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Abstract

Multiciliated cells of the airways, brain ventricles, and female reproductive tract provide the

motive force for mucociliary clearance, cerebrospinal fluid circulation, and ovum transport.

Despite their clear importance to human biology and health, the molecular mechanisms

underlying multiciliated cell differentiation are poorly understood. Prior studies implicate the

distal appendage/transition fiber protein CEP164 as a central regulator of primary ciliogen-

esis; however, its role in multiciliogenesis remains unknown. In this study, we have gener-

ated a novel conditional mouse model that lacks CEP164 in multiciliated tissues and the

testis. These mice show a profound loss of airway, ependymal, and oviduct multicilia and

develop hydrocephalus and male infertility. Using primary cultures of tracheal multiciliated

cells as a model system, we found that CEP164 is critical for multiciliogenesis, at least in

part, via its regulation of small vesicle recruitment, ciliary vesicle formation, and basal body

docking. In addition, CEP164 is necessary for the proper recruitment of another distal

appendage/transition fiber protein Chibby1 (Cby1) and its binding partners FAM92A and

FAM92B to the ciliary base in multiciliated cells. In contrast to primary ciliogenesis, CEP164

is dispensable for the recruitment of intraflagellar transport (IFT) components to multicilia.

Finally, we provide evidence that CEP164 differentially controls the ciliary targeting of mem-

brane-associated proteins, including the small GTPases Rab8, Rab11, and Arl13b, in multi-

ciliated cells. Altogether, our studies unravel unique requirements for CEP164 in primary

versus multiciliogenesis and suggest that CEP164 modulates the selective transport of

membrane vesicles and their cargoes into the ciliary compartment in multiciliated cells. Fur-

thermore, our mouse model provides a useful tool to gain physiological insight into diseases

associated with defective multicilia.
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Author summary

Lining the airways, brain ventricles, and oviducts, multicilia are small hair-like structures

that beat in a whip-like motion to propel fluids, such as mucus, over cell surfaces. Dys-

function of multicilia arising from genetic perturbations is most prominently associated

with a devastating disorder called primary ciliary dyskinesia (PCD). PCD is a rare genetic

disease characterized by hydrocephalus, chronic airway infection, and infertility. Further-

more, defective airway multicilia have been implicated in several respiratory diseases,

including cystic fibrosis, asthma, and chronic obstructive pulmonary disorder (COPD).

While important to human health, the detailed molecular mechanisms of how multici-

liated cells develop remain largely unknown. Here, we establish a new mouse model that

lacks the key ciliary protein CEP164 in multiciliated cells. These mice recapitulate many

symptoms of PCD patients such as hydrocephalus and infertility. We show that, in the

absence of CEP164, differentiation of airway multiciliated cells is severely perturbed at

multiple steps. Importantly, our data also suggest that CEP164 differentially regulates the

proper recruitment of membrane-associated ciliary proteins. In summary, we have devel-

oped a powerful mouse model to study diseases affecting multicilia and shed light on

novel roles of CEP164 in multiciliogenesis.

Introduction

Cilia are evolutionarily conserved, microtubule-based organelles that project from the apical

cell surface and perform a wide array of cellular functions [1–3]. Reflecting their diverse cellu-

lar tasks, many types of cilia exist, but they are generally categorized into two broad classes,

primary and multicilia. Immotile primary cilia, which have a 9+0 microtubule arrangement,

are present on most mammalian cell types, mediate signaling of multiple pathways including

Hedgehog signaling, and sense the cellular environment [1]. Motile multicilia, on the other

hand, have a 9+2 microtubule arrangement and are responsible for clearing mucus and debris

from the airways, circulating cerebrospinal fluid in the brain ventricles, and providing the

motive force for ovum transport along the oviduct (also called the fallopian tube) [4, 5]. Sperm

flagella are also motile with a 9+2 axonemal structure. In recent years, the identification of

human mutations in cilia-related genes, causative for a group of disorders known as ciliopa-

thies, has highlighted the importance of primary cilia to human health and created great inter-

est in the field [1–3]. On the other hand, multicilia have been linked to genetic disorders such

as primary ciliary dyskinesia (PCD). Although there are exceptions, in most cases, PCD is

caused by the immotility or abnormal motility of multicilia of normal length and number per

cell [6, 7]. In addition, multicilia have been associated with several chronic respiratory disor-

ders including chronic obstructive pulmonary disease (COPD) and asthma [6, 7]. These find-

ings underscore the importance of elucidating the molecular mechanisms underlying the

formation and function of multicilia.

Although primary and multicilia are thought to be produced through largely analogous

pathways, differences exist [4, 5, 8]. Primary cilia are nucleated in a quiescent cell from the

mother centriole, which is distinguished from the daughter centriole by the presence of the

subdistal and distal appendages. The two centrioles surrounded by amorphous pericentriolar

material constitute the centrosome. However, multiciliated cells must generate hundreds of cen-

trioles through the direct duplication of existing centrioles and an acentriolar pathway via fibro-

granular structures termed deuterosomes [4, 9]. After centrioles are formed in multiciliated
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cells, they mature through the acquisition of accessary structures, such as the subdistal and distal

appendages [2, 10]. In both primary and multiciliogenesis, small vesicles then dock to the distal

appendage and coalesce to form the larger ciliary vesicle [9, 11]. The ciliary vesicle is thought to

promote docking of the centriole, now termed a basal body, to the apical cell surface by fusing

with the apical cell membrane [12]. At this point, the axoneme extends from the basal body via

the action of an intraciliary trafficking mechanism, called intraflagellar transport (IFT) [13].

The distal appendages, or transition fibers as referred to at the ciliary base, are nine radial

fibrous extensions originating from the B-tubule at the distal end of the mother centriole or

basal body [10]. A core unit composed of at least five proteins, CEP83/CCDC41, CEP89/

CEP123, SCLT1, FBF1, and CEP164, has been reported [14]. Several functions have been

ascribed to these proteins in primary ciliogenesis [15]; for example, FBF1 has been linked to

IFT particle entry into the cilium while CEP83, CEP89, and CEP164 are critical for vesicle

recruitment and ciliary vesicle biogenesis [16–19]. Rab small GTPases are known vesicle traf-

ficking effectors and facilitate the assembly of ciliary vesicles and membranes at the distal

appendage [10, 17, 20–22]. Specifically, during primary ciliogenesis, Rab11-positive vesicles

are transported to the pericentrosomal region. Rabin8, a guanine nucleotide exchange factor

(GEF) for Rab8, is then recruited by Rab11 to promote the local activation of Rab8, which in

turn facilitates the efficient formation of ciliary vesicles and membranes. In addition to Rabs,

ADP-ribosylation factor (Arf)/Arf-like (Arl) small GTPases also regulate primary ciliogenesis

as well as targeting of ciliary proteins [23]. Interestingly, a recent report describes a novel role

for the Eps15 homology domain (EHD) proteins EHD1 and EHD3 in ciliary vesicle formation

in primary ciliogenesis [24]. Although these studies provide clear evidence that the distal

appendage/transition fiber and its associated protein networks are necessary to build a primary

cilium, little has been explored regarding their roles in multiciliogenesis.

We previously demonstrated that the 15-kDa coiled-coil protein Chibby1 (Cby1) localizes to

the distal appendage/transition fiber and plays a key role in ciliogenesis [25–31]. Cby1-knockout

(KO) mice display chronic sinusitis and otitis, polycystic kidneys, and sub-fertility as well as poly-

dactyly and hydrocephalus at low frequency, due to defective primary and multicilia [25–27, 30,

31]. Recent studies in Drosophila melanogaster and Xenopus laevis highlight an evolutionarily con-

served role for Cby1 in ciliogenesis [32, 33]. We further showed that CEP164, which is mutated

in nephronophthisis and Bardet-Biedl syndrome (BBS), both of which are classified as ciliopathies

[34, 35], directly interacts with and recruits Cby1 to the distal appendage/transition fiber of the

mother centriole/basal body during primary ciliogenesis [25]. Cby1 then binds Rabin8 and facili-

tates an interaction between CEP164 and Rabin8. This leads to the recruitment and activation of

Rab8 to promote the efficient assembly of ciliary vesicles and subsequent basal body docking to

the apical plasma membrane. A crucial role for Cby1 in membrane association with and docking

of basal bodies has been further demonstrated by studies in D. melanogaster [36]. Recently, we

identified novel Cby1-interactors, the membrane-binding Bin/Amphiphysin/Rvs (BAR)-domain

containing proteins, family with sequence similarity 92 members A and B (FAM92A and

FAM92B) [37]. FAM92A and FAM92B are recruited to mother centrioles/basal bodies by Cby1

to facilitate ciliogenesis likely through regulation of membrane remodeling processes.

Centrosomal protein of 164 kDa (CEP164) was originally identified in a proteomic analysis

of centrosomal proteins and a screen for modulators of ciliogenesis [38, 39]. CEP164-knock-

down (KD) experiments in mammalian cultured cells revealed its functions in small vesicle

docking to the distal appendage, at least in part, via the direct interactions between its C-termi-

nal region and Rabin8 [17]. During primary ciliogenesis, the N-terminal WW motif of

CEP164 has also been shown to bind and recruit Tau-tubulin kinase 2 (TTBK2) to the mother

centriole [40, 41]. TTBK2 then phosphorylates the distal end-capping protein CP110 to pro-

mote the removal of CP110 from mother centrioles for the initiation of ciliogenesis. Thus,
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CEP164 is a key regulator of primary ciliogenesis; however, its role in multiciliogenesis

remains largely unexplored.

Here, we report a novel conditional mouse model in which CEP164 is ablated from multici-

liated cells. These mice show a severe reduction in the number of airway, ependymal, and ovi-

duct multicilia, and ~20% die around weaning age with profound hydrocephalus. We found

that CEP164 is important for proper multiciliogenesis by regulating ciliary vesicle formation

and basal body docking. Experiments using primary cultures of mouse tracheal epithelial cells

(MTECs) revealed that CEP164 is required for the normal basal body localization of Cby1 and

its interactors FAM92A and FAM92B. Moreover, we provide evidence that CEP164 plays dis-

tinct roles in primary vs. multiciliogenesis and differentially controls the ciliary trafficking of

membrane-associated proteins in multiciliated cells. Taken together, our study establishes a

novel mouse model for multicilia-associated diseases and sheds light on the multiple indis-

pensable roles of CEP164 in airway multiciliated cell differentiation.

Results

CEP164 is indispensable for early mouse embryogenesis

CEP164 is composed of 1460 amino acids and contains a WW domain along with three coiled-

coil domains (S1A Fig). To elucidate the physiological function of CEP164 in mammals, we

obtained the CEP164 KO-first mouse line from the MRC-Harwell (S1B Fig) [42, 43]. This

mouse line contains the promoter-driven Tm1a allele that carries lacZ gene and neomycin-

resistance cassettes. As we initially expanded our CEP164 KO-first mouse colony, we noted that

mice heterozygous for the KO-first allele appeared healthy and fertile while no homozygous

mice were born, suggesting embryonic lethality. To address this possibility, we examined

embryos from heterozygous intercrosses at various stages of gestation. At embryonic day (E)

7.5, CEP164-KO embryos showed no obvious morphological abnormalities; however, at E9.5

and E10.5, they exhibited holoprosencephaly, cardiac looping defects, an edematous pericardial

sac, and a truncated posterior trunk (Fig 1A). These phenotypes are similar to those reported

for mouse mutants for KIF3A and KIF3B [44–46], which are major components of the kinesin-

II ciliary anterograde motor, providing further evidence for the essential role of CEP164 in pri-

mary ciliogenesis. Resorptions were consistently observed at E12.5 and all later stages examined.

These data demonstrate that CEP164 is necessary for mammalian embryogenesis.

CEP164 has been shown to be essential for primary ciliogenesis in mammalian cultured

cells and zebrafish embryos [17, 39, 40, 47, 48]. To determine whether CEP164 is necessary for

primary ciliogenesis in vivo, we assessed the status of primary cilia in the neural tube of E9.5

CEP164-KO embryos using immunofluorescence (IF) staining for the ciliary marker Arl13b (Fig

1A). Primary cilia were abundant in the neural tube of control embryos but almost completely

absent in that of CEP164-KO embryos. Consistent with this, mouse embryonic fibroblasts

(MEFs) prepared from E8.5 CEP164-KO embryos showed a dramatic loss of primary cilia (2.7

±0.3% ciliated KO MEFs vs. 62.3±4.1% ciliated control MEFs) (n>200 cells for each of three

independent MEF preparations per genotype) (Fig 1B). These findings suggest that loss of pri-

mary cilia is, at least in part, responsible for the embryonic phenotypes observed.

We previously demonstrated that CEP164 physically interacts with Cby1 and is responsible

for the recruitment of both Cby1 and FAM92A to the ciliary base to facilitate primary ciliogen-

esis in mammalian cultured cells using siRNA-mediated KD experiments (Fig 1C) [25, 37].

Indeed, in contrast to control MEFs, neither Cby1 nor FAM92A was detected at the centrioles

of CEP164-KO MEFs (Fig 1D). We also confirmed the loss of CEP164 at the centrioles of

CEP164-KO MEFs using IF staining (Fig 1D). Thus, our results validate previous data suggest-

ing a fundamental role for CEP164 in the recruitment of Cby1 and FAM92A to basal bodies.
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Fig 1. CEP164 is essential for early embryonic development and primary ciliogenesis. (A) Comparison of control (WT or

heterozygous) embryos with CEP164-knockout (KO) littermates at E7.5, E9.5, and E10.5. At E7.5, KO embryos were
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Loss of CEP164 in FOXJ1-positive tissues in mice leads to severe

deficits in multiciliogenesis and spermatogenesis

CEP164 plays an essential role in primary ciliogenesis; however, the role of CEP164 in multici-

liogenesis had not been elucidated, and no CEP164-KO animal models were available to inves-

tigate its physiological functions in vivo. We therefore employed the CEP164 KO-first mouse

line to generate a mouse model that lacks CEP164 in multiciliated cells (S1B Fig). To this end,

a heterozygous CEP164 KO-first mouse was crossed with a flippase (Flp) deleter mouse to

remove both the lacZ and neomycin-resistance cassettes. The resultant mouse (CEP164fl/fl) has

two loxP sites flanking exon 4 of the CEP164 gene, which encodes a part of the WW domain

(S1A Fig). FOXJ1 is a forkhead transcription factor expressed in multiciliated cells in the air-

ways, brain ventricles, and oviducts as well as in the testis [49, 50]. In airway multiciliated cells,

FOXJ1 is expressed early during multiciliogenesis in ciliating cells that still possess a primary

cilium and are initiating production of centrosomal proteins for centriole amplification [51].

Thus, we bred the CEP164fl/fl mouse with a FOXJ1-Cre transgenic mouse that expresses Cre

recombinase under the control of the FOXJ1 promoter [52]. Cre-mediated recombination

results in the excision of exon 4 and a frameshift, leading to a truncation at amino acid position

65 (S1A Fig). Correct genotypes were verified by PCR (S1C and S1D Fig). A majority of

FOXJ1-Cre;CEP164fl/fl mice lived to adulthood without gross abnormalities, except for ~20%

that succumbed to death due to severe hydrocephalus around weaning and another ~20% that

exhibited mild hydrocephalus, which resolved itself later.

Histological assessment of the trachea and sinus (Fig 2A) from FOXJ1-Cre;CEP164fl/fl adult

mice showed a marked decrease in the number of airway multicilia in comparison to control

specimens from CEP164fl/fl mice. IF staining of tracheal sections for the ciliary marker acety-

lated α-tubulin (A-tub) showed significant loss of multicilia upon CEP164 deletion (S2 Fig).

Indicative of impaired mucociliary clearance, these mice frequently produced coughing- or

sneezing-like noises. As noted above, 19% of FOXJ1-Cre;CEP164fl/fl mice displayed severe

hydrocephalus with a prominently domed head around weaning (11 out of 58 mice) (Fig 2B,

left panels); however, all FOXJ1-Cre;CEP164fl/fl adult mice examined (n = 10) showed substan-

tial ventricular enlargement (middle panels). The high penetrance of hydrocephalus prompted

us to examine the status of ependymal multicilia by IF staining of whole mounts of the subven-

tricular zone (SVZ). As expected, IF staining for A-tub demonstrated a clear reduction in the

number of ependymal multicilia in FOXJ1-Cre;CEP164fl/fl SVZ whole mounts compared to

control CEP164fl/fl samples (Fig 2B, right panels). Consistent with this, quantification of basal

body patch area and displacement revealed significant perturbations in the organization of

basal bodies at the apical surface of CEP164-KO ependymal multiciliated cells (S3 Fig).

indistinguishable from control littermates. In contrast, E9.5 and E10.5 KO embryos displayed holoprosencephaly (arrow), an

edematous pericardial sac (white arrowhead), cardiac looping defects (blue arrowhead), and a truncated posterior trunk (blue

asterisk). Confocal images of neural tube sections from E9.5 control and KO embryos are presented in lower right panels. Primary

cilia were labeled with the ciliary marker Arl13b (green), and nuclei are visualized with DAPI staining (blue). Asterisks indicate the

lumen of the neural tube. Scale bar, 35 μm. (B) Loss of primary cilia in CEP164-KO MEFs. Mouse embryonic fibroblasts (MEFs)

were prepared from E8.5 CEP164-KO or control embryos, serum-starved for 48 hours to induce primary cilia, and immunostained

for Arl13b (green) and the basal body marker γ-tubulin (G-tub) (red). Nuclei were stained with DAPI (blue). Scale bar, 10 μm.

Quantification is shown on the right. >200 cells were counted for each of three independent MEF preparations per genotype. Error

bars represent ±SEM. **, p<0.01. (C) Schematic depiction of the localization of Cby1, FAM92, and CEP164 at the ciliary base.

Basal bodies and centrioles are barrel-shaped structures composed of nine microtubule triplets. During ciliogenesis, mother

centrioles transform into basal bodies by acquiring accessary structures to assemble cilia. The axoneme is the detergent-insoluble

cytoskeletal structure of the cilium including microtubules and their associated proteins. (D) Serum-starved MEFs were double-

labeled for CEP164, Cby1, or FAM92A (green) and the ciliary marker acetylated α-tubulin (A-tub) or G-tub (red) as indicated.

Nuclei were visualized by DAPI (blue). The boxed regions are enlarged in insets, highlighting the loss of CEP164, Cby1, and

FAM92A centriolar localization in CEP164-KO MEFs. Arrowheads point to primary cilia. Scale bars, 10 μm.

https://doi.org/10.1371/journal.pgen.1007128.g001
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We next examined reproductive tissues in FOXJ1-Cre;CEP164fl/fl mice as FOXJ1 is highly

expressed in the multiciliated cells of the oviduct epithelium as well as in the testis [49, 52].

In the oviduct of adult FOXJ1-Cre;CEP164fl/fl mice, multicilia were reduced in number as

evaluated by both histology (Fig 3A) and IF staining for A-tub (Fig 3B) compared to control

CEP164fl/fl tissues. However, FOXJ1-Cre;CEP164fl/fl females were fertile, suggesting that the

remaining multicilia are sufficient to sustain normal function. Alternatively, ciliary motility is

not strictly required for female fertility. In stark contrast, FOXJ1-Cre;CEP164fl/fl males were

Fig 2. Ablation of CEP164 in the FOXJ1-positive tissues results in loss of airway and ependymal multicilia and hydrocephalus. (A)

Hematoxylin and eosin (H&E)-stained tracheal and sinus sections from control CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl adult mice. Scale bar,

20 μm. (B) Shown are lateral views of postnatal day 18 (P18) mice (left panels), coronal sections of adult brains (middle panels), and IF staining for

A-tub (green) and β-catenin (red) in whole mounts of the adult subventricular zone (SVZ) (right panels). Asterisks denote enlarged lateral

ventricular spaces indicative of hydrocephalus. Scale bar, 25 μm.

https://doi.org/10.1371/journal.pgen.1007128.g002
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completely infertile. Histological analysis revealed variable degrees of degenerative changes in

the seminiferous tubules of FOXJ1-Cre;CEP164fl/fl adult testes. In general, we noticed a sub-

stantial reduction in the number of late-stage germ cells (Fig 3C). In a subset of seminiferous

tubules, germ cells were entirely depleted with solely Sertoli cells present (Fig 3C, asterisk).

Additionally, no mature sperm were detectable in the epididymis of FOXJ1-Cre;CEP164fl/fl

mice. In support of these extensive phenotypes, X-gal staining of testis sections from heterozy-

gous CEP164 KO-first mice carrying a lacZ reporter showed broad CEP164 expression with

particularly intense staining in differentiating spermatids (Fig 3D). Overall, these results dem-

onstrate that FOXJ1-Cre;CEP164fl/fl mice exhibit phenotypes consistent with impaired multi-

and motile ciliogenesis and provide a useful model system to study the mechanisms of multici-

liogenesis and its associated diseases.

CEP164 is critical for ciliogenesis during differentiation of airway

multiciliated cells

To gain insight into the molecular basis of defective multiciliogenesis in the absence of

CEP164, we employed primary cultures of MTECs, a well-characterized in vitro model for air-

way differentiation and ciliogenesis [53]. MTEC cultures are created by seeding isolated

Fig 3. CEP164 plays an important role in proper development of female and male reproductive systems. (A) H&E staining of oviduct sections from

CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl adult mice. The boxed regions are enlarged in insets. Scale bar, 10 μm. (B) IF staining of oviduct sections for A-tub

(green) and DAPI (blue). Scale bar, 50 μm. (C) H&E staining of both testis and epididymis from 3-month-old CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice.

Asterisk denotes seminiferous tubules lacking germ cells. Scale bars, 100 μm for low magnification and 40 μm for high magnification. (D) X-gal staining of

testis sections from a control WT mouse and a mouse heterozygous for the CEP164 KO-first allele that contains a lacZ reporter. Scale bar, 40 μm.

https://doi.org/10.1371/journal.pgen.1007128.g003
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tracheal epithelial cells at low density onto a semipermeable, collagen-coated membrane and

permitting them to proliferate until confluent for�7 days. Differentiation then proceeds in a

semi-synchronous manner after an air-liquid interface (ALI) is established with low-serum

media. At 14 days post-ALI induction (ALId14), the cultures contain both multiciliated and

non-ciliated cells and resemble the native tracheal epithelium.

Using the MTEC system, we first sought to determine the efficiency of Cre-mediated

CEP164 removal as well as whether it has any impact on the multiciliated cell lineage. Hence,

we performed IF staining of ALId14 MTECs for CEP164 and FOXJ1. While intense CEP164

signals were detectable at the ciliary base of FOXJ1-positive multiciliated cells in CEP164fl/fl

MTEC cultures at ALId14, CEP164 expression was lost or greatly reduced in ~90% of FOXJ1-

positive multiciliated cells in FOXJ1-Cre;CEP164fl/fl MTEC cultures (n>800 ciliated cells),

revealing highly efficient Cre-mediated recombination (S4A Fig). On the other hand, it is pos-

sible that the efficiency of Cre recombination might vary among individual cells, leading to a

partial/variable phenotype especially at early stages of multiciliogenesis. Interestingly, there

was a modest decrease in the number of FOXJ1-positive cells in FOXJ1-Cre;CEP164fl/fl (37.1

±2.7%) vs. CEP164fl/fl (47.6±3.0%) MTEC cultures (n>500 cells for each of three independent

MTEC preparations per genotype) (S4B Fig). These data suggest that CEP164 may play some

role in the maintenance and/or survival of multiciliated cells. Clearly, this requires further

detailed investigation in the future.

Next, we assessed the extent of multiciliogenesis in ALId14 MTECs from CEP164fl/fl and

FOXJ1-Cre;CEP164fl/fl mice by IF staining for CEP164 and A-tub (Fig 4A). As expected,

CEP164-KO multiciliated cells showed profound defects in ciliogenesis. However, we noticed

that CEP164-KO multiciliated cells were able to extend cilia, albeit short and sparse (Fig 4A,

zoomed image), in contrast to the absolute requirement for CEP164 in primary ciliogenesis

[17, 39]. Four different stages of centriole formation and ciliogenesis in multiciliated cells are

defined: Stage I, appearance of centrosomal protein foci; Stage II, centriole replication; Stage

III, centriole dispersion and migration; Stage IV, axonemal elongation (Fig 4B) [8]. To pre-

cisely quantify the percentages of multiciliated cells at each stage, we fixed CEP164fl/fl and

FOXJ1-Cre;CEP164fl/fl MTECs at ALId5, d7, and d14 and conducted IF staining for A-tub. As

shown in Fig 4C, impaired multiciliogenesis in FOXJ1-Cre;CEP164fl/fl MTEC cultures was evi-

dent at ALId5 and more pronounced at ALId14 with a large decrease in the number of stage

IV multiciliated cells and concomitant increases in the numbers of early stage multiciliated

cells (n>225 total cells for each ALI day from each of three independent MTEC preparations

per genotype). The increased number of non-ciliated cells at ALId14 was in line with the

decreased number of FOXJ1-positive cells in ALId14 FOXJ1-Cre;CEP164fl/fl MTECs (S4B

Fig). Moreover, a vast majority of the stage IV multiciliated cells in FOXJ1-Cre;CEP164fl/fl

MTEC cultures extended only short and scarce cilia at ALId14 (Fig 4D). Corroborating this

observation, CEP164fl/fl MTEC cultures had 46.5±1.4% of total cells that were fully ciliated

with abundant cilia, whereas only 4.9±1.1% of cells in FOXJ1-Cre;CEP164fl/fl MTEC cultures

appeared fully ciliated (n>250 total cells from each of three MTEC independent preparations

per genotype), which most likely corresponds to CEP164-positive multiciliated cells that

escaped Cre-mediated recombination. Collectively, these data indicate that loss of CEP164 in

airway multiciliated cells results in defective ciliogenesis and multiciliated cell differentiation.

CEP164 is required for ciliary vesicle formation and basal body docking

during airway multiciliated cell differentiation

During primary ciliogenesis, CEP164 plays a pivotal role in recruitment of small vesicles to the

distal appendages of mother centrioles for assembly of ciliary vesicles [17]. To examine

Role of CEP164 in multiciliated cell differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007128 December 15, 2017 9 / 27

https://doi.org/10.1371/journal.pgen.1007128


Role of CEP164 in multiciliated cell differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007128 December 15, 2017 10 / 27

https://doi.org/10.1371/journal.pgen.1007128


whether CEP164 similarly regulates vesicle recruitment and subsequent basal body docking

during multiciliogenesis, we performed transmission electron microscopy (TEM) on both

CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl adult tracheas. In control CEP164fl/fl multiciliated cells,

98% of basal bodies were properly docked to the apical cell surface with cilia extending into

the lumen (n = 167 basal bodies from 12 ciliated cells) (Fig 5A). In contrast, 48–83% of basal

bodies were found undocked in the cytoplasm of FOXJ1-Cre;CEP164fl/fl multiciliated cells

with only a few cilia (n = 176 basal bodies from 10 ciliated cells). In agreement with the IF

staining results of MTECs (Fig 4A), we frequently noted shortened cilia in FOXJ1-Cre;

CEP164fl/fl adult tracheas (S5B Fig). We also confirmed the presence of many undocked, cyto-

plasmic basal bodies in ALId14 MTECs from FOXJ1-Cre;CEP164fl/fl mice using TEM (Fig

5B). Furthermore, we found that the transition fibers as well as the Y-linkers of the transition

zone were present in the absence of CEP164 (S5A, S5C and S5D Fig), suggesting that CEP164

is not an essential structural component of the transition fibers and does not influence transi-

tion zone ultrastructure.

Basal body docking defects often result from the inability of distal appendages to recruit

small vesicles in order to assemble ciliary vesicles [10, 15]. CEP164 has been shown to be

responsible for the recruitment of small vesicles to distal appendages during early stages of

primary ciliogenesis in human retinal pigment epithelial (RPE1) cells [17]. To test if this is

the case in multiciliated cells, P8 tracheas were cultured ex vivo in the presence of the micro-

tubule-stabilizing agent taxol and subjected to TEM analysis. Taxol has previously been

shown to block apical migration of basal bodies and enrich for basal bodies bound to vesicles

in multiciliated cells [54]. As shown in Fig 5C, in control CEP164fl/fl tracheas, 68% of cyto-

plasmic basal bodies were associated with vesicles, whereas only 35% of basal bodies in FOXJ1-

Cre;CEP164fl/fl tracheas were attached to vesicles (n = 68 and 81 basal bodies for CEP164fl/fl

and FOXJ1-Cre;CEP164fl/fl, respectively, from three tracheas per genotype). Of note, without

3D reconstruction, these numbers do not precisely represent the actual number of centrioles

associated with vesicles, but rather the numbers detected on thin TEM sections. Collectively,

our TEM data support the notion that CEP164 plays key roles in small vesicle recruitment and

ciliary vesicle formation during multiciliogenesis.

CEP164 recruits Chibby1, FAM92A, and FAM92B to basal bodies in

multiciliated cells

We previously reported that Cby1 is important for ciliary vesicle formation and basal body

docking in airway multiciliated cells [25]. We also demonstrated that, during primary ciliogen-

esis, CEP164 is essential for recruitment of Cby1 to the distal appendages of mother centrioles

via protein-protein interactions. Cby1 then recruits the BAR domain-containing proteins

FAM92A and FAM92B to basal bodies to facilitate primary ciliogenesis [37]. IF staining of

MTECs revealed that Cby1 recruitment to basal bodies was lost or substantially reduced at

Fig 4. Ablation of CEP164 leads to defective airway multiciliogenesis. (A) ALId14 MTECs were stained for CEP164

(green) and A-tub (red). Nuclei were stained with DAPI (blue). Arrowheads denote CEP164-KO multiciliated cells with sparse,

stubby cilia. Zoomed views of cilia are shown for the squared areas. Arrows indicate a multiciliated cell with CEP164 expression

that escaped Cre-mediated recombination in FOXJ1-Cre;CEP164fl/fl MTEC cultures. Scale bars, 10 μm and 5 μm for zoomed

images. (B) Schematic model depicting the stages of multiciliated cell differentiation. See text for details. (C) Quantification of

multiciliated cells at different stages (I-IV) of ciliogenesis. MTECs from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice were fixed at

ALId5, d7, and d14 and immunostained for A-tub. n>225 total cells per ALI day from each of three independent MTEC

preparations per genotype. (D) Quantification of fully ciliated cells. MTECs from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice

were fixed at ALId14 and immunostained for A-tub. The percentages were calculated by dividing the number of fully ciliated cells

with abundant cilia by total cell number. n>250 total cells from each of three independent MTEC preparations per genotype.

Error bars represent ±SEM. **, p<0.01.

https://doi.org/10.1371/journal.pgen.1007128.g004
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both early and fully differentiated stages (Fig 6A). At ALId14, ~65% of CEP164-KO multici-

liated cells showed diminished recruitment of Cby1 to basal bodies (n = 300 ciliated cells from

three independent MTEC preparations). Similarly, the basal body recruitment of FAM92A

and FAM92B was clearly diminished in 50–65% of CEP164-KO multiciliated cells (n>250 cili-

ated cells at ALId14 for each protein from three independent MTEC preparations) (Fig 6B and

6C). These data indicate that CEP164 lies upstream of Cby1, FAM92A, and FAM92B and

recruits them to the distal appendages/transition fibers to promote ciliary vesicle formation,

basal body docking, and multiciliated cell differentiation.

Fig 5. CEP164 regulates small vesicle recruitment to basal bodies in multiciliated cells. (A) TEM images of multiciliated cells from CEP164fl/fl and

FOXJ1-Cre;CEP164fl/fl adult tracheas. Asterisks depict multiple cytoplasmic basal bodies in FOXJ1-Cre;CEP164fl/fl trachea. Scale bar, 500 nm. (B) TEM

images of cross sections through the apical region of multiciliated cells from ALId14 MTECs derived from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl adult

tracheas. Asterisks depict multiple cytoplasmic, misoriented basal bodies in FOXJ1-Cre;CEP164fl/fl multiciliated cells. Scale bars, 500 nm. (C) TEM images of

CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl P8 tracheas subjected to ex vivo culture in the presence of taxol to enrich vesicle-bound basal bodies. Arrowheads

denote vesicles attached to the distal end of the cytoplasmic centriole in control CEP164fl/fl samples. Scale bar, 200 nm.

https://doi.org/10.1371/journal.pgen.1007128.g005
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The loss of CEP164 in multiciliated cells does not overtly influence the

basal body localization of IFT components and CP110

It was demonstrated that CEP164 KD leads to a significant reduction in the levels of IFT com-

ponents at the base of primary cilia in RPE1 cells [17, 40]. We therefore examined the effects of

CEP164 loss on the localization of the IFT components IFT88 and IFT20 in multiciliated cells

(Fig 7A). Surprisingly, in contrast to primary cilia, both IFT proteins were clearly detectable at

basal bodies in CEP164-KO multiciliated cells at similar levels to control multiciliated cells.

During primary ciliogenesis, CEP164 recruits TTBK2 to mother centrioles [40, 41]. TTBK2 in

turn promotes removal of the distal end-capping protein CP110 and recruitment of IFT pro-

teins to initiate ciliogenesis. Thus, CEP164-KD RPE1 cells fail to remove CP110 from the

mother centriole, thereby preventing ciliogenesis from proceeding upon serum starvation [40,

41]. In contrast, we found that, in multiciliated cells, CP110 was constitutively present at

nascent centrioles as well as at the basal bodies of elongating and mature cilia (Fig 7B). The

basal body localization of CP110 was not overtly affected in CEP164-KO multiciliated cells.

TTBK2 was weakly detectable at the ciliary base and more brightly at the tip of a subset of cilia

at comparable levels in both control and CEP164-KO multiciliated cells (S6A Fig). These find-

ings suggest that CEP164 is dispensable for the proper localization of IFT particles, CP110, and

TTBK2 to centrioles/basal bodies in multiciliated cells and highlight potential differences

between primary and multiciliogenesis.

Distribution of ciliary membrane proteins is perturbed in CEP164-KO

multiciliated cells

During primary ciliogenesis, the small GTPase Rab11 recruits Rab8 GEF Rabin8, which in

turn recruits and activates Rab8 at centrosomes [20–22]. Rab8 then promotes membrane traf-

ficking to the base of cilia to facilitate ciliary membrane assembly. CEP164 is known to bind

Rabin8 and mediates Rab8 recruitment and activation [17]. Furthermore, Cby1 binds CEP164

to facilitate the CEP164-Rabin8 interaction and Rab8 activation, thereby promoting ciliary

vesicle formation and subsequent basal body docking during airway multiciliated cell differen-

tiation [25]. We therefore hypothesized that CEP164 might affect the Rab11-Rab8 cascade in

multiciliated cells and immunostained ALId14 MTECs from CEP164fl/fl and FOXJ1-Cre;

CEP164fl/fl mice with antibodies for Rab8 and Rab11 (Fig 8A). Utilizing super-resolution

structured illumination microscopy (SIM), we found that the ciliary and basal body localiza-

tion of both Rab8 and Rab11 was substantially reduced in CEP164-KO compared to control

multiciliated cells. Of particular note, Rab11 has been reported to predominantly localize to a

pericentrosomal compartment in cycling cells or a peri-basal body region in quiescent cells

with primary cilia [17, 20, 22]. In contrast, Rab11 localization extended to a proximal region of

multicilia, again highlighting differences between primary and multicilia. These data point to

potential alterations in the trafficking and formation of ciliary membranes in CEP164-KO

multiciliated cells.

Next, we sought to determine if other ciliary membrane proteins exhibit altered localization

patterns upon CEP164 loss. The ciliary protein ADP-ribosylation factor-like 13b (Arl13b) is a

small GTPase that specifically associates with the ciliary membrane via palmitoylation and

functions in vesicle and ciliary trafficking as well as multiple other cellular processes [55–57].

Fig 6. CEP164 recruits Cby1 and FAM92 proteins to basal bodies in multiciliated cells. MTECs from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice were

immunostained for Cby1 (A), FAM92A (B), or FAM92B (C) (green) and G-tub (red) as indicated. DAPI staining (blue) marks nuclei in merged images. Scale

bars, 5 μm.

https://doi.org/10.1371/journal.pgen.1007128.g006

Role of CEP164 in multiciliated cell differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007128 December 15, 2017 14 / 27

https://doi.org/10.1371/journal.pgen.1007128.g006
https://doi.org/10.1371/journal.pgen.1007128


Role of CEP164 in multiciliated cell differentiation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007128 December 15, 2017 15 / 27

https://doi.org/10.1371/journal.pgen.1007128


Additionally, Arl13b forms a functional complex with CEP164 to target the lipid phosphatase

inositol polyphosphate-5-phosphatase E (INPP5E) to the primary cilium [58]. INPP5E is a pre-

nylated protein important for primary ciliogenesis and maintenance of proper ciliary mem-

brane lipid composition [59–61]. Furthermore, genetic mutations in Arl13b and INPP5E are

linked to the ciliopathy Joubert syndrome [62, 63]. Hence, we investigated whether the loss of

CEP164 has any effect on the ciliary localization of Arl13b and INPP5E. Surprisingly, SIM

imaging revealed that, in CEP164-KO multiciliated cells, Arl13b robustly accumulated in the

short cilia and that the ciliary localization of INPP5E was modestly, yet consistently, increased

Fig 7. CEP164 is dispensable for the basal body localization of IFT88, IFT20, and CP110 in

multiciliated cells. ALId14 MTECs from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice were immunostained

for IFT components (A) or CP110 (B) (green) and A-tub (red). Nuclei were detected with DAPI (blue). All

multiciliated cells were at early stage IV except for the fully differentiated cell (Fully Ciliated) imaged to show

the clear basal body localization of CP110. The insets show zoomed views of the squared areas. Scale bars,

5 μm.

https://doi.org/10.1371/journal.pgen.1007128.g007

Fig 8. CEP164 is required for the proper targeting of ciliary membrane proteins in multiciliated cells. (A) CEP164fl/fl or FOXJ1-Cre;CEP164fl/fl MTECs

at ALId14 were immunostained for Rab8 or Rab11 (green) and A-tub (red) and subjected to super-resolution SIM imaging. Arrowheads point to individual

CEP164-KO multiciliated cells. Scale bar, 5 μm. (B) ALId14 MTECs from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice were immunostained for Arl13b or

INPP5E (green) and A-tub (red) and imaged by SIM. Arrowheads indicate individual CEP164-KO multiciliated cells. Scale bar, 5 μm.

https://doi.org/10.1371/journal.pgen.1007128.g008
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along the entire length of the short cilia (Fig 8B). The ciliary accumulation of Arl13b was also

observed at early ciliation phases in ALId5 MTEC cultures, although that of INPP5E was not

clearly detectable (S6B Fig). In CEP164-KO MEFs, weak to moderate signals for Arl13b and

INPP5E were consistently observed at centrioles (S7 Fig). These results, combined with the

diminished ciliary recruitment of Rabs in CEP164-KO multiciliated cells, imply that CEP164

might be involved in the trafficking and formation of ciliary membranes in multiciliated cells.

Discussion

In spite of a large portion of the population affected by genetic and/or chronic disorders

involving multicilia, only a few surviving mouse models exist to interrogate the mechanisms of

their formation and physiology. Here, we report a viable mouse model that lacks the distal

appendage/transition fiber protein CEP164 in FOXJ1-positive cells of the airways, brain, ovi-

duct, and testis (S1 Fig). We demonstrated that CEP164 removal in these tissues results in a

profound loss of multicilia in the airway, ependymal, and oviduct epithelia as well as develop-

ment of hydrocephalus and male infertility (Figs 2–4). Therefore, our FOXJ1-Cre;CEP164fl/fl

mouse model provides a powerful tool to study diseases of multicilia, such as PCD, and to fur-

ther elucidate how defective multicilia contribute to the pathology of chronic respiratory dis-

eases, such as cystic fibrosis, asthma, and COPD.

Cilia play essential roles in various aspects of embryonic development such as tissue pat-

terning and organogenesis [1, 64]. CEP164-KO embryos exhibit holoprosencephaly, an edem-

atous cardiac sac, heart looping defects, and a truncated posterior trunk at E9.5–10.5 (Fig 1A),

leading to embryonic lethality. Intriguingly, these phenotypes resemble those of the mouse

mutants for KIF3A [44, 45] and KIF3B [46], which are components of the plus end-directed

kinesin-II microtubule motor that carries IFT particles and cargoes to the tip of cilia. These

similarities in phenotype indicate that CEP164 may play an essential role in primary ciliogen-

esis during early embryogenesis. In agreement with this notion, we found that CEP164-KO

MEFs fail to develop primary cilia (Fig 1B).

Our findings also revealed a critical role for CEP164 in male reproductive development (Fig

3C and 3D). Interestingly, mature sperm were not present in the epididymis of FOXJ1-Cre;

CEP164fl/fl mice. In severe cases, germ cells were completely depleted, suggesting that CEP164

may have a fundamental function in spermatogonial stem cells. Besides sperm flagella, germ

cells in mammalian testes lack primary cilia [65, 66]. Thus, CEP164 may play cilia-indepen-

dent roles during spermatogenesis. Future studies are clearly warranted to address the biologi-

cal functions of CEP164 in the testis.

In line with its function during primary ciliogenesis, our results suggest that CEP164 is crit-

ical for the recruitment of small vesicles to the distal appendages of centrioles and subsequent

assembly of ciliary vesicles during multiciliogenesis. Furthermore, CEP164 is required for the

proper basal body localization of the downstream effectors Cby1, FAM92A, and FAM92B in

airway multiciliated cells (Fig 6). At present, we cannot rule out the possibility that, besides its

role in basal body docking, CEP164 may play an additional role in other aspects of multicilio-

genesis such as centriole amplification and cilium elongation. Our work also highlights differ-

ences in the requirements for CEP164 in primary vs. multiciliogenesis. While CEP164 has

been shown to be necessary for IFT88 recruitment to basal bodies in primary cilia [17], both

IFT88 and IFT20 localize to the ciliary base in CEP164-KO multiciliated cells (Fig 7A). Addi-

tionally, CEP164 physically interacts with TTBK2 to promote the removal of the centriolar dis-

tal end-capping protein CP110 to initiate primary ciliogenesis [40]. In contrast, CP110 is

clearly present at the basal bodies of mature cilia in airway multiciliated cells in a CEP164-in-

dependent manner (Fig 7B). Consistent with these findings, a recent report, using Xenopus
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epidermal multiciliated cells, demonstrated that CP110 localizes to basal bodies and may have

unique functions in basal body apical transport and ciliary adhesion complex formation dur-

ing multiciliogenesis [67]. Hence, it will be of importance to determine shared and distinct

mechanisms between primary vs. multiciliogenesis. This may contribute to the development

of targeted therapies for symptoms associated with defective primary vs. muticilia.

Interestingly, we found that the ciliary localization of membrane-associated proteins is per-

turbed in CEP164-KO multiciliated cells. We observed a significant reduction in the levels of

ciliary Rab8 and Rab11 (Fig 8A). Previously, CEP164 has been shown to interact with Rab8

GEF Rabin8 and recruit Rab8 to primary cilia [17]. Our data support this model during multi-

ciliogenesis. Distinct from primary cilia where Rab11 is detectable at pericentrosomal regions

[20, 22], Rab11 localization extends into the proximal portion of multicilia. It is possible that

Rab11 is also present in primary cilia at very low levels beyond the detection limit of fluores-

cence microscopy. Alternatively, Rab11 may have additional unique functions in multicilio-

genesis. In contrast to the Rabs, we observed increases in the ciliary localization of Arl13b and

INPP5E in CEP164-KO multiciliated cells (Fig 8B). While we cannot completely exclude the

possibility that the increased ciliary localization of Arl13b and INPP5E in the absence of

CEP164 results from the recruitment of all the protein to a few remaining immature cilia,

these findings are still surprising in light of a prior report that CEP164 forms a multiprotein

complex with Arl13b and INPP5E and is important for their trafficking to primary cilia [58].

Based on these data, we propose that, in multiciliated cells, CEP164 functions in the selective

transport of certain vesicle types carrying unique cargos into the cilium. In doing so, CEP164

recruits Rab-positive membrane vesicles and limits the proportion of Arl13b- and INPP5E-

containing vesicles. This model also concurs with the notion that the transition fibers act as a

ciliary gate that regulates the entry and exit of ciliary proteins and vesicles [10, 15]. FBF1,

another distal appendage/transition fiber protein, has been shown to facilitate the entry of IFT

particles into the cilium [19]. Therefore, CEP164 may function in an analogous manner to

FBF1 for ciliary membrane vesicles and ciliary membrane proteins.

In summary, our data support a crucial role for CEP164 in multiciliogenesis. CEP164

recruits Cby1, FAM92A, and FAM92B along with the Rab11-Rab8 axis to basal bodies to facili-

tate ciliary vesicle formation and subsequent basal body docking. During cilium elongation

and maintenance, CEP164 may play a role in selective transport of certain types of vesicle with

distinct cargos to the ciliary compartment. Finally, our CEP164 conditional KO mouse model

will provide a basis for future investigations into the molecular mechanisms of primary and

multiciliogenesis in vivo as well as the pathogenesis and mechanisms of ciliopathies.

Materials and methods

Ethics statement

All mice were handled in accordance with NIH guidelines, and all protocols were approved

by the Institutional Animal Care and Use Committee (IACUC) of Stony Brook University

(#2010–1393).

Generation of FOXJ1-Cre;CEP164fl/fl mice

CEP164 KO-first mice, which contain the promoter-driven Tm1a allele, were obtained from

the MRC-Harwell, which distributes these mice on behalf of the European Mouse Mutant

Archive [42, 43]. CEP164 KO-first mice were crossed with the Flp deleter mouse line B6(C3)-

Tg(Pgk1-FLPo)10Sykr/J (The Jackson Laboratory, #011065) to generate CEP164fl/fl mice [68].

Removal of the lacZ and neomycin-resistance cassettes was confirmed by polymerase chain

reaction (PCR) genotyping analysis and subsequent electrophoresis. Subsequently, CEP164fl/fl
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mice were crossed with FOXJ1-Cre mice [52] to generate FOXJ1-Cre;CEP164fl/fl mice lacking

CEP164 in multiciliated cells and the testis. A colony of CEP164 KO-first mice was maintained

by intercrossing heterozygous mice while FOXJ1-Cre;CEP164fl/fl mice were generated by

breeding FOXJ1-Cre;CEP164fl/+ with CEP164fl/fl mice. Primers for genotyping were: WT allele

for CEP164 KO-first, 5’-CCATCTGTCCAGTACCATTAAAAA-3’ and 5’-CCCAGAATACA

ACATGGGAGA-3’ (215 bp); KO allele for CEP164 KO-first, 5’-CCATCTGTCCAGTACCAT

TAAAAA-3’ and 5’-GAACTTCGGAATAGGAACTTCG-3’ (148 bp); CEP164 floxed allele,

5’-CCATCTGTCCAGTACCATTAAAAA-3’ and 5’-CCCAGAATACAACATGGGAGA-3’

(WT allele, 215 bp; floxed allele, 415 bp).

Histology and X-gal staining

Trachea, testis, and oviduct from adult mice were fixed with 4% paraformaldehyde (PFA) in

phosphate-buffered saline (PBS), pH 7.4, overnight at 4˚C, paraffin-embedded, sectioned at

5 μm, stained with hematoxylin and eosin using standard protocols, and mounted with Per-

mount (Fischer Scientific). For X-gal staining, testes from control WT or heterozygous

CEP164 KO-first mice were fixed with 2% PFA and 0.25% glutaraldehyde in PBS overnight at

4˚C, embedded in Optimal Cutting Temperature (OCT) compound (Fisher Scientific), and

snap-frozen in liquid nitrogen-cooled 2-methylbutane. The tissues were then sectioned at

5 μm, washed twice for 5 minutes each in wash buffer (0.01% sodium deoxycholate, 2 mM

MgCl2, and 0.02% NP-40 in PBS), incubated with X-gal (1 mg/ml) in wash buffer for 48 hours

at room temperature, washed twice for 5 minutes in wash buffer, and mounted with

Permount.

Primary cultures of MEFs and MTECs

MEFs were prepared from E8.5 embryos of intercrosses between heterozygous CEP164 KO-

first mice as previously described [28, 69], and extra-embryonic tissue was used for genotyping

analysis. In brief, embryos were placed in 0.05% trypsin-EDTA, minced, and incubated in

0.05% trypsin-EDTA for 20 minutes at 37˚C. Dissociated cells were plated out on glass cover-

slips in a 48-well plate and cultured in Dulbecco’s Minimum Essential Medium (DMEM) sup-

plemented with 10% FBS (Invitrogen) and 100 U/ml penicillin/streptomycin. MEF cultures

were allowed to grow until confluent, at which point ciliogenesis was induced by serum starva-

tion for 48 hours.

MTECs were isolated and cultured as previously described [25, 28, 53]. Briefly, tracheas

were dissected from 2- to 6-month-old CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice (typically

4 tracheas per genotype per preparation), and tracheal epithelial cells were harvested after

overnight incubation with 1.5 mg/ml pronase (Roche) at 4˚C. Isolated MTECs were seeded

onto collagen-coated Transwell permeable membranes made of either polycarbonate or poly-

ester (6.5-mm diameter and 0.4-μm pore size; Corning Costar). Cultures were then allowed to

proliferate in MTEC Plus media with retinoic acid (RA) until confluent, at which time an ALI

was established and 2% NuSerum media with RA was provided only in the basal chamber of

the Transwell (ALId0). MTECs were cultured until ALId14 to ensure full differentiation,

unless otherwise noted.

Immunofluorescence staining

IF staining was achieved using standard protocols as previously described [25, 28]. Briefly,

MEF coverslips and MTEC membranes were fixed in either 4% PFA in PBS or ice-cold metha-

nol-acetone (1:1) for 20 minutes at 4˚C, washed three times with PBS for 10 minutes at 4˚C,

and blocked for 1 hour at room temperature with antibody diluent (5% bovine serum albumin
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[BSA] and 0.2% Triton X-100 in PBS) and 5% goat serum. MEF samples were incubated with

primary and secondary antibodies for 1 hour each at room temperature. MTEC membranes

were incubated with primary antibody overnight at 4˚C, followed by 1 hour of blocking with

5% goat serum in antibody diluent prior to secondary antibody incubation for 1 hour at room

temperature. Subsequently, samples were washed three times with PBS for 5 minutes each.

Finally, DAPI counterstain was performed for 2 minutes at room temperature, followed by

two 5-minute PBS washes. Specimens were then mounted with Fluoromount-G (SouthernBio-

tech). For analysis of primary cilia in the neural tube, E9.5 embryos were fixed in 4% PFA,

cryoprotected with 30% sucrose and embedded in OCT compound for sectioning, followed by

the IF staining procedure as described above. For IF staining of oviducts, paraffin sections

were subjected to antigen retrieval with citrate buffer (pH 6.0), blocked with normal horse

serum, and incubated with primary and secondary antibodies, followed by mounting with Pro-

long Gold with DAPI (Invitrogen). For primary antibody information, see S1 Table. The sec-

ondary antibodies used were: goat anti-rabbit IgG conjugated with either DyLight 488 or

DyLight 549 and horse anti-mouse IgG conjugated with either DyLight 488 or DyLight 549

(Vector Laboratories).

SVZ whole mount dissection and analysis

SVZ whole mounts were dissected as described previously [70]. Briefly, adult mice were anes-

thetized and decapitated. After brain removal, the lateral wall of the lateral ventricle was dis-

sected and fixed in 4% PFA in PBS for 30 minutes on ice. Whole mounts were washed with

PBS, blocked in blocking solution (10% donkey serum with 0.1% Triton X-100 in PBS), and

incubated with primary antibodies for 24 hours at 4˚C and secondary antibodies for 2 hours at

room temperature in blocking solution. The secondary antibodies used were: goat anti-mouse

IgG1 conjugated with DyLight 549 and goat anti-mouse IgG2b conjugated with DyLight 549

(Jackson ImmunoResearch). Whole mount fields were randomly selected for imaging from

the anterior-dorsal region of the SVZ.

Images were processed and quantified using the FIJI/ImageJ software as previously

described [70]. Outlines of the apical borders of ependymal multiciliated cells and the borders

of basal body patches were traced manually in FIJI/ImageJ. Absolute areas were directly calcu-

lated and reported whereas fractional areas were calculated by dividing the basal body patch

area by the apical cell surface area. The centroid of each area was calculated in FIJI/ImageJ,

and the vector from the center of the cell and center of the basal body patch was then calcu-

lated based on those values. Basal body patch displacement was calculated by taking the magni-

tude of this vector. Fractional displacement was calculated by dividing the magnitude of the

vector running from the center of the cell to the center of the basal body patch by the magni-

tude of a manually drawn vector running from the center of the cell through the center of the

basal body and terminating at the cell border.

Fluorescence imaging

Epifluorescence images were taken on a Leica DMI6000B epifluorescence microscope with an

HCX PL Fluotar 100X/1.3 NA oil objective equipped with a DFC300FX camera. Confocal

images were acquired from either a Leica SP5 or SP8X confocal microscope with a HC PL

APO 100X/1.4 NA oil objective. For SIM imaging, MTECs were imaged using a Nikon N-SIM

with a 100x/1.49 NA oil objective equipped with an Andor iXon3 897 EMCCD camera. All

confocal and epifluorescence images were analyzed with Leica Application Suite X software

while SIM images were analyzed with Nikon NIS-Elements image analysis software. Finally, all

images were further processed with Adobe Photoshop and Illustrator.
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Transmission electron microscopy

Samples used for TEM were processed using standard techniques [25, 31]. Briefly, MTEC

membranes and adult tracheas were fixed by immersion in 2.5% PFA and 2% glutaraldehyde

in PBS overnight at 4˚C. After fixation, samples were washed in PBS, placed in 2% osmium

tetroxide in PBS, dehydrated in a graded series of ethanol, and embedded in Embed812 resin

(Electron Microscopy Sciences). Ultrathin sections of 80 nm were cut with a Leica EM UC7

ultramicrotome and placed on Formvar-coated slot copper grids. Sections were then counter-

stained with uranyl acetate and lead citrate and viewed with a FEI Tecnai12 BioTwinG2 elec-

tron microscope. Digital images were acquired with an XR-60 CCD digital camera system

(Advanced Microscopy Techniques).

Tracheal culture and quantification of centrioles bound to vesicles

Centrioles in tracheal multiciliated cells were analyzed for the presence or absence of docked

vesicles as previously described [25]. In brief, tracheas were dissected from P8 mice and cul-

tured for 16 hours in a 5% CO2 atmosphere at 37˚C in DMEM media supplemented with 10%

FBS, 100 U/ml penicillin/streptomycin, 1 μg/ml insulin (Sigma-Aldrich), and 300 ng/ml dexa-

methasone (Sigma-Aldrich) in the presence of 1 μM paclitaxel (Sigma-Aldrich). Tracheas were

then processed for TEM as described above.

Statistical analysis

Two-tailed Student’s t-tests were used for quantification analysis as indicated, and p<0.05

was considered significant. In the figures, asterisks indicate p-values as follows: �, p<0.05; and
��, p<0.01.

Supporting information

S1 Fig. Generation of FOXJ1-Cre;CEP164fl/fl mice. (A) Schematic diagram of CEP164 pro-

tein structure illustrating the WW domain and the three coiled-coiled (CC) domains. The N-

terminal portion of the protein encoded by exon 4 (ex4), which was removed upon Cre-medi-

ated recombination, is depicted. The numbers indicate amino acid positions. (B) Shown are

the original CEP164 KO-first allele, the floxed (fl) allele after removal of lacZ and neomycin

cassettes upon crossing with flippase (Flp) deleter mice, and the final allele with exon 4 excised

after Cre-mediated recombination driven by the FOXJ1 promoter. (C) PCR genotyping analy-

sis confirming the generation of the CEP164fl/fl mouse. The locations for genotyping primers

(P1 and P2) for detection of the floxed allele (415 bp) and wild-type (WT) allele (215 bp) are

indicated by green arrows in (B). (D) PCR genotyping analysis using tail genomic DNA con-

firming the generation of the FOXJ1-Cre;CEP164fl/fl mouse.

(TIF)

S2 Fig. Deletion of CEP164 in multiciliated tissues leads to significant loss of multicilia in

the trachea. Tracheal sections from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl adult mice were

immunostained for A-tub (green). Nuclei were detected with DAPI. Scale bar, 100 μm.

(TIF)

S3 Fig. CEP164 is important for ependymal multiciliated cell maturation. (A) SVZ whole

mount preparations from CEP164fl/fl or FOXJ1-Cre;CEP164fl/fl adult mice were immunos-

tained for G-tub (white) and β-catenin (red). β-Catenin demarcates the cell boundaries, and γ-

tubulin labels basal bodies that are found in patches in ependymal multiciliated cells. Scale bar,

25 μm. (B) Quantification of basal body patch areas. Basal body patch areas relative to total
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apical cell surface areas are significantly reduced in CEP164-KO ependymal multiciliated cells.

(C) Quantification of displacement of basal body patches. The displacement of the basal body

patches from the cell center relative to the radius of the apical cell surface is significantly

increased in the absence of CEP164. For all quantification, n = 3. Error bars represent ±SEM.
�, p<0.05; ��, p<0.01.

(TIF)

S4 Fig. Efficient removal of CEP164 by FOXJ1-Cre-mediated recombination in multici-

liated cells in MTEC cultures. (A) MTECs were prepared from CEP164fl/fl and FOXJ1-Cre;

CEP164fl/fl mice, fixed at ALId14, and immunostained for FOXJ1 (green) and CEP164 (red).

Nuclei were stained using DAPI (blue). ~90% of multiciliated cells in MTEC cultures from

FOXJ1-Cre;CEP164fl/fl mice lost CEP164 expression. Scale bar, 25 μm. (B) Quantification of

FOXJ1-positive multiciliated cells. The percentage of FOXJ1-positive cells in FOXJ1-Cre;

CEP164fl/fl MTECs was moderately reduced (~10%) in comparison to CEP164fl/fl MTECs.

>500 cells were counted for each of three independent MTEC preparations per genotype.

Error bars represent ±SEM. ��, p<0.01.

(TIF)

S5 Fig. Transmission electron microscopy reveals short cilia as well as intact transition

fibers and transition zone structures in CEP164-KO multiciliated cells. (A) Structure of

multicilia. CP, cilia proper; BP, basal plate; TZ, transition zone, BB, basal body; TF, transition

fiber (arrowheads). Scale bar, 100 nm. (B) Elongated cilia were abundant in cross-sections of

tracheas from CEP164fl/fl adult mice while short cilia were frequently found in tracheas from

FOXJ1;CEP164fl/fl adult mice. Scale bar, 500 nm. (C) Nine transition fibers from the microtu-

bule triplets of the basal body were present in cross-sections of multicilia in ALId14 MTEC

cultures from both CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice. Scale bars, 100 nm. (D) Y-

linkers within the transition zone were visible in cross-sections of multicilia in ALId14 MTEC

cultures from both CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice. Scale bars, 100 nm.

(TIF)

S6 Fig. Effects of CEP164 deletion on the ciliary localization of TTBK2 and Arl13b in mul-

ticiliated cells. (A) ALId14 MTECs from CEP164fl/fl and FOXJ1-Cre;CEP164fl/fl mice were

immunostained for TTBK2 (green) and the ciliary/basal body maker A-tub (red). Nuclei were

detected with DAPI (blue). (B) ALId5 MTECs were immunostained for Arl13b (green) and A-

tub (red) as indicated. Multiciliated cells at early ciliation phases are shown. Scale bars, 10 μm.

(TIF)

S7 Fig. Effects of loss of CEP164 on the ciliary localization of Arl13b and INPP5E in MEFs.

Mouse embryonic fibroblasts (MEFs) were prepared from E8.5 CEP164-KO or control

embryos and serum-starved for 48 hours to induce primary cilia. MEFs were double-labeled

for Arl13b or INPP5E (green) and the ciliary marker acetylated α-tubulin (A-tub). Nuclei were

visualized by DAPI (blue). The boxed regions are enlarged in insets. Scale bar, 10 μm.

(TIF)

S1 Table. Primary antibodies used for IF staining.

(TIF)
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