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ABSTRACT

Virus infection induces the production of type I inter-
ferons (IFNs). IFNs bind to their heterodimeric receptors
to initiate downstream cascade of signaling, leading to
the up-regulation of interferon-stimulated genes (ISGs).
ISGs play very important roles in innate immunity
through a variety of mechanisms. Although hundreds of
ISGs have been identified, it is commonly recognized
that more ISGs await to be discovered. The aim of this
study was to identify new ISGs and to probe their roles
in regulating virus-induced type I IFN production. We
used consensus interferon (Con-IFN), an artificial alpha
IFN that was shown to be more potent than naturally
existing type I IFN, to treat three human immune cell
lines, CEM, U937 and Daudi cells. Microarray analysis
was employed to identify those genes whose expres-
sions were up-regulated. Six hundred and seventeen
genes were up-regulated more than 3-fold. Out of these
617 genes, 138 were not previously reported as ISGs
and thus were further pursued. Validation of these 138
genes using quantitative reverse transcription PCR
(qRT-PCR) confirmed 91 genes. We screened 89 genes
for those involved in Sendai virus (SeV)-induced IFN-β
promoter activation, and PIM1 was identified as one
whose expression inhibited SeV-mediated IFN-β activa-
tion. We provide evidence indicating that PIM1

specifically inhibits RIG-I- and MDA5-mediated IFN-β
signaling. Our results expand the ISG library and iden-
tify PIM1 as an ISG that participates in the regulation of
virus-induced type I interferon production.

KEYWORDS interferon-stimulated genes, IFN-β
signaling, PIM1, RIG-I, MDA5

INTRODUCTION

Viral infection activates host innate immune response
(Schneider et al., 2014). The retinoic acid-inducible gene I
(RIG-I)-like receptors (RLRs), RIG-I and melanoma differ-
entiation-associated gene 5 (MDA5), are important to initiate
innate immune in response to RNA virus invasion (Wilkins
and Gale, 2010). Following recognition of viral RNAs, RLRs
are recruited to an adaptor protein VISA (also known as
MAVS, IPS-1 and Cardif), which further triggers TBK1/IKKε
and IKKα/β kinases-mediated activation of IRF3 and NF-κB
(Xu et al., 2005; Seth et al., 2005; Meylan et al., 2005; Kawai
et al., 2005). These events ultimately lead to the induction of
the expressions of type I IFNs and pro-inflammatory
cytokines.

Interferons (IFNs) are a group of pleiotropic cytokines that
are made and released by host cells in response to patho-
gen infections and tumorgenesis (Pestka, 2007). Based on
their receptors, IFNs are divided into three classes (Uze
et al., 2007; de Weerd et al., 2007). Type I IFNs comprise
IFN-α, IFN-β, IFN-ε, IFN-κ and IFN-ω, which bind to the type
I IFN heterodimeric receptor complex of IFN-α receptor 1
(IFNAR1) and receptor 2 (IFNAR2) (Chen et al., 2004). Type
II IFN, IFN-γ, signals through the IFN-γ receptor complex
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(IFNGR) (Pestka et al., 1997) and type III IFNs signal
through IFN-λ receptor 1 or IL-10R2 (Kotenko et al., 2003).

Type I IFN binding to IFNAR activates a signaling cas-
cade through the Janus kinase and signal transducer and
activator of transcription (JAK-STAT) pathway (Aaronson
and Horvath, 2002). This leads to the assembly of the IFN-
stimulated gene factor 3 (ISGF3) complex, which is com-
posed of STAT1-STAT2 dimers and IFN-regulatory factor 9
(IRF9) (Fu et al., 1992). The complex translocates to the
nucleus and binds to the IFN-stimulated response elements
(ISREs) present in the promoters of IFN-stimulated genes
(ISGs), thereby initiating the transcription of those genes.

Systematic identification of ISGs revealed that there may
be more than a thousand ISGs (Martensen and Justesen,
2004; Schoggins and Rice, 2011). In these studies, the
naturally existing IFN-α was commonly used as the stimu-
lator. However, there are 13 IFN-α subtypes in addition to the
other type I IFNs. Although these type I IFNs use the same
receptor, their downstream effects are different to some
extents. Based on the sequence alignment, Alton et al.
designed a consensus alpha IFN (Con-IFN) (Alton, 1983).
Compared with the naturally existing recombinant type I IFN
(IFN-α2a and IFN-α2b), Con-IFN displayed remarkable
enhanced natural killer cell activation, antiviral, antiprolifer-
ative, and gene-induction activities (Klein et al., 1988; Blatt
et al., 1996). Here we used Con-IFN to stimulate three
immune cell lines and identified dozens of new ISGs.

Although innate immune responses provide one of the
first lines of defense against viral infection (Schneider et al.,
2014), uncontrolled immune activation could be harmful to
the host (Yap and Lai, 2010); the IFN signaling needs to be
tightly controlled. A number of ISGs have been reported to
play roles in the maintenance of the homeostasis. For
example, several components in the RLR pathway are IFN
responsive, such as RIG-I, IRF3 and IRF7 (Schneider et al.,
2014; Schoggins et al., 2011). The induction of these pro-
teins in turn reinforces IFN production. The expression of
some TRIM proteins, such as TRIM13 and TRIM25, is up-
regulated by type I IFNs (Rajsbaum et al., 2008). These
proteins also play important roles in the regulation of immune
responses (Narayan et al., 2014; Gack et al., 2007; Versteeg
et al., 2013).

We screened the newly identified ISGs for those partici-
pating in the modulation of virus-induced innate immune
activation. PIM1 was found to negatively regulate Sendai
virus (SeV)-triggered IFN-β promoter activation.

RESULTS

Identification of ISG candidates by microarray analysis

To identify ISG candidates, we used Con-IFN to treat three
human immune cell lines, CD4+ T-cell-derived CEM, mono-
cyte-derived U937 and B cell-derived Daudi, for 4 or 12 h
(Fig. 1A). The mRNA expression profiles were analyzed
using microarrays that covered 29,185 genes. The mRNA

expression patterns in different cell lines were different to
some extents (Fig. 1B). In the same cell line, the mRNA
expression patterns with Con-IFN treatment for different
periods of time were also different (Fig. 1C–E). Those genes
whose mRNA levels were up-regulated more than 3-fold
upon Con-IFN treatment for either 4 h or 12 h in any cell type
were considered as ISG candidates. By this criterion, 617
genes were considered as ISG candidates, all with corrected
P values <0.05. Since the aim of this study was to identify
new ISGs, we searched the literature to exclude those that
had been previously reported. Considering that most ISGs
were identified in the research for antiviral innate immunity,
we searched the literature using the above gene symbol and
virus as keywords. Negative results were obtained with 242
genes. Among these 242 genes, 104 had been reported as
ISGs by two papers that described systematic identification
of ISGs (Schoggins et al., 2011; Liu et al., 2012). We focused
on the remaining 138 genes as ISG candidates for further
studies.

Identification of new ISGs by qRT-PCR

We used quantitative reverse transcription-PCR (qRT-
qPCR) to validate the 138 ISG candidates. Two known ISGs,
IFI6 and XAF1 (Schoggins et al., 2011), were used as pos-
itive controls. Because the gene expression patterns are
different in different cell lines (Fig. 1), we analyzed the
mRNA levels of different ISG candidates in different cell lines
based on the microarray results. Nineteen candidates in
CEM cells (Fig. 2), 23 in U937 cells (Fig. 3) and 97 in Daudi
cells (Fig. S1) were analyzed for up-regulation by Con-IFN
treatment for 4 h or 12 h. In all the three cell lines, the two
positive control genes were up-regulated (Figs. 2A, 3A and
S1A), confirming the reliability of the qRT-PCR analysis.
Based on these results, 91 genes were confirmed as ISGs
(fold induction ≥2) (Fig. S1C), and 41 genes were not con-
firmed to be ISGs. For the rest six genes, the results were
not conclusive, due to either their low expression levels in
the cells or nonspecific amplification of the PCR product.

Screen for the ISGs that modulate SeV-triggered IFN-β
activation

We next screened the new ISGs for their involvement in
regulating virus-induced activation of innate immunity.
HEK293T cells were transfected with a firefly luciferase
reporter under the control of the IFN-β promoter (IFN-β-luc),
with or without a plasmid expressing the ISG. The cells were
then challenged with SeV. SeV infection significantly acti-
vated the expression of the IFN-β-luc reporter (Fig. S2). The
effect of the ISG on SeV-triggered IFN-β-luc expression was
indicated by the fold change, calculated as the luciferase
activity with ISG divided by that without ISG. The primary
screen compiled a list of 89 new ISGs (Fig. 4A). Two ISGs
promoted SeV-triggered IFN-β-luc expression by more than

RESEARCH ARTICLE Xiaolin Zhang et al.

800 © The Author(s) 2018. This article is an open access publication

P
ro
te
in

&
C
e
ll



2-fold and 13 ISGs reduced the SeV-triggered IFN-β pro-
moter activation. The effects of these 15 ISGs were con-
firmed by repeated experiments (Fig. 4B). These results
suggest that ISGs can both positively and negatively regu-
late the virus-induced IFN production pathway.

PIM1 negatively regulates SeV-triggered activation
of IFN-β promoter

The above screen identified four ISGs whose overexpres-
sion inhibited SeV-triggered IFN-β-luc expression by about
10-fold, including NFKBIE, EGR1, PIM1 and RUNX3. As
NFKBIE is a known factor negatively regulating the NF-κB
pathway, it was not further pursued. PIM1 is a serine/thre-
onine kinase that regulates cell proliferation and survival
(Bachmann and Moroy, 2005). We focused on this ISG for

further investigation. In the reporter assays, we found that
overexpression of PIM1 inhibited SeV-induced IFN-β-luc
activation in a dose-dependent manner (Fig. 5A). We con-
structed an shRNA to downregulate PIM1 expression
(Fig. 5B) and examined the effect of PIM1 knockdown on
SeV-induced IFN-β promoter activation. Data showed that
downregulation of endogenous PIM1 expression promoted
SeV-induced IFN-β promoter activation by about 2-fold
(Fig. 5C). Collectively, these results indicate that PIM1
negatively regulates SeV-induced IFN-β activation.

PIM1 inhibits RIG-I- and MDA5-mediated activation
of IFN-β promoter

SeV-induced IFN-β activation involves multiple sensors and
signal transducers. The viral RNA is detected by RIG-I or
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Figure 1. Identification of ISG candidates by microarray analysis. (A) Flowchart of the identification of ISG candidates. CEM,

U937 and Daudi cells were mock treated, or treated with Con-IFN for 4 h or 12 h. The RNAs were isolated and reverse transcribed

into cDNAs, followed by microarray analyses. Those up-regulated more than 3-fold in any cell lines with either 4 h or 12 h treatment

were considered as ISG candidates and subjected to validation by qRT-PCR. (B) ISG candidates specific and common in CEM, U937

and Daudi cells were categorized and represented in a Venn diagram. (C–E) ISG candidates in CEM (C), U937 (D) and Daudi cells

(E) that were up-regulated more than 3-fold upon treatment with Con-IFN for 4 h or 12 h were categorized and represented in Venn

diagrams. Data are from two parallel experiments, P < 0.05.
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MDA5 (Diao et al., 2007), which subsequently activates
VISA, TBK1 and IKKε. To define at which step PIM1 inhibits
SeV-induced IFN-β activation, we assayed the effect of PIM1
overexpression on the sensor- or signal transducer-induced
IFN-β activation. HEK293T cells were transfected with the
IFN-β-luc reporter and a plasmid expressing RIG-I, MDA5,
VISA, TBK1 or IKKε, with or without a plasmid expressing
PIM1. The effect of PIM1 was evaluated based on the ratio of
the luciferase activity in the presence of PIM1 to that in the
absence of PIM1. Data showed that PIM1 inhibited RIG-I-
and MDA5-mediated activation of IFN-β reporter (Fig. 6A).
However, PIM1 had little effect on the reporter activation by
the signal transducers VISA, TBK1 and IKKε (Fig. 6A).
Noticeably, PIM1 did not reduce the protein levels of RIG-I or
MDA5 (Fig. 6B). Taken together, these results suggest that

PIM1 inhibits RIG-I- and MDA5- activated IFN-β up-regula-
tion, but acts upstream of VISA and TBK1.

DISCUSSION

Given their important roles in the innate immune defenses,
ISGs have been extensively studied. The effects of type I
IFNs on the transcriptome of several cell types have been
investigated in previous studies (Liu et al., 2012; Der et al.,
1998; de Veer et al., 2001; Hilkens et al., 2003; Calcaterra
et al., 2006; Indraccolo et al., 2007), and the effects of IFNs
on B cells were only partially studied (Salamon et al., 2012;
Pfeffer et al., 1991). Unlike previous studies, here we used
Con-IFN, a bio-optimized highly potent type I interferon alpha
(Blatt et al., 1996), to treat three human immune cell types, T
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Figure 2. Validation of new ISG candidates in CEM cells by qRT-PCR. CEM cells were treated with Con-IFN for 0 h, 4 h or 12 h.

The mRNA levels of the ISG candidates were analyzed by qRT-PCR. The ISG candidate mRNA levels were normalized with GAPDH

levels. IFI6 and XAF1, two known ISGs, were used as positive controls. Fold change was calculated as the mRNA level in the cells

with Con-IFN treatment divided by that without treatment. Data represented are mean ± SD of two independent measurements.
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lymphoblast-derived CEM, B lymphoblast-derived Daudi and
monocyte-derived U937 cells. The three cell types displayed
different gene expression profiles in response to Con-IFN
(Fig. 1B). In addition, even for a particular cell type, some
genes were induced upon Con-IFN treatment for 4 h but not
for 12 h and vice versa (Fig. 1). Our strategy used here
helped to increase the coverage of ISGs.

The IFN signaling mediated by RLRs functions as an
effective mechanism against RNA virus infection. A few ISGs
have been reported to modulate this pathway. We thus tes-
ted whether the ISGs identified here were involved in the
regulation of the SeV-triggered IFN-β activation. Among the
89 genes tested, 15 affected the pathway (Fig. 4). Only two
genes, MS4A12 and MS4A13, enhanced the SeV-triggered
IFN-β activation, while the other 13 genes negatively regu-
lated the activation (Fig. 4). These results further suggest
that the immune response to viral infection is regulated by
multiple mechanisms. Whether these ISGs directly regulate

the IFN-β activation or indirectly by interfering with the viral
replication needs to be further investigated.

Among the above 13 ISGs that negatively regulated the
SeV-triggered IFN activation, the serine/threonine kinase
PIM1 displayed strong inhibitory activity (Fig. 4). We focused
on this protein for further investigation for two reasons. First,
PIM1 is a phosphokinase and phosphorylation of compo-
nents in the RLR pathways is a common mechanism to
modulate the pathway (Bachmann and Moroy, 2005; Quicke
et al., 2017; Ivashkiv and Donlin, 2014). Second, it has been
reported that inhibition of PIM1 with an inhibitor suppressed
viral infection, postulating the possibility that PIM1 is
involved in innate immune response (de Vries et al., 2015).
Our results showed that PIM1 inhibited both MDA5- and
RIG-I-mediated IFN-β promoter activation (Fig. 6). De-
phosphorylation and the following poly-ubiquitination of RIG-
I and MDA5 are required for their activation. Upon activation,
the RLRs translocate to mitochondria and mitochondria-as-
sociated membranes where they interact with VISA, then
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The mRNA levels of new ISG candidates were analyzed by qRT-PCR, as described in the legend to Fig. 2. Data represented are
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Figure 4. Screen for ISGs involved in SeV-induced IFN-β promoter activation. (A) HEK293Tcells were transfected with the firefly

luciferase-expressing reporter IFN-β-luc and the renilla luciferase-expressing control reporter TK-renilla, with or without a plasmid

expressing the ISG indicated. At 24 h post-transfection, cells were infected with 10 HAU/mL SeV for 12 h. The cells were then lysed

and luciferase activities were measured. Firefly luciferase activity was normalized with renilla luciferase activity. The relative luciferase

activity in the empty vector-transfected cells was set as 1. (B) The experiment was repeated with those ISGs indicated by red arrows

in (A). Data represented are mean ± SD of three independent experiments.
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trigger the downstream signaling (Quicke et al., 2017; Wies
et al., 2013). PIM1 may interfere with the conformational
changes of RIG-I and MDA5 via phosphorylation and disturb

their interactions with the downstream adapter VISA. Protein
kinase C-α (PKC-α), PKC-β and casein kinase II (CK2) are
responsible for phosphorylation of RIG-I (Maharaj et al.,
2012; Sun et al., 2011). However, proteins involved in the
phosphorylation of MDA5 were not reported. It would be
intriguing to investigate whether PIM1 is the undiscovered
kinase to phosphorylate MDA5 in future studies.

In summary, our results here expand the ISG library and
provide additional evidence that ISGs can negatively regu-
late the virus-induced type I IFN production. The antiviral
activities of the new ISGs and their biological functions
in vivo await further investigation.

MATERIALS AND METHODS

Cell culture

CEM, U937 and Daudi cells were maintained in RPMI 1640 medium

(Invitrogen) supplemented with 10% heat-inactivated (56°C, 30 min)
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fetal bovine serum (Gibco). HEK293T cells were maintained in

DMEM supplemented with 10% fetal bovine serum (Gibco).

Plasmids and viruses

Plasmids expressing ISGs were cloned by standard molecular

biology techniques. IFN-β-luc reporter, pTK-renilla, Flag-tagged

RIG-I, MDA5, VISA, TBK1 and IKKε were generous gifts from Dr.

Hongbing Shu (Wuhan University, China). The plasmids expressing

shRNAs were generated by annealing pairs of oligonucleotides and

cloning into pSuper-Retro (OligoEngine). The target sequences are

as follows: Ctrli: 5′-GCGCGCTTTGTAGGATTCG-3′; shPIM1: 5′-

CCATCCATGGATGCAAGAT-3′. SeV was kindly provided by

Zhengfan Jiang (Peking University, China).

Microarray analysis

CEM, U937 and Daudi cells were treated with consensus interferon

(1000 IU/mL; Interferon Alfacon-1; Amgen) for 0 h, 4 h or 12 h. Total

RNA was extracted with the TRIzol reagent (Invitrogen, USA) fol-

lowing the manufacturer’s instructions. Whole genome transcript

analysis was performed by Phalanx Biotech Group.

Quantitative reverse transcription-PCR

Total RNA was reverse transcribed using random primer in a 20 μL

reaction mixture. Relative mRNA levels of candidate ISGs were

measured by SYBR Green real-time PCR (RealmasterMix; SYBR

Green; Tiangen) in Rotor-gene 6000 (Corbett Life Science) using the

following program: (i) 95°C 10 min, 1 cycle; (ii) 95°C 15 s; 60°C 30 s;

72°C 30 s, 40 cycles. All data are shown as mean value for at least

two independent measurements. GAPDH mRNA levels served as

internal control. Primers (Table 1) used for the PCR assays are

designed using the Primer-BLAST tool (https://www.ncbi.nlm.nih.

gov/tools/primer-blast/) or acquired from Primer Bank (https://pga.

mgh.harvard.edu/primerbank/). Amplification efficiency was asses-

sed for all primer sets, and primers with efficiencies 90%–110% were

used.

Luciferase reporter assays

HEK293T cells were transfected with reporters IFN-β-luc and pTK-

renilla, together with a plasmid expressing an ISG using Neofectin

(NeoBiolab) for 24 h, or with an shRNA-expressing plasmid for 36 h.

The cells were then infected with SeV for additional 12 h. Samples

were lysed in passive lysis buffer (Promega). Firefly and renilla

luciferase activities were measured using the dual-luciferase repor-

ter assay system (Promega). Firefly luciferase activity was normal-

ized with the renilla luciferase activity.
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