

pubs.acs.org/physchemau

Letter

Molecular CO₂ Storage: State of a Single-Molecule Gas

Yoshifumi Hashikawa,* Shumpei Sadai, and Yasujiro Murata*

Cite This: ACS Phys. Chem Au 2024, 4, 143–147

ACCESS	III Metrics & More	E Article Recommendations	s) Supporting Information
--------	--------------------	---------------------------	---------------------------

ABSTRACT: CO₂ evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO₂ storage constructed by a [60]fullerenol nanopocket. The CO₂ density reaches 2.401 g/cm³ within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO₂. We also disclosed an equation of state for a molecular CO₂ gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10⁻²⁷ Pa) generated by the rotation/ vibration at 300 K. Curiously enough, the CO₂ capture enabled to modulate an external

property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding. **KEYWORDS:** carbon dioxide, nanocarbon, single molecule, supramolecular assembly, open-[60]fullerene

S olid sorbent systems for CO_2 capture/storage have been recognized as viable generators of a recyclable carbon source to tackle the global issue that plenty of CO_2 has been continuously emitted and accumulated in the course of industrial and biological processes.¹ As solid sorbents, porous materials such as zeolite,² mesoporous silica,³ and metal–organic frameworks (MOFs)⁴ have been developed in materials science, targeting efficient/selective capture and facile release of CO_2 with a low energy cost. Within the sorbents, CO_2 is captured by chemisorption and/or physisorption where CO_2 is converted into carbamate species by a surface-functionalized interior for the former, while, in the latter case, it binds to Lewis acidic/basic sites such as metal centers and/or active ligands via weak intermolecular interactions.⁵

High polarizability and quadrupolar characteristics of CO₂, however, cause a labyrinth of a physical picture on sorptive/ dynamic behavior through a mixed interplay of dispersion forces and electrostatic interactions.⁶ In addition, at higher CO₂ coverages, it undergoes dimerization and/or a change in coordinates from linear to bent within pores.⁷ These multiple factors interfere with each other, thus severely reducing opportunities to gain definitive mechanistic insights into chemisorption/physisorption as well as the physical nature of the confined CO₂ gas, both of which have been poorly understood on a molecular scale.⁸ Hence, molecular CO₂ storage that could experimentally model simple interior sorption is highly demanded for further designing pore functionalities of encapsulant materials. Herein, we focus on open-[60]fullerenols⁹ (Figure 1), which are suitable for exploiting the nanoconfinement effect of captured species such as the acid/base character of gaseous $\rm H_2O^{10}$ and paramagnetism of NO.^{11} In this paper, we examined the sorptive/dynamic behavior and equation of state for a single

A molecular CO₂ storage

✓ Fluid dynamics of a single-molecule CO_2 gas

✓ Rotational/vibrational dynamics of nanoconfined CO₂

✓ Property control of a [60]fullerene container by internal CO₂

Figure 1. [60] fullerene-based molecular CO₂ storage.

molecule of CO_2 gas as well as the nanoconfinement effect on its vibrational behavior. We also discuss a remote property modulation of the [60]fullerene container, which is caused by the internal CO_2 molecule.

Precursor host 1 contains water, nitrogen, and argon owing to a spontaneous encapsulation.¹² To gain a reasonable occupancy of CO_2 by emitting the precaptured species, CO_2 insertion was performed in *o*-dichlorobenzene (ODCB) at 130 °C under 9000 atm (Figure 2a), while CO_2 could pass through

Received:December 7, 2023Revised:December 12, 2023Accepted:December 12, 2023Published:January 16, 2024

© 2024 The Authors. Published by American Chemical Society

Figure 2. (a) Placing gaseous CO₂ inside 1. (b) Synthesis of molecular CO₂ storage. (c) ¹³C NMR spectra (500 MHz, CDCl₃/CS₂ (1:1)) of free CO₂ and CO₂@3. (d) Crystal structure of (CO₂@3)₂ showing thermal ellipsoids at 50% probability (solvent molecules are omitted for clarity). (e) Overlay of crystal structures for H₂O@3 and CO₂@3 with selected bond lengths. (f) Thermodynamic parameters on CO₂ inside 1', 2', and 3' (Ar = 2-pyridyl; B3LYP-D3/6-31G(d); ΔG^{\ddagger} , barriers for escape/rotation; f_{rotr} rotational frequency; ω_{rotr} angular velocity; t_{rotr} time required for a full turn of 2π radians).

the orifice even under ambient conditions. The occupancy was determined to be >90% from a signal splitting of the addends by ¹H NMR. After removing CO₂ dissolved in ODCB by Ar bubbling at -10 °C, the Luche reduction was applied to afford $CO_2 @ 2^{13}$ and $CO_2 @ 3$ (Figure 2b). The occupancy for $CO_2 @$ 3 was enriched to be 100% from 86% by recycle HPLC. The presence of captured CO₂ was confirmed by ¹³C NMR (500 MHz, $CDCl_3/CS_2$ (1:1)) showing its signal at δ 112.63 ppm, which was higher-field shielded, by $\Delta\delta$ –11.97 ppm, from free CO_2 (δ 124.60 ppm), owing to the [60] fullerene aromaticity¹⁴ (Figure 2c). The X-ray diffraction (XRD) analysis at 100 K revealed a dimeric configuration of CO2@3 structured by multiple hydrogen bondings arranged in a chair-like shape (Figure 2d), being reminiscent of fullertubes.¹⁵ Within the crystal, the two CO₂ molecules are precisely separated with a distance of 11.892(7) Å on a shared axis. Captured CO_2 most likely interacts with the [60]fullerenol upon seeing close contacts with the carbon wall. The amount of adsorbed CO_2 in crystal (Figure 1) was estimated to be 0.247 cm³/cm³ (1 atm, 25 °C), which is smaller than those for MOFs (90–200 cm^3 / cm³).¹⁶ However, the CO₂ density in nanopore (ρ) is as large as 2.401 g/cm³, which exceeds the highest value reported among MOFs $(0.955 \text{ g/cm}^3)^{16}$ and is 2-fold larger than that of liquid CO₂ (1.178 g/cm³ at the triple point¹⁷), indicating a

dense packing of molecular CO₂ within the nanocavity. The crowded arrangement of the three hydroxy groups renders a pore volume (V = 30.4 Å³) smaller by -8.9% than 1 (33.4 Å³),¹² which contributes to the dense confinement. Figure 2e illustrates a structural overlay of H₂O@3¹⁰ and CO₂@3 obtained by XRD, unveiling the steric repulsion, which results in an extrusion of the three hydroxy groups toward the outside, by up to +4.53\%, with a central focus on the oxygen atom in CO₂.

Since a release barrier of CO₂ from 3' (Ar = 2-pyridyl) was computed to be ΔG^{\ddagger} + 44.7 kcal/mol at 298 K, 3 could be regarded as permanent CO₂ storage, while CO₂ escape is probable for 1' (Figure 2f). Within the nanopore, CO₂ rotates with an activation barrier of ΔG^{\ddagger} + 20.2 kcal/mol, suggestive of a very slow rotation with rotational frequency $f_{\rm rot}$ (7.11 mHz) and time $t_{\rm rot}$ (141 s). At 100 K, a full turn requires 1.13 × 10⁻³⁰ s so that the rotation of CO₂ is forbidden under the XRD conditions.

Release rates k of CO₂@1 were measured in CDCl₃ by ¹H NMR (Figure 3a), affording thermodynamic parameters: ΔG^{\ddagger} + 25.1 ± 1.0 kcal/mol, ΔH^{\ddagger} 22.5 ± 0.7 kcal/mol, and ΔS^{\ddagger} -8.96 ± 2.24 cal/(K·mol). Upon assuming the release event being ideal fluid dynamics on an atmospheric relief of a

Figure 3. (a) Release rates of CO₂ from 1 in CDCl₃. (b) P-T curve of a single molecule of CO₂ gas in 1. (c,d) IR spectra of free CO₂, CO₂@2, and CO₂@3 (300 K). (e) Binding constants *K* with stabilization energy $\Delta\Delta G$ induced by CO₂ in 3, determined by ¹H NMR (500 MHz, CDCl₃, 300 K). (f) Calculated stabilization energies ΔG upon dimerization with interaction energies $\Sigma E^{(2)}$ of intermolecular hydrogen-bonding (B3LYP-D3/6-31G(d,p)). 3" is a distorted empty cage whose coordinates originate from CO₂@3'. (g) NCI map of CO₂@3'. (h) BCPs and BPs with selected density values. (i,j) NBOs and interaction energies for CO₂@3'. All calculations were conducted at B3LYP-D3/6-31G(d,p).

nanoscale vessel containing a CO_2 gas, we applied Bernoulli's equation to describe the conservation of momenta:

$$P_1 = P_2 + \frac{\rho v_2^2}{2}$$

where *P* is static pressure and *v* is velocity. Note that the second term, i.e., dynamic pressure, is zero at the initial state due to $v_1 = 0$. The density of CO₂ is defined by $\rho = M/(N_A V)$ where *M* is molecular weight of CO₂ and N_A is Avogadro's constant. The time required for releasing a half quantity of a molecular CO₂ gas (equal to 0.5*V*) is then expressed by

$$t_{1/2} = \frac{0.5V}{Av_2} = \frac{V}{2A} \sqrt{\frac{M}{2N_{\rm A}V(P_1 - P_2)}}$$

where A is the orifice area (4.09 Å²). Given that the physical event obeys a first-order reaction characterized by $t_{1/2}$, which is measurable by a kinetic study on an ensemble of CO₂@1 (Figure 3a), the transition state theory gives $t_{1/2}$ as a function of temperature *T*:

$$t_{1/2} = \frac{\ln 2}{k} = \frac{h \ln 2}{k_{\rm B} T} \exp\left(\frac{\Delta H^{\ddagger} - T\Delta S^{\ddagger}}{N_{\rm A} k_{\rm B} T}\right)$$

where *h* and $k_{\rm B}$ are Planck and Boltzmann constants, respectively. Since the dynamic pressure at the final state corresponds to the loss of pressure ($\Delta P = P_1 - P_2$), ΔP is consequently associated with a function of *T*:

$$\begin{split} \Delta P &= CT^2 \exp\!\left(-\frac{2\Delta H^{\dagger}}{N_{\rm A}k_{\rm B}T}\right) \\ C &= \frac{MV}{8N_{\rm A}} \cdot \left(\frac{k_{\rm B}}{Ah {\rm ln}2}\right)^2 \exp\!\left(\frac{2\Delta S^{\ddagger}}{N_{\rm A}k_{\rm B}}\right) \end{split}$$

This is regarded as an equation of state for a single-molecule gas captured within the nanocavity. Figure 3b shows a P-Tcurve of a single molecule of CO₂ gas. The dynamic pressure at 300 K was estimated to be $\Delta P = 3.14$ rPa (1 rPa = 10^{-27} Pa), which is far smaller than $P_1 = 102$ hPa. Even at 1000 K, it reaches only 3.00 mPa. This is because of a molecular vibration/rotation as a major contributor to the dynamic pressure, while the translational motion is exhaustively forbidden within the cavity. According to the equation, even under dT = dV = 0, the gaseous molecule attains an eigen pressure loss. This is in stark contrast to an ensemble whose equation of state ($PV = k_BT$, $\Delta P = 0$ under constant T and V) is derived from kinetic theory of gases, solely depending upon translational motion.

To further study rotational/vibrational dynamics of the confined CO₂ gas, we measured IR spectra at 300 K (Figure 3c,d). Linear triatomic CO₂ with a $D_{\infty h}$ symmetry has four fundamental modes of vibration including symmetric and antisymmetric stretching (ν_1 and ν_3) as well as doubly degenerated bending (ν_2) , where only ν_2 and ν_3 are IR active. Whereas a band overlap in a fingerprint region was unable to discriminate ν_2 from others originating from skeletal vibration of the carbon cage, $\nu_3({}^{12}\text{CO}_2)$ was found at 2331 cm⁻¹ for CO₂@2 and 2332 cm⁻¹ for CO₂@3 as a sharp band, which differs from atmospheric CO₂ showing a broad band (2349 $(cm^{-1})^6$ caused by a vibration/rotation coupling (Figure 3c). Within the nanocavity, however, the rotational frequency of CO_2 (10⁻³-10⁻² Hz, Figure 2f) is rather larger than the time scale of molecular vibration (10 fs-1 ps),¹⁸ which significantly relaxes the coupling. The observed red-shift of $\Delta \nu_3$ -17 to -18 cm⁻¹ relative to free CO₂ is comparable to those observed for CO₂ in typical MOFs $(\nu_3 \ 2335 \ \text{cm}^{-1})$,^{7b} implying the presence of interactions to a similar extent. The two bands at lower wavenumbers correspond to a hot band $(\nu_3 + \nu_2 - \nu_2)$ and satellite $(\nu_3({}^{13}\text{CO}_2))$.¹⁹ At a higher wavenumber, CO₂@3 showed a small band (ν_3' 2351 cm⁻¹), which is unlikely to be found for CO2@2. A metastable orientation of the three hydroxy groups in $CO_2@3$ would be a possible explanation, as supported by computational studies (Figure S12). Importantly, a combination band $(\nu_1 + \nu_3)$ was observed at 3680 cm⁻¹ for CO₂@2 and 3681 cm⁻¹ for CO₂@3. From the combination tone, ν_1 was estimated to be ca. 1349 cm⁻¹, which is redshifted by $\Delta \nu_1$ ca. -39 cm⁻¹ relative to free CO₂ (ν_1 1388 cm⁻¹).⁶ Though Fermi resonance might not be neglected, this value is as large as 2-fold $\Delta \nu_3$, being suggestive of a strong nanoconfinement effect on the symmetric stretching (ν_1) , which offers a larger vibrational displacement than that of the antisymmetric one (ν_3) .

To our surprise, the captured CO₂ gas enabled to modulate an external property of the encapulant material itself. The association constant of CO₂@3 in CDCl₃ at 300 K was measured to be $K = 15.6 \pm 1.6 \text{ M}^{-1}$, which is 1.6-fold larger than that of empty 3 (9.73 ± 2.34 M⁻¹) (Figure 3e). This is suggestive of the preferred association for the latter by $\Delta\Delta G$ -0.30 kcal/mol, being in good accordance with the calculated value of $\Delta\Delta G_{net}$ -0.52 kcal/mol (Figure 3f), which includes attractive (-0.56 kcal/mol) and repulsive (+0.04 kcal/mol) interactions mainly caused by better hydrogen-bonding ($-2\Delta\Sigma E^{(2)}$ -0.42 kcal/mol) and geometrical distortion upon CO₂ capture (Figure 2e), respectively.

A reduced density gradient (RDG) isosurface²⁰ was plotted for CO₂@3' (Figure 3g), showing weak noncovalent interactions (NCI), around the CO₂ molecule, which were characterized by multiple bond critical points (BCPs) and bond paths (BPs) (Figure 3h).²¹ A positive Laplacian of electron density $\nabla^2 \rho_e$ and total electron energy density *H* at BCP1 and BCP2 imply pure closed-shell interactions without a covalent nature. Natural bond orbital (NBO) analysis showed interaction energies as large as $E^{(2)}$ 1.32 ($n(CO_2) \rightarrow \sigma^*(OH)$) and 1.09 ($\pi(C=C) \rightarrow p(CO_2)$) kcal/mol, respectively (Figure 3i,j). These results are decisive of the confined CO₂ molecule potentially acting as both a Lewis base and Lewis acid.

In conclusion, we designed molecular CO_2 storage as the simplest experimental model for revealing clear physical pictures on the chemical/dynamic processes of a molecular

 CO_2 gas confined within a nanoscale cavity, which are otherwise uncertain in known sorbent systems due to competing complex interactions. The combined analyses of XRD, IR, and computations demonstrated the presence of intramolecular interactions in $CO_2@3$, which cause nanoconfinement effects on translational, vibrational, and rotational motions of captured CO_2 , where it acts as both a Lewis base and Lewis acid. The release event for $CO_2@1$ revealed the equation of state for a single-molecule gas at imperceptible pressure levels. The captured CO_2 gas modulated an external property of the encapulant material itself owing to the better arrangement of intermolecular hydrogen-bonding. These findings would facilitate further understandings of chemical/ physical events of CO_2 accommodated within a variety of sorbent materials.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00068.

Detailed experimental procedures, characterization data, and computational results (PDF)

Crystallographic data (CIF)

Accession Codes

CCDC 2301301 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Yoshifumi Hashikawa Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; Orcid.org/ 0000-0001-7834-9593; Email: hashi@scl.kyoto-u.ac.jp
- Yasujiro Murata Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; Octid.org/0000-0003-0287-0299; Email: yasujiro@scl.kyoto-u.ac.jp

Author

Shumpei Sadai – Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acsphyschemau.3c00068

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was partially provided by the JSPS KAKENHI Grant Number JP23H01784 and JP22H04538, The Mazda Foundation, and Advanced Technology Institute Research Grants 2023. IR measurements were carried out at SPring-8 (BL43IR) with the approval of JASRI (2022B1138). We thank Dr. Yuka Ikemoto for the support on IR spectroscopy.

REFERENCES

(1) Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyżyńska, R. CO₂ capture materials: a review of current trends and future challenges. *Mater. Today Sustain.* **2023**, *24*, 100483.

(2) Boer, D. G.; Langerak, J.; Pescarmona, P. P. Zeolites as Selective Adsorbents for CO₂ Separation. *ACS Appl. Energy Mater.* **2023**, *6*, 2634–2656.

(3) Chen, C.; Zhang, S.; Row, K. H.; Ahn, W.-S. Amine-silica composites for CO_2 capture: A short review. *J. Energy Chem.* **2017**, *26*, 868–880.

(4) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks. *Chem. Rev.* **2012**, *112*, 724– 781.

(5) Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K. Direct Observation and Quantification of CO₂ Binding Within an Amine-Functionalized Nanoporous Solid. *Science* **2010**, *330*, 650–653.

(6) Vitillo, J. G.; Savonnet, M.; Ricchiardi, G.; Bordiga, S. Tailoring Metal-Organic Frameworks for CO_2 Capture: The Amino Effect. *ChemSusChem* **2011**, *4*, 1281–1290.

(7) (a) Bonelli, B.; Civalleri, B.; Fubini, B.; Ugliengo, P.; Areán, C. O.; Garrone, E. Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. J. Phys. Chem. B 2000, 104, 10978–10988. (b) Mihaylov, M.; Chakarova, K.; Andonova, S.; Drenchev, N.; Ivanova, E.; Sabetghadam, A.; Seoane, B.; Gascon, J.; Kapteijn, F.; Hadjiivanov, K. Adsorption Forms of CO₂ on MIL-53(Al) and NH2-MIL-53(Al) As Revealed by FTIR Spectroscopy. J. Phys. Chem. C 2016, 120, 23584–23595.

(8) (a) Roztocki, K.; Rauche, M.; Bon, V.; Kaskel, S.; Brunner, E.; Matoga, D. Combining In Situ Techniques (XRD, IR, and ¹³C NMR) and Gas Adsorption Measurements Reveals CO_2 -Induced Structural Transitions and High CO_2/CH_4 Selectivity for a Flexible Metal-Organic Framework JUK-8. ACS Appl. Mater. Interfaces 2021, 13, 28503–28513. (b) Stolte, N.; Hou, R.; Pan, D. Nanoconfinement facilitates reactions of carbon dioxide in supercritical water. Nat. Commun. 2022, 13, 5932.

(9) (a) Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Open-Cage Fullerenes: towards the Construction of Nanosized Molecular Containers. *Chem. Soc. Rev.* 2010, 39, 817–844.
(b) Gao, R.; Liu, Z.; Liu, Z.; Liang, T.; Su, J.; Gan, L. Open-Cage Fullerene as a Selective Molecular Trap for LiF/[BeF]⁺. *Angew. Chem., Int. Ed.* 2023, 62, No. e202300151. (c) Hashikawa, Y.; Murata, Y. Water in Fullerenes. *Bull. Chem. Soc. Jpn.* 2023, 96, 943–967.

(10) Hashikawa, Y.; Hasegawa, S.; Murata, Y. A Single *but* Hydrogen-Bonded Water Molecule Confined in an Anisotropic Subnanospace. *Chem. Commun.* **2018**, *54*, 13686–13689.

(11) Hashikawa, Y.; Hasegawa, S.; Murata, Y. Precise Fixation of an NO molecule inside Carbon Nanopores: A Long-Range Electron-Nuclear Interaction. *Angew. Chem., Int. Ed.* **2021**, *60*, 2866–2870.

(12) (a) Futagoishi, T.; Murata, M.; Wakamiya, A.; Sasamori, T.; Murata, Y. Expansion of Orifices of Open C_{60} Derivatives and Formation of an Open C_{59} S Derivative by Reaction with Sulfur. *Org. Lett.* **2013**, *15*, 2750–2753. (b) Hashikawa, Y.; Fujikawa, N.; Okamoto, S.; Murata, Y. Phosphorus ylides of cage-opened sulphide [60]fullerene derivatives. *Dalton Trans.* **2022**, *51*, 17804–17808.

(13) Futagoishi, T.; Murata, M.; Wakamiya, A.; Murata, Y. Trapping N_2 and CO_2 on the Sub-Nano Scale in the Confined Internal Spaces of Open-Cage C_{60} Derivatives: Isolation and Structural Characterization of the Host-Guest Complexes. *Angew. Chem., Int. Ed.* **2015**, *54*, 14791–14794.

(14) Taylor, R. Aromatic fullerene derivatives. *Phys. Chem. Chem. Phys.* **2004**, *6*, 328–331.

(15) Koenig, R. M.; Tian, H.-R.; Seeler, T. L.; Tepper, K. R.; Franklin, H. M.; Chen, Z.-C.; Xie, S.-Y.; Stevenson, S. Fullertubes: Cylindrical Carbon with Half-Fullerene End-Caps and Tubular Graphene Belts, Their Chemical Enrichment, Crystallography of Pristine C_{90} - $D_{sh}(1)$ and C_{100} - $D_{sd}(1)$ Fullertubes, and Isolation of C₁₀₈, C₁₂₀, C₁₃₂, and C₁₅₆ Cages of Unknown Structures. J. Am. Chem. Soc. **2020**, 142, 15614–15623.

(16) Ye, Y.; Xiong, S.; Wu, X.; Zhang, L.; Li, Z.; Wang, L.; Ma, X.; Chen, Q.-H.; Zhang, Z.; Xiang, S. Microporous Metal-Organic Framework Stabilized by Balanced Multiple Host-Couteranion Hydrogen-Bonding Interactions for High-Density CO_2 Capture at Ambient Conditions. *Inorg. Chem.* **2016**, *55*, 292–299.

(17) Li, M.; Wang, G.; Sun, L.; Cao, X.; Ni, H. A Possible Explicit Equation Fitting Method for the Gaseous Heat Capacity Near the Critical Point Based on Density and Temperature. *Processes* **2023**, *11*, 1605.

(18) Zewail, A. H. Femtochemistry. Past, present, and future. *Pure Appl. Chem.* 2000, 72, 2219–2231.

(19) (a) Meredith, J. C.; Johnston, K. P.; Seminario, J. M.; Kazarian, S. G.; Eckert, C. A. Quantitative Equilibrium Constants between CO_2 and Lewis Bases from FTIR Spectroscopy. *J. Phys. Chem.* **1996**, *100*, 10837–1084. (b) Kim, D.; Park, J.; Kim, Y. S.; Lah, M. S. Temperature dependent CO_2 behavior in microporous 1-D channels of a metal-organic framework with multiple interaction sites. *Sci. Rep.* **2017**, *7*, 41447. (c) Chakarova, K.; Mihaylov, M.; Hadjiivanov, K. Can two CO_2 molecules be simultaneously bound to one Na⁺ site in NaY zeolite? A detailed FTIR investigation. *Micro. Meso. Mater.* **2022**, *345*, 112270.

(20) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. **2010**, 132, 6498–6506.

(21) (a) Nakanishi, W.; Hayashi, S.; Narahara, K. Polar Coordinate Representation of $H_b(r_c)$ versus $(\hbar^2/8m)\nabla^2\rho_b(r_c)$ at BCP in AIM Analysis: Classification and Evaluation of Weak to Strong Interactions. J. Phys. Chem. A 2009, 113, 10050–10057. (b) Hashikawa, Y.; Murata, Y. H₂O/Olefinic- π Interaction inside a Carbon Nanocage. J. Am. Chem. Soc. 2019, 141, 12928–12938.