity of different viruses, the

intricate interplay at the virus�host interface and the major factors responsible for

the disturbance of virus�host equilibrium, which in turn trigger spillover events

leading to disease outbreaks.
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