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Abstract

Background: Establishment and maintenance of DNA methylation throughout the genome is an important
epigenetic mechanism that regulates gene expression whose disruption has been implicated in human diseases like
cancer. It is therefore crucial to know which genes, or other genomic features of interest, exhibit significant
discordance in DNA methylation between two phenotypes. We have previously proposed an approach for ranking
genes based on methylation discordance within their promoter regions, determined by centering a window of fixed
size at their transcription start sites. However, we cannot use this method to identify statistically significant genomic
features and handle features of variable length and with missing data.

Results: We present a new approach for computing the statistical significance of methylation discordance within
genomic features of interest in single and multiple test/reference studies. We base the proposed method on a
well-articulated hypothesis testing problem that produces p- and q-values for each genomic feature, which we then
use to identify and rank features based on the statistical significance of their epigenetic dysregulation. We employ the
information-theoretic concept of mutual information to derive a novel test statistic, which we can evaluate by
computing Jensen-Shannon distances between the probability distributions of methylation in a test and a reference
sample. We design the proposed methodology to simultaneously handle biological, statistical, and technical
variability in the data, as well as variable feature lengths and missing data, thus enabling its wide-spread use on any list
of genomic features. This is accomplished by estimating, from reference data, the null distribution of the test statistic
as a function of feature length using generalized additive regression models. Differential assessment, using
normal/cancer data from healthy fetal tissue and pediatric high-grade glioma patients, illustrates the potential of our
approach to greatly facilitate the exploratory phases of clinically and biologically relevant methylation studies.

Conclusions: The proposed approach provides the first computational tool for statistically testing and ranking
genomic features of interest based on observed DNA methylation discordance in comparative studies that accounts,
in a rigorous manner, for biological, statistical, and technical variability in methylation data, as well as for variability in
feature length and for missing data.
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Background
Epigenetics encompasses all cellular processes that lead to
heritable changes in gene expression without modifying
the DNA sequence. Uncovering the role of epigenetics in
regulating a cell’s phenotype is a key problem in modern
molecular biology and medicine with important implica-
tions for understanding and treating human diseases, such
as cancer.
The most studied epigenetic mechanism in humans

is DNA methylation. This process chemically marks the
DNA by adding a methyl group (CH3) to individual
cytosines located immediately adjacent to guanines (CpG
sites). In humans, a targeted enzymatic machinery allows
for the heritable transmission of these epigenetic marks
from parent to progeny cells during cell division. It turns
out that this dynamic mechanism is partially responsible
for the developmental establishment and ongoing mainte-
nance of cellular identity, as well as for many deleterious
biological processes, such as aging and carcinogenesis
[1–4].
Whole genome bisulfite sequencing (WGBS) provides

a genome-wide assessment of DNA methylation patterns
along the genome at a single-base resolution. For this rea-
son, many computational methods have been proposed in
the literature for the extraction and analysis of methyla-
tion information from this type of data [5, 6]. One such
technique, known as informME (information-theoretic
analysis of methylation), provides the most advanced
capabilities available to-date for the modeling and analysis
of DNA methylation fromWGBS data [7, 8]. The method
employs principles from statistical physics and informa-
tion theory to build statistical models for WGBS data that
provide accurate and insightful assessment of methyla-
tion information well beyond the one performed by other
approaches. This is accomplished through genome-wide
methylation analysis by modeling the DNA methylation
state within regions of the genome using joint probabil-
ity distributions computed directly from WGBS data, by
quantifying stochasticity using the information-theoretic
notion of normalized methylation entropy (NME), and
by detecting methylation discordances in test/reference
comparisons using the Jensen-Shannon distance (JSD)
between joint methylation probabilities in test and ref-
erence samples. These methylation metrics go beyond
mean-based analysis and have shown great promise when
studying development, aging, and cancer [7].
A fundamental problem when analyzing WGBS data is

linking the genome-wide results back to specific genomic
features of interest (e.g., genes), and ranking these features
based on their significance. This problem is commonly
addressed by a procedure that first labels CpG sites or
regions of the genome as being differentially methylated
between a reference and a test sample and then quanti-
fies their degree of overlap with features of interest [9, 10].

Unfortunately, this method is confounded by the variable
lengths of most genomic features of interest. For exam-
ple, by recognizing the importance of intragenic DNA
in gene expression [11, 12], we may consider gene bod-
ies as the genomic features of interest, whose length
varies appreciably throughout the genome. In this case,
any differentially methylated region (DMR) that is ran-
domly placed on the DNA will more likely overlap with
long gene bodies than short ones, and this will seriously
skew the analysis. In addition to the previous issue, we
have argued in [8] that there is a fundamental loss of
power when performing genome-wide statistical analysis
for DMR detection followed by scoring features of interest
using DMR overlaps, or other DMR metrics, as compared
to a targeted approach that scores features by focusing the
statistical analysis on the features themselves. For this rea-
son, we developed in [8] an approach for ranking genes
based on observed methylation discordances within their
promoter regions, determined by a fixed window cen-
tered at their transcription start sites (TSSs), and showed
that it outperforms DMR overlap-based analysis. How-
ever, this ranking method has two critical weaknesses.
First, it cannot appropriately handle genomic features
with variable lengths, since a genomic region is scored by a
p-value whose calculation depends on the region’s length.
Although this is not a problem for promoter regions,
which are often taken to be of fixed length, it excludes
other genomic regions of interest, such as gene bodies,
exons, introns, bivalent domains, and enhancers. In addi-
tion, our method calculates a p-value, which is used to
score a genomic region, by computing multiple p-values
within the region, which are then combined using Fisher’s
method [13]. This approach however generates a com-
bined p-value or score that cannot be trusted when evalu-
ating statistical significance, since the individual p-values
are not necessarily statistically independent, as required
by Fisher’s method.
In this paper, we introduce a new statistical approach

for ranking genomic features that addresses the previous
shortcomings. This method allows the user to input a set
of genomic features of interest and receive an annotated
ranked list of these features and their corresponding sta-
tistical significance, quantified by appropriately computed
p- and q-values [to control the false discovery rate (FDR)].
The proposed approach evaluates, within a genomic fea-
ture of interest, DNA methylation discordance between a
test and a reference phenotype, by quantifying the amount
of information that themethylation state of a genomic fea-
ture contains about the phenotype, and by using this infor-
mation to score the genomic feature. This is accomplished
by articulating an appropriate hypothesis testing problem
whose test statistic is derived using the mutual informa-
tion between the methylation state and the phenotype.
Importantly, this test statistic can be directly evaluated
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fromWGBS data by computing JSD values within a given
genomic feature using informME.
To address the confounding issue of feature length

variability, we assume that the null probability density
function (PDF) of the test statistic required for hypoth-
esis testing depends on the length of the feature. We
then approximate this PDF using the logit skewed Stu-
dent’s t distribution (logitSST) with length-dependent
parameters, which we estimate from replicate reference
WGBS data using heteroscedastic regression. We verify
the appropriateness of the logitSST model for estimating
the PDF of the test statistic under the null hypothesis by
performing goodness-of-fit and model selection analyses.
To illustrate the utility of the proposed method and

its integration with informME, we reanalyzed previously
available WGBS data obtained from healthy individu-
als and patients diagnosed with two different types of
pediatric high-grade gliomas (pHGGs), a highly malig-
nant form of brain tumor in children. Using these data,
we ranked genes in terms of observed methylation dis-
cordance within their promoter regions and gene bod-
ies, as well as within bivalent domains, whose role in
the epigenetic regulation of gene expression is increas-
ingly acknowledged in the literature [14]. Our results
provide a clear demonstration of the importance and
credibility of the proposed approach for linking genome-
wide WGBS analysis results back to specific genomic
features of interest and for appropriately ranking these
features using their statistical significance. Our anal-
ysis shows that our method is capable of identifying
genes that have been previously reported in the litera-
ture to be important in pHGGs, illustrates the impor-
tance of using multiple features (e.g., promoter regions
and gene bodies) for ranking genes, demonstrates its
seamless integration with informME, and establishes its
importance as an exploratory tool in a WGBS anal-
ysis framework that can effectively identify important
genomic regions and features for subsequent in-depth
analysis.
We have coded the proposed method using R and have

integrated it with informME. A fully documented GPLv3
licensed software implementation can be downloaded from
GitHub (https://github.com/GarrettJenkinson/informME).

Methods
Information-theoretic analysis of methylation
In a previous work [7, 8], we developed an information-
theoretic approach to the modeling and analysis of
WGBS data known as informME. This methodology
performs methylation data analysis by partitioning the
genome into non-overlapping regions and by estimat-
ing the probability mass function (PMF) of the methy-
lation state within these regions genome-wide. Let us
consider one of these genomic regions comprised of

N CpG sites 1, 2, . . . ,N , which are indexed by their
order of appearance along the genome. informME asso-
ciates with the n-th CpG site a binary random variable
Xn that takes values 0 or 1 if the site is unmethy-
lated or methylated, respectively. It then characterizes the
methylation state X = (X1,X2, . . . ,XN ) by a (usually)
high-dimensional joint probability distribution Pr[X= x],
which is modeled using the 1D Ising model of statisti-
cal physics estimated from available WGBS data using
statistical inference. To summarize this high-dimensional
probability distribution, informME performs methylation
analysis by partitioning the genome into small analysis
regions of 150bp each, which we refer to as genomic
units (GUs). The methylation state within a GU with
L CpG sites � = 1, 2, . . . , L is then characterized by
the methylation level M = 1

L
∑L

�=1 X�, whose probabil-
ity distribution Pr[M = m], m = 0, 1/L, . . . , 1, is com-
puted from the estimated Ising distribution Pr[X = x].
In turn, this produces two statistical summaries of
interest that we use to describe the statistical behav-
ior of methylation within a GU: the mean methylation
level (MML), given by E[M]=∑

m mPr[M = m], and
the normalized methylation entropy (NME), given by
h = − {∑

m Pr[M = m] log2 Pr[M = m]
}
/log2(L + 1).

Mutual information and test statistic
In this paper, we are interested in statistically detect-
ing DNA methylation discordances between a test and
a reference phenotype within genomic features of inter-
est, specified by their start and end coordinates along the
genome. In particular, we seek to score genomic features
in terms of the potential of their methylation states to dis-
tinguish between the two phenotypes. Genomic features
of interest might include gene promoters, gene bodies,
exons, introns, enhancers, bivalent domains, or any other
genomic regions deemed to be important in a specific
application.
A powerful way to proceed is to evaluate the depen-

dance of the methylation state on the phenotype using
the concept of mutual information [15]. In the follow-
ing, we model the phenotype by a random variable Q that
takes values 1 or 0, indicating a test or a reference pheno-
type, respectively. Moreover, we specify the methylation
state of a genomic region by the K-dimensional random
vector M = (M1,M2, . . . ,MK ), where Mk is the methy-
lation level of the k-th GU with data (i.e., with computed
MML, NME and JSD values) that overlaps the region. We
can then measure the dependance of M on Q using the
average mutual information within the genomic region,
given by

I(M;Q) = 1
K

K∑

k=1
I(Mk ;Q), (1)

https://github.com/GarrettJenkinson/informME
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where

I(Mk ;Q)=
∑

q=0,1

∑

mk

Pr[Mk =mk ,Q=q] log2
Pr[Mk = mk ,Q = q]

Pr[Mk = mk ] Pr[Q = q]
.

(2)

In Eqs. (1) & (2), I(Mk ;Q) is the mutual information
betweenMk and Q, which tells us how much information
the methylation state within the k-th GU carries about
the phenotype and accounts for higher order relationships
between the variables than simple correlations.
In the absence of any prior information about the phe-

notype, we can set Pr[Q= 1]= Pr[Q= 0]= 1/2. In
this case, we can show (Additional file 1: Section 1)
that I(M;Q) = (1/K)

∑K
k=1[ JSD(k)]2, where JSD(k) is

the Jensen Shannon distance (JSD) [16] between the
conditional methylation PMFs Pr[Mk =mk |Q=1] and
Pr[Mk=mk |Q=0] of the test and reference phenotypes
within the k-th GU, respectively. This result motivates
us to statistically score epigenetic discordance within a
genomic region using 1/K

∑K
k=1 [JSD(k)]2 as the test

statistic, since large values of this quantity indicate that
DNA methylation within the region carries, on the aver-
age, significant information about its phenotypic state.
However, for reasons we explain in Additional file 1:
Section 2, we would like our test statistic to satisfy the tri-
angle inequality T(q1, q2) + T(q1, q3) ≥ T(q2, q3), where
T(p, q) is the test statistic used to distinguish between
two phenotypes p and q. It turns out that this is not true
for 1/K

∑K
k=1 [JSD(k)]2. However, we can show that it is

true for

T =
√
√
√
√ 1

K

K∑

k=1
[JSD(k)]2 (3)

(see Additional file 1: Section 2), which is the test statistic
we use in this paper. Notably, T is a normalized test statis-
tic that takes its minimum value 0 when the methylation
state within the genomic region carries no information
about the phenotypic state and its maximum value 1 when
the methylation state is maximally informative about the
phenotypic state (Additional file 1: Section 2). Moreover,
T can be readily computed from available WGBS data,
since the JSD can be calculated using informME [8].

Scoring genomic features
Two important issues arise when using the test statistic
T in Eq. (3) to score a genomic feature: scoring is subject
to biological, statistical, and technical variability, whereas
the test statistic depends on the number of GUs with
data that overlap the genomic region associated with the
feature, which is affected by its length as well as by the
number of overlapping GUs with missing data. Although
we can sufficiently address the first issue by collecting

replicate reference data, by performing all possible ref-
erence/reference comparisons, and by properly including
the results of such analysis in the test/reference hypothesis
testing problem, the second issue is more complex. In this
section, we propose a method that takes into account bio-
logical, statistical, and technical variability, as well as the
“sizes” of the genomic features under consideration. We
quantify the size of a genomic feature by s = log2 K , where
we introduce the logarithm to handle the large dynamic
range of the number K of GUs with data that overlap the
corresponding genomic region. In a given application, we
may also wish to consider genomic features with sizes no
smaller than a minimum size smin = log2(Kmin) to ensure
that only features with sufficient length and/or data enter
into the analysis.
We can simultaneously address the previous issues by

computing the null PDF f0(t; s) of the test statistic T asso-
ciated with a genomic region of size s, under the hypoth-
esis that methylation discordance observed within the
region is only due to biological, statistical, and technical
variability. We can then compute the p-value, associated
with an observation t∗ of T in a test/reference comparison
for a genomic feature of size s, by p(s) = ∫ 1

t∗ f0(t; s)dt, and
use this p-value to rank the genomic region based on evi-
dence against the null hypothesis that the observed value
t can be explained by normal biological, statistical, and
technical variability.
In theory, we could use replicate reference WGBS sam-

ples to empirically estimate f0(t; s). However, for this esti-
mation to be sufficiently accurate, it is required that a
large number of reference replicate data must be available
and a prohibitively large number of reference/reference
comparisons must be performed, which is not feasible in
practice. We address this problem by employing a recently
developed method for heteroscedastic regression, which
we discuss next.
For a size s, we assume that the null PDF f0(t; s)

can be sufficiently approximated by a logit skewed Stu-
dent’s t distribution (logitSST) φ(t; θμ(s), σ(s), ν(s), τ(s))
with parameters μ, σ , ν, and τ that depend on s, in which
case we set

f0(t; s) � f̂0(t; s) = φ(t;μ(s), σ(s), ν(s), τ(s)). (4)

The logitSST distribution is the PDF of the random vari-
able Y = 1/

(
1 + e−X)

, −∞ < X < ∞, where X follows
the skewed Student’s t distribution [17].
To compute f̂0(t; s) in Eq. (4), we need to estimate the

four parameters μ(s), σ(s), ν(s) and τ(s) for any size s
using observations of the test statistic T obtained from
the reference samples. We perform this task by using
the gamlss package of R [18], which assumes that μ(s),
ln σ(s), ln ν(s), and ln τ(s) − 2 are smooth functions of s
[19] and estimates these functions from data using gen-
eralized additive regression models based on penalized
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splines [18, 20]. Smoothness ensures that the approxima-
tion f̂0(t; s) of the null PDF will be changing smoothly
as the size s varies. In the “Results” section, we perform
goodness-of-fit andmodel selection analyses to verify that
the logitSST model provides an acceptable approximation
to f0(t; s).

Scoring genes in a single test/reference comparison
As an example of the method we propose for scoring
genomic features, we rank genes based on their signifi-
cance in exhibiting differential DNA methylation discor-
dance in a test/reference sample. One way to do this is
to rank genes based on methylation discordance within
their promoters. Towards this goal, we perform hypoth-
esis testing by employing the test statistic Tp calculated
within promoter regions using Eq. (3), and score the sig-
nificance of each gene using the computed p-value for
that gene, where higher significance is associated with a
lower p-value. We can also use a similar approach to rank
genes based on methylation discordance within their bod-
ies by employing the test statistic Tb calculated within
gene bodies.
In addition to the previous rankings, we may obtain a

more informative gene ranking if we could simultaneously
test for methylation discordance within their promoters
and bodies. In this case, and for each gene, we can test
the null hypothesis that methylation discordance between
a test and a reference WGBS sample observed within its
promoter region and gene body is only associated with
biological, statistical, or technical variability in the refer-
ence sample, against the alternative hypothesis that this
discordance is due to other factors within at least one of
the two genomic regions (promoter or gene body).We can
perform this hypothesis testing using Fisher’s summary
test statistic [13]

Tpb = −2 lnPp − 2 lnPb, (5)

where Pp and Pb are the p-values obtained by separately
testing, using the test statistics Tp and Tb, respectively
methylation discordance within promoter regions or gene
bodies.
If the two hypothesis testing problems were statistically

independent, then Tpb would follow, under the combined
null hypothesis, a χ2

4 distribution with 4 degrees of free-
dom [13] from which a p-value for rejecting the combined
null hypothesis could be readily obtained. However, due
to the correlative nature of DNAmethylation, the individ-
ual hypothesis tests may in general depend on each other,
in which case, Tpb will not follow a χ2

4 distribution.
To address this problem, we characterize the test statis-

tic Tpb using its cumulative distribution function (CDF)
Fpb(t), which we empirically estimate by

F̂pb(t) = 1
Nr

Nr∑

n=1
I [tn ≤ t] , (6)

where Nr is the number of observations tn, n =
1, 2, . . . ,Nr , of the test statistic Tpb in the reference sam-
ples, and I[ ·] is the Iverson bracket, taking value 1 when
its argument is true and 0 otherwise. In contrast to the
theoretical χ2

4 distribution, using F̂pb(t) will incorporate
existing correlations into the problem and result in a more
conservative and accurate statistical analysis than using
the χ2

4 distribution. In the “Results” section, we perform
goodness-of-fit analysis and show that the empirical CDF
F̂pb(t) provides a more appropriate characterization of the
probability distribution of the test statistic Tpb than the
theoretically derived χ2

4 distribution.
As a consequence of the above, to rank genes based on

observed methylation discordance within their promoters
and bodies, we perform hypothesis testing using the Tp
and Tb statistics to calculate (genome-wide) the p-values
Pp and Pb for a given test/reference comparison, and com-
pute the values of the test statistic Tpb using Eq. (5). For
a given gene with observed test statistic value t∗ between
the test and the reference samples, we use the estimated
null CDF F̂pb(t) in Eq. (6) and approximately calculate the
probability (p-value) Ppb � 1− F̂pb(t∗) that, under the null
hypothesis (of methylation discordance between a test and
a reference sample observed within the gene’s promoter
region and body being only associated with biological, sta-
tistical, and technical variability), the test statistic Tpb is
at least as large as the observed value t∗. We then employ
this p-value to score the gene and use these scores to rank
genes in terms of the significance of their methylation dis-
cordance in the test sample, with higher significance being
associated with a lower score.

Scoring genes in multiple test/reference comparisons
We can also score a gene when multiple pairs of
test/reference samples are available. To do so, we test
the null hypothesis that epigenetic discordance observed
within its promoter region and gene body in the
test/reference comparisons is only associated with bio-
logical, statistical, or technical variability in the refer-
ence samples, against the alternative hypothesis that
this discordance is due to other factors within at least
one of the two genomic regions (promoter or gene
body) in at least one of the test/reference samples.
To address this problem, we use Fisher’s summary test
statistic

Tmult = −2
Nt∑

n=1
lnP(n), (7)
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where Nt is the number of available test/reference com-
parisons and P(n) is the p-value obtained from the previ-
ous single comparison hypothesis testing problem (i.e., Pp,
Pb, or Ppb) applied on the n-th test/reference pair.
The individual hypothesis testing problems can be con-

sidered to be statistically independent, in which case, the
test statistic Tmult follows a χ2

2Nt
distribution with 2Nt

degrees of freedom under the null hypothesis. From this
distribution, we can compute a p-value for rejecting the
null hypothesis, which we can use to score a gene’s signif-
icance in terms of its methylation discordance in the test
samples and produce a list of ranked genes. Note how-
ever that there might be ties in the resulting list, due for
example to numerical issues that do not allow calcula-
tion of the p-values with arbitrary precision. We break
such ties to the extent possible by using another list of
ranked genes produced for this purpose, which we gener-
ate by combining the rankings obtained from each single
test/reference comparison using the method of rank prod-
ucts [21]. Finally, to evaluate the statistical significance of
each ranking while controlling for the FDR, we compute
q-values using the Benjamini-Hochberg procedure [22].

Results
WGBS data samples
We now demonstrate the applicability of the proposed
ranking method by reanalyzing, using informME, previ-
ously available WGBS data (Additional file 2: Table S1)
obtained from normal fetal brain tissue or primary
patient-derived pHGG tumor samples. For test samples,
we use pHGG WGBS data from [23], which includes 7
primary pHGG samples harboring the H3.3 K27M muta-
tion [a mutation within the histone H3.3 geneH3F3A that
results in substitution of lysine 27 on the amino-terminal
tail of H3.3 with methionine (K27M)], and 6 primary
pHGG samples without K27Mmutations (H3.3-WT). For
reference samples, we use data (four samples) from nor-
mal fetal cerebellum tissue [24]. Boxplots of genome-wide
distributions of JSD values obtained from our WGBS data
confirm the appropriateness of the reference samples for
providing a quantitative assessment of normal biologi-
cal, statistical, and technical variability in our analyses
(Additional file 1: Figure S1).

Goodness of fit
Estimation of null PDF of the T statistic
To demonstrate the appropriateness of the logitSST dis-
tribution for approximating the null PDF f0(t; s) of the
test statistic T in Eq. (3), we considered a number of sta-
tistical models available in the gamlss R package and
fitted each model to promoter region and gene body null
T statistics obtained from six reference/reference com-
parisons. We then compared the results by employing
two different model selection criteria, namely Akaike’s

information criterion (AIC) and the Bayesian informa-
tion criterion (BIC). We took the promoter region of a
gene to be the genomic region covered by a 4-kb win-
dow centered at the gene’s TSS, and its gene body to
be the genomic region between the gene’s TSS and its
termination site that does not overlap with its promoter
region. We obtained this information by using the R
package TxDb.Hsapiens.UCSC.hg19.knownGene.
Moreover, we considered non-inflated and inflated dis-
tribution models based on the beta, generalized beta
type 1, logit normal, logit t-family, and logit skewed Stu-
dent’s t distributions. The inflatedmodels considered here
include extra parameters to account for discrete probabil-
ities of the test statistic taking its minimum andmaximum
values of 0 and 1 [18].
Ours results, summarized in Table 1, clearly show that

the non-inflated logitSST model is superior under both
criteria, in the sense that it produces the lowest AIC
and BIC values, and this is true regardless of the type of
genomic features considered (promoters or gene bodies).
This model uses 25 degrees of freedomwhen fitted to pro-
moter regions and 24 degrees of freedom when fitted to
gene bodies. Note that a lower AIC means that the log-
itSST model is considered to be closer to the true model,
whereas a lower BIC means that the logitSST model is
considered more likely to be the true model.
In addition to the previous important result, we can

also demonstrate that logitSST produces a high-quality
fit to the null distribution of the T statistic data com-
puted from the reference samples. Note that the size of
gene bodies varies substantially more than the size of pro-
moter regions. This is due to the fact that the size of a
genomic feature is influenced by its actual length in bp’s,
which we choose to be fixed at 4-kb for the case of pro-
moter regions. For this reason, we focus our discussion
here on gene bodies. A similar approach applies for the
case of promoter regions (see Additional file 1 for results
pertaining to promoters).
To compute the approximation f̂0(t; s) of the true null

PDF f0(t; s) of the T statistic within gene bodies, we
applied informME on the four normal fetal cerebellum
tissue samples, computed the JSD values in all six compar-
isons genome-wide, and calculated the T statistic values
within all gene bodies via Eq. (3). To ensure that only
features with sufficient length and/or data enter into our
analysis, we considered only gene bodies with sizes s ≥
smin = log2(10) (i.e., we considered only bodies that over-
lap at least 10 GUs with data). This resulted in 104,694
paired observations (tk , sk) of null T statistic values tk
and gene body sizes sk , which we passed to gamlss to
produce f̂0(t; s).
In Fig. 1, we depict a scatter plot of pairs of (tk , sk) values

for the case of gene bodies, together with α-centile curves
computed from the estimated logitSST-based null PDF
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Table 1 AIC and BIC values, computed using gamlss, for a number of non-inflated and inflated distribution models of the null
probability density function of the T statistic, along with their (rounded) effective degrees of freedom (DF)

Non-inflated Model Inflated Model

Model AIC BIC DF AIC BIC DF

Promoter

BE -486,026 -485,855 17 -486,229 -486,041 19

GB1 -488,175 -487,961 22 -488,408 -488,181 23

logitNO -487,985 -487,895 9 -492,544 -492,384 16

logitTF -493,963 -493,792 18 -493,944 -493,762 19

logitSST -494,260 -494,019 25 -494,242 -493,992 26

Gene body

BE -482,633 -482,474 17 -482,608 -482,440 18

GB1 -484,822 -484,615 27 -484,798 -484,581 23

logitNO -490,890 -490,730 17 -490,872 -490,702 18

logitTF -495,777 -495,594 19 -495,751 -495,560 20

logitSST -498,362 -498,133 24 -498,337 -498,099 25

The results were obtained by fitting each model to T statistic values within promoter regions and gene bodies obtained from all six reference/reference comparisons. Entries
in bold highligth the proposed model, which is shown here to produce the best AIC and BIC scores
BE: beta distribution; GB1: generalized beta type 1 distribution; logitNO: logit normal distribution; logitTF: logit t-family distribution; logitSST: logit skewed Student’s t
distribution

f̂0(t; s) using different values of α (see Additional file 1:
Figure S2 for results pertaining to promoter regions).
An α-centile curve indicates that α% of the data points
are below the curve. The results demonstrate that the
estimated centile curves match the data very well. This

is due to the fact that the percentage α̂ of the empiri-
cally observed data points below a given estimated centile
curve is close to its centile value α, indicating that the esti-
mated null PDF f̂0(t; s) is consistent with the data. Note
also that the data depicted in Fig. 1 demonstrate clear
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Fig. 1 α-centile curves, calculated for different values of α from the estimated logitSST-based null PDF f̂0(t; s) within gene bodies, drawn over a
scatter plot of 104,694 observed pairs (tk , sk) of null T statistic values tk and gene body sizes sk . The percentage α̂ of empirically observed data points
that fall below a centile curve agrees well with the corresponding α value, indicating that f̂0(t; s) is consistent with the data



Jenkinson et al. BMC Bioinformatics          (2019) 20:175 Page 8 of 17

heteroscedasticity, indicating that the null PDF f0(t; s)
depends on the gene body size s, as expected.
We further assessed the goodness of fit of the estimated

PDF f̂0(t; s) using quantile residuals [25], as we explain
next. Let F0(t; s) and F̂0(t; s) be the CDFs respectively
associated with the true (but unknown) null PDF f0(t; s)
and the logitSST-based estimated null PDF f̂0(t; s). Note
that, for any size s, U = F0(T ; s) is a random variable
that is uniformly distributed over the unit interval [ 0, 1]
regardless of the particular PDF of the T statistic. This
implies thatG = 
−1(U) = 
−1(F0(T ; s)), where
 is the
CDF of the standard normal distribution, is a zero-mean
Gaussian random variable with unit standard deviation.
We therefore expect that, when the logitSST-based esti-
mated null PDF f̂0(t; s) is a good approximation of the true
null PDF f0(t; s), the estimated quantile residuals, com-
puted by gk = 
−1(̂F0(tk ; sk)) will be samples drawn from
the standard normal PDF, where t1 ≤ t2 ≤ . . .. If this
turns-out to be true, then we can claim that the estimated
null PDF provides a good fit of the true null PDF.
In Fig. 2a, we depict a kernel density approximation of

the logitSST-estimated quantile residuals (shown in red
at the bottom of the figure), obtained for the case of
gene bodies using the reference samples [see Additional
file 1: Figure S3a for the case of promoter regions]. More-
over, we provide values of four measures of location
and shape of the approximated PDF, with the values in
parentheses corresponding to the standard normal dis-
tribution. This result shows that the logitSST-estimated
quantile residuals follow a probability distribution that
is very close to being standard normal. We also depict
in Fig. 2b a quantile-quantile (Q-Q) plot (green marks)
of the logitSST-estimated quantile residuals for the case
of gene bodies against the corresponding true quantile

residuals [see Additional file 1: Figure S3b for the case
of promoter regions]. The fact that the Q-Q plot is very
close to the diagonal (red) line, is another indication
of standard normality of the logitSST-estimated quantile
residuals obtained from the reference samples.

Estimation of null CDF of the Tpb statistic
As we discussed earlier, scoring genes in a single
test/reference comparison requires evaluation of the null
probability distribution of the test statistic Tpb in Eq. (5).
Due to the correlative nature of methylation, Tpb may
not follow a χ2

4 distribution, as theoretically expected by
Fisher’s method. For this reason, we chose to approxi-
mate the true null CDF of the test statistic Tpb using the
empirical estimate F̂pb(t), given by Eq. (6).
To show the superiority of empirically approximating

the null CDF of Tpb, we again performed quantile residual
analysis. In Fig. 3a, we depict kernel density approxima-
tions of the quantile residuals obtained by using the null
CDF associated with the χ2

4 distribution (left), as well
as the empirical null CDF (right), computed by using
Eq. (6). The values of the location and shape parame-
ters associated with these densities demonstrate that the
empirical CDF provides a better approximation to the true
distribution, since the computed values in this case are
closer to the ones that correspond to the standard normal
distribution (values in parentheses). This is also corrob-
orated by the Q-Q plots depicted in Fig. 3b. In the Q-Q
plot that corresponds to the χ2

4 distribution (left), large
quantile residuals exhibit noticeable deviation from the
true residuals. However, the Q-Q plot corresponding to
the empirical distribution (right) shows excellent match,
indicating that this distribution is very close to the true
distribution.
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Fig. 2 Quantile residual analysis of the logitSST-estimated null PDF of the T statistic in the case of gene bodies. a The kernel density approximation
of the distribution of the logitSST-estimated quantile residuals (bottom red marks) demonstrates close agreement with standard normality. b The
Q-Q plot (green marks) of the logitSST-estimated quantile residuals against the corresponding true quantile residuals is very close to the diagonal
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(right) quantile residuals demonstrate closer agreement of the latter with standard normality than the former. b The Q-Q plot (green marks) of the
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4 (left) and the empirically-estimated (right) quantile residuals against the corresponding true quantile residuals corroborate the result in (a)

Gene ranking in pHGGs
In a previous paper [8], we introduced amethod for identi-
fying genes that exhibit significant epigenetic discordance
within their promoters in a test/reference comparison.
However, this method will miss genes that show signifi-
cant epigenetic discordance only within their gene bodies.
To find such genes, we may attempt to use a commonly
applied heuristic that identifies genes overlapping differ-
entially methylated regions (DMRs) of the genome deter-
mined by an effective DMR finder, such as the JSD-based
DMR (jsDMR) detector of informME [8]. Nevertheless,
results obtained by this method are confounded by gene
length, which is problematic from a statistical perspec-
tive. More importantly, there is a fundamental issue with
this strategy when analyzing cancer data characterized
by profound changes in DNA methylation, such as the
K27M mutant samples we consider in this paper, since
detected DMRs may cover most of the genome. In this
case, we will not be able to differentiate between most
genes, since DMR overlap will be exceedingly common.
Moreover, genes will tend to be completely covered by

large DMRs, implying that more detailed heuristics, such
as scoring genes based on the percentage of their overlap
with DMRs, will fail in this case.
To demonstrate these issues, we processed a K27M

mutant sample using informME and applied the jsDMR
finder. In Additional file 2: Table S2, we list all genes whose
promoters or bodies overlap a jsDMR, as well as the loca-
tion of the corresponding jsDMR. Nearly all genes overlap
a jsDMR and, therefore, this “target” list of genes is of lit-
tle use when attempting to identify important genes. Not
surprisingly, using this list for quantitative assessment by
means of gene ontology (GO) enrichment analysis [26]
or gene set enrichment analysis (GSEA) [27], produces
no significant results, since there is no opportunity for
enrichment when nearly every gene is included in the
target list.
To properly analyze the pHGG data, we applied the

gene ranking method proposed in this paper to find genes
exhibiting significant DNA methylation discordance
within their promoter regions or gene bodies. We
obtained results by comparing the H3.3-WT and K27M
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mutant pHGG samples to the normal fetal brain samples,
which we summarize in Additional file 2: Tables S3 and S4,
respectively.
As expected, a large number of genes demonstrate sta-

tistically significant methylation discordance (q-value ≤
0.05) in the combined promoter/body lists (PB lists). Cru-
cially, however, our method retains the ability to rank the
genes and find those that are most differentially methy-
lated. Many of the top genes in the PB lists, such as
KHDRBS2, PCDHGA2, PCDHGA3, RALYL, SLC25A21,
and THSD7B, for the case of H3.3-WT, as well as EPHA3,
EPHA6, ESR1, HBE1, HLX, and MTUS2, for the case of
K27Mmutant, are not highly ranked in terms of their pro-
moter region alone. As a consequence, their importance
could be missed if only the promoter region list (PR list)
is used. These genes exhibit profound methylation discor-
dance within their bodies and, for this reason, most are
placed at the top of the gene body list (GB list). Notably,
KHDRBS2, RALYL, SLC25A21, THSD7B, EPHA3, ESR1,
EPHA6, HBE1, and HLX have been implicated in brain
tumors [28–39], whereas PCDHGA2, PCDHGA3, and
MTUS2 have known relationships to other types of cancer
[40, 41].
In addition to the above, by further investigating the

PB list of ranked genes associated with H3.3-WT (Addi-
tional file 2: Table S3), we observed that homeobox (HOX)
genes, which are important in determining cell fate and
identity during embryonic development and have been
implicated in many cancers, rank particularly high in that
list. Notably, it was recently suggested that HOXB3, a
HOX gene ranked at the top of the PB list (although
it is ranked 72 in the PR list and 45 in the GB list),
promotes tumor cell proliferation and invasion in glioblas-
toma [42]. Moreover, HOXA9 has been implicated as
an oncogene in glioblastoma and its aberrant expression
seems to be independently predictive of shorter survival
rates [43]. In addition, an expression signature domi-
nated by HOX genes has also emerged as a predictor
for poor survival in patients treated with concomitant
chemo-radiotherapy [44].
To further assess the biological significance of our gene

rankings, we performed GO analysis using the PB list of
genes ranked based on their discordance within their pro-
moter regions and gene bodies, which we obtained from
Additional file 2: Table S3 (for H3.3-WT) and Additional
file 2: Table S4 (for the K27M mutant). We summarize
the results in Additional file 2: Tables S5 and S6. Notably,
GO analysis respectively identified 1293 and 232 signif-
icantly enriched GO process categories in the case of
H3.3-WT and K27M mutant, indicating that our rank-
ings are highly enriched near the top with genes of known
biological significance. The GO results include several
biological processes that play important roles in cancer
initiation and progression, such as signaling, transcription

regulation, cell communication, differentiation, commit-
ment, morphogenesis, migration, and motility, as well as
processes involved specifically in neuron development,
differentiation, commitment, proliferation, andmigration.
To bolster the biological relevance of the top genes

in our lists, we also performed GSEA by using the top
500 significant genes from each ranked PB list and by
computing overlaps with gene sets in the Molecular Sig-
natures Database (MSigDB). We summarize these results
in Additional file 2: Tables S7 and S8 for the case of
H3.3-WT and K27M mutant, respectively. GSEA pro-
duced enrichments with gene sets related to stemness, as
well as with genes known to exhibit DNA methylation
and expression discordance in various cancers. In addi-
tion, GSEA showed a striking enrichment of genes whose
promoters are bound by two functional enzymatic compo-
nents (EED and SUZ12) of the Polycomb repressive com-
plex 2 (PRC2), which promotes chromatin compaction
by establishing, through another enzymatic component
(EZH2), dimethylated H3K27 (H3K27me2) and trimethy-
latedH3K27 (H3K27me3)marks [45]. This implies that, in
pHGG, PRC2 targets genes that exhibit significant DNA
methylation discordance.
The previous observation is not surprising, consider-

ing evidence that H3K27me3 and DNA methylation are
compatible throughout most of the genome [46]. Notably,
it has been suggested in [23] that the K27M mutation
acts as a dominant negative inhibitor of H3K27 di- and
trimethylation, due to an aberrant recruitment of the
PRC2 complex to K27M mutant H3.3 and reduction of
PRC2 activity through enzymatic inhibition of EZH2, and
that this behavior is accompanied by hypomethylation,
which is clearly seen in our K27M mutant samples (see
Additional file 1: Figure S1). As a consequence, it has been
suggested in [23] that inhibition of PRC2 activity andDNA
hypomethylation may provide a mechanism of an altered
gene expression program that drives tumor progression
in K27M mutant cells. However, our finding that PRC2
also targets genes that exhibit significant DNA methyla-
tion discordance in H3.3-WT pHGG and the fact that
this type of tumor exhibits hypomethylation as well (see
Additional file 1: Figure S1), raises the possibility that
a similar mechanism involving DNA hypomethylation
at PRC2-regulated sites may also explain aberrant gene
expression in H3.3-WT cells that leads to tumorigenesis.
In addition to the above, our observation that PRC2-

regulated genes play a central role in both H3.3-WT and
K27M mutant tumors is particularly intriguing, consider-
ing our previous suggestion that the PRC2 complex may
be an important regulator of epigenetic stochasticity [7].
In the present framework, this is supported by the fact
that both H3.3-WT and K27M mutant samples are glob-
ally characterized by gains in methylation entropy in most
of our pHGG data (see Additional file 1: Figure S1).



Jenkinson et al. BMC Bioinformatics          (2019) 20:175 Page 11 of 17

After identifying a gene of interest using our ranked
lists, we can employ informME to further investigate
properties of the methylation state within its promoter
region and gene body in a test/reference comparison. In
Fig. 4, we depict the JSDs, MMLs, and NMEs, computed
by informME when comparing an H3.3-WT and a K27M
mutant sample to a normal fetal brain sample, within a
genomic region that contains the Ephrin type-A recep-
tor 3 (EPHA3) gene. This gene ranks at the top of the
PB list in the K27M sample (Additional file 2: Table S4),
despite the fact that it is ranked 1874 in the PR list. This
is due to the fact that EPHA3 exhibits profound methy-
lation discordance within its gene body (ranked at the
top of the corresponding GB list). Interestingly, EPHA3
does not rank highly when using the H3.3-WT samples
(2965 in the PB list, 8976 in the PR list, and 1326 in
the GB list; see Additional file 2: Table S3). Indeed, the
JSD tracks depicted in Fig. 4 indicate small differences in

DNA methylation when comparing the H3.3-WT sample
to the fetal brain sample, but large differences within the
gene body of EPHA3 in the case of the K27M sample.
In agreement with our previous discussion, this discor-
dance is associated with appreciable hypomethylation, as
well as with gain in entropy that approaches its maxi-
mum value, indicating a highly disordered methylation
state over EPHA3. In Additional file 1: Figure S4, we
demonstrate that this behavior is consistent across all
samples.
The previous finding about EPHA3 is of potential clin-

ical significance, since it indicates that its methylation
state is distinctly regulated in pHGG tumors harbor-
ing the K27M mutation. Importantly, EPHA3 has been
identified as a therapeutic target in glioblastomas using
small-molecule inhibitors or targeted antibodies [33, 47].
However, our results provide a specific hypothesis regard-
ing EPHA3 targeting in pHGG: tumors harboring the
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Fig. 4 UCSC genome browser images of JSD, MML, and NME tracks within the genomic region [chr3: 89,145,180–89,536,200] that contains EPHA3,
obtained by informME in the WT1 vs. FB1 and K27M1 vs. FB1 comparisons. The JSD tracks indicate small differences in DNA methylation when
comparing WT1 to FB1, but large differences when comparing K27M1 to FB1. This is associated with widespread hypomethylation in K27M1 (MML
tracks) and a gain in methylation entropy (NME tracks) close to its maximum value
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H3.3 K27M mutation have a markedly dysregulated
EPHA3 epigenetic signature while H3.3-WT pHGGs do
not, suggesting that EPHA3 therapeutic targeting may be
more effective in patients with the H3.3 K27M histone
mutation. In agreement with this hypothesis, a recent
paper employed super-enhancer profiling of patient-
derived diffuse intrinsic pontine glioma (DIPG) cell lines
to demonstrate that Ephrin signaling is crucial for DIPG
invasiveness, which mostly exhibits the H3.3 K27Mmuta-
tion [48]. Therefore, EPHA3 warrants further investiga-
tion as a therapeutic target in pHGG, while taking into
account the K27M mutational status of the underlying
tumor, whichmight enable new precisionmedicine efforts
for this disease cohort.

Ranking bivalent domains in pHGGs
The results obtained by GSEA applied in H3.3-WT
and K27M mutant pHGG (Additional file 1: Tables S7
and S8) revealed enrichment for genes in neural progen-
itor cells (NPCs) whose promoters bear the repressing
H3K4 trimethylationmark (H3K4me3), as well as the acti-
vating histone H3K27 trimethylation mark (H3K27me3),
which are distinctive histone modifications within biva-
lent domains [14]. Therefore, and as an additional example
of the utility of our method for ranking genomic features,
we sought to rank bivalent domains. The presence of biva-
lent domains within gene promoters and enhancers keeps
the expression level of these “bivalent” genes at low levels,
with the genes poised for rapid activation upon availability
of suitable cues.
To determine bivalent domains, we used the genomic

regions labeled “TssBiv” or “EnhBiv” under the ENCODE
accession ENCSR567BIT. To ensure that only bivalent
domains with sufficient length and/or data enter into the
analysis, we considered only those with sizes s ≥ smin =
log2(5) (i.e., we considered only bivalent domains over-
lapping at least 5 GUs with data). This resulted in 7446
paired observations (tk , sk) of null T statistic values tk and
bivalent domain sizes sk , which were passed to gamlss
to produce f̂0(t; s). The goodness-of-fit results depicted in
Additional file 1: Figures S5 and S6 are similar to the ones
obtained for promoter regions and gene bodies and show
that the logitSST-estimated null PDF f̂0(t; s) provides a
good approximation of the true null PDF of the T statistic
within bivalent domains as well.
In Additional file 2: Table S9, we provide a ranking of

bivalent domains produced by our method when compar-
ing the H3.3-WT pHGG samples to a fetal brain sample,
as well as the genes located nearest to these domains.
From this ranking, we identified many bivalent domains
with significant discordance in DNAmethylation, with the
most highly ranked domains being associated, for exam-
ple, with ZNF467, PCDH8, ISLR2, HLX, NR2E1, WT1,
AGAP2, TGFB1I1, LRFN1, KLF4, and SOX10, which have

been previously implicated in brain tumors [39, 49–58].
We obtained similar results when comparing the K27M
mutant pHGG samples to the same fetal brain sample
(Additional file 2: Table S10). In this case, however, some
genes that were located lower in the previous list, such as
ATXN10, CLDN5, EBF4, and SOX9, were found in the top
of the list. These genes have also been implicated in brain
tumors [59–62].
The previous results indicate that using our method-

ology to rank bivalent domains in test/reference studies
can be quite useful for identifying important bivalent
genes in a test/reference comparison for further experi-
mental analysis and validation. In conjunction with infor-
mME, ranking bivalent domains and genes can also
help to increase our understanding regarding their role
in a particular disease, such as pHGGs. For exam-
ple, when comparing the H3.3-WT samples to the
normal fetal brain samples, a bivalent domain located
at [chr22: 38,379,200–38,389,200] and associated with
SOX10 is ranked much higher than a bivalent domain
located at [chr17: 70,112,800–70,114,000] and associated
with SOX9, while the opposite is true when comparing
the K27M mutant and normal fetal brain samples (see
Additional file 2: Tables S9 and S10). Since these genes
have been implicated in gliomas [58, 62–65], we sought to
further investigate these differences using informME.
In Fig. 5a, we depict the JSDs, MMLs, and NMEs com-

puted by informMEwhen comparing an H3.3-WT sample
to a normal fetal brain sample within regions that contain
SOX10 (left) and SOX9 (right). The bivalent domain asso-
ciated with SOX10, which partially overlaps its promoter
region, exhibits strong DNA methylation discordance, as
indicated by the large JSD values over this domain. This is
associated with hypermethylation in the H3.3-WT sample
accompanied by substantial loss of methylation entropy.
Interestingly, hypermethylation of the SOX10 promoter
was found to be associated with shorter survival rates in
glioblastoma [58]. On the other hand, the bivalent domain
associated with SOX9 shows smaller DNA methylation
discordance than the bivalent domain in SOX10, which
can be associated with moderate hypermethylation in the
H3.3-WT sample accompanied by an appreciable gain in
methylation entropy.
Interestingly, SOX9 and SOX10 exhibit a different

behavior when comparing K27M mutant pHGG to nor-
mal fetal brain. Figure 5b shows that the bivalent domain
associated with SOX10 (left) exhibits again strong DNA
methylation discordance. However, this discordance is
now associated with appreciable hypomethylation in the
K27M mutant sample (as opposed to hypermethylation
in the H3.3-WT case), accompanied by a moderate loss
of methylation entropy. On the other hand, the bivalent
domain associated with SOX9 shows strong methylation
discordance (as opposed to smaller discordance in the
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Fig. 5 UCSC genome browser images of JSD, MML, and NME tracks obtained by informME within genomic regions [chr22: 38,367,000–38,381,000]
and [chr17: 70,111,800–70,122,800] containing SOX10 (left) and SOX9 (right). a An H3.3-WT vs. normal fetal brain comparison. b A K27Mmutant vs.
normal fetal brain comparison

H3.3-WT sample), which is now associated with appre-
ciable hypermethylation in the K27M mutant sample (as
compared to the small hypermethylation in the H3.3-WT
sample), accompanied by a substantial gain in methylation
entropy.
The behavior of SOX10 (but not of SOX9) within its

associated bivalent domain in the K27M mutant is in
agreement with the previously discussed finding sug-
gesting that the K27M mutant is subject to extensive
hypomethylation. This observation, together with the fact
that K27M mutant pHGG is characterized by a global
reduction in the repressive H3K27me3 marks, raises the
possibility that expression of SOX10 is activated in the
K27M mutant, a hypothesis that has been recently vali-
dated in [66].

Discussion
DNA methylation and its impact on cellular function
has become a major focus of biomedical research. This
is due to its role as a fundamental epigenetic mecha-
nism in embryonic development and regulation of gene
expression, as well as for being an important mediator
between environmental risk factors and human diseases
[2, 3, 67]. For this reason, several technologies have been
developed to provide high throughput measurements of
the DNA methylation state genome-wide, with WGBS
being currently the best method. Computational analysis
of methylation data obtained by WGBS allows extraction
of epigenetic information that can be used, in conjunction
with other biological data, to better understand the role of
epigenetic regulation in health and disease [68].
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WGBS data analyzed by software packages, such as
informME [7, 8], present biologists with a large volume of
epigenetic information that cannot be possibly reviewed
and processed in a reasonable time, which poses a serious
challenge when working with this type of data. It is there-
fore critical that, for efficient analysis, we develop compu-
tational tools that can direct attention to specific locations
in the genome exhibiting statistically significant methy-
lation discordances in test/reference comparisons. While
the common practice of identifying DMRs can be help-
ful in this respect, they can also be difficult to interpret
and analyze, especially in cases of widespread epigenomic
changes, such as those typically seen in cancer.
From a statistical perspective, a more focused analysis

within a set of genomic features of interest can ease some
of the previous difficulties and provide higher statistical
power. However, as we discussed earlier, methylation anal-
ysis is in general hampered by the presence of biological,
statistical, and technical variability in the data, whereas
a focused approach to this analysis is confounded by the
variable length of most genomic features of interest as well
as by missing data.
By using basic concepts from information theory and

statistics, we have developed in this paper a new compu-
tational tool for methylation data analysis that effectively
addresses the previous issues in a precise manner. This
method passes a set of genomic features of interest to a
rigorous statistical machinery that analyzes WGBS data
obtained from a test/reference study and returns a list
of ranked features together with corresponding p- and
q-values.
An important practical question here is how to use our

ranked lists for downstream WGBS data analysis. Our
results provide methodological guidelines for the case of
genes. We can begin with a manual investigation of the
highest-ranking genes, which can provide familiarity with
the results and leverage biological expertise. We can start
at the top and move down the list gene-by-gene, allow-
ing ourselves to adaptively decide how many genes we
can afford to analyze using this labor-intensive strategy.
However, we can also follow a more automated and unbi-
ased strategy, for example using GO enrichment analysis
based on a complete ranked list without having to specify
an arbitrary threshold. In general, this should be con-
sidered a more preferable use of our ranked lists when
comparing with methodologies that require separation of
a given ranked list into two unranked categories of “target”
and “background” genes. However, we did demonstrate in
this paper with our GSEA results that using lists of tar-
get/background genes can still producemeaningful results
and insights into the data, even when the decision on
how many genes to include in the target set is challeng-
ing. Clearly, when a small or moderate number of genes
are associated with significant q-values, these genes can

be used to form a target set, but in the case of widespread
epigenetic disruption some judgement and experience is
required when selecting the number of genes that should
be included in the target set. As a guideline, we have gen-
erally found that using around 500 genes in a target set
strikes a good balance for GSEA analysis. If the target
set is too large, there is too little power to detect enrich-
ment, whereas if the list is made too small, then there may
be important highly ranked genes (and thus enrichment
categories) that will be missed by the analysis.
Finally, the data employed in this paper show that using

logitSST regression for approximating the null PDF of our
test statistic is superior to a number of alternative regres-
sion methods considered. Although we have also found
this to be true in other WGBS studies, logitSST may not
be the best regression method in general. To deal with the
possibility that another regression method may be more
preferable in a given study, a user may first consider a
set of candidate regression methods, perform the type of
“goodness of fit” and model selection analyses reported in
this paper, and then replace logitSST with a better fitting
model, if necessary.

Conclusions
In this paper, we presented a rigorous approach for
computing statistical significance of methylation dis-
cordance within genomic features from WGBS data.
Our approach uses mutual information, a powerful
information-theoretic tool for evaluating dependance of
the methylation state on the phenotype, in conjunction
with a well-articulated hypothesis testing problem and
logitSST regression for estimating the null distribution,
to score genomic features in terms of observed methyla-
tion discordance in differential studies. We showed that
the test statistic associated with this hypothesis testing
problem can be evaluated by computing, using informME
[7, 8], the JSD between probability distributions of the
methylation state within a test and a reference sample. We
also suggested effective ways for implementing hypoth-
esis testing in a way that takes into account biological,
statistical, and technical variability, as well as variability
in feature length and missing data in single-sample and
multiple-sample comparisons. This was accomplished by
estimating, from available reference data, the null dis-
tribution of our test statistic via a novel application of
heteroscedastic regression based on generalized additive
regression models using penalized splines.
By reanalyzing previously published pHGG data using

the proposed method, we obtained results that add cred-
ibility to our scheme when ranking genes in terms of
their promoters, bodies, or bivalent domains, since these
results clearly demonstrate the potential of the method for
identifying genes that have been previously reported in
the literature to be crucial in glioblastomas. Moreover, our
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analysis shows that considering only methylation discor-
dance within promoter regions of genes in a test/reference
comparison may not be sufficient for identifying key
genes, since methylation differences found within gene
bodies and bivalent domains could be critical as well.
We therefore believe that our approach can greatly facil-
itate the exploratory phases of clinically and biologically
relevance methylation studies.
We should finally note that the idea of using regres-

sion models to build null distributions of test statistics
from reference samples while accounting for confounding
variables is quite general and can be applied to other prob-
lems of computational genomics. In addition to allowing a
bioinformatician to handle confounding variables, such as
feature length, our approach can naturally handle biolog-
ical, statistical, and technical sources of variability, which
are often overlooked by statistical tests based on theoreti-
cal/asymptotic sampling distributions. As such, we believe
that the general statistical approach introduced in this
paper can find widespread use for analyzing other types
of whole-genome sequencing data, such as data obtained
using chromatin immunoprecipitation sequencing (ChIP-
seq) technologies.
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