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Proteomic Profiling of Acute Promyelocytic Leukemia
Identifies Two Protein Signatures Associated with Relapse

Fieke W. Hoff, Chenyue W. Hu, Amina A. Qutub, Yihua Qiu, Marisa J. Hornbaker,
Carlos Bueso-Ramos, Hussein A. Abbas, Sean M. Post, Eveline S. J. M. de Bont,
and Steven M. Kornblau*

Purpose: Acute promyelocytic leukemia (APL) is the most prognostically
favorable subtype of Acute myeloid leukemia (AML). Defining the features
that allow identification of APL patients likely to relapse after therapy remains
challenging.
Experimental Design: Proteomic profiling is performed on 20 newly
diagnosed APL, 205 non-APL AML, and 10 normal CD34+ samples using
Reverse Phase Protein Arrays probed with 230 antibodies.
Results: Comparison between APL and non-APL AML samples identifies 8.3%
of the proteins to be differentially expressed. Proteins higher expressed in APL
are involved in the pro-apoptotic pathways or are linked to higher
proliferation. The “MetaGalaxy” approach that considers proteins in relation
to other assayed proteins stratifies the APL patients into two protein
signatures. All of the relapse patients (n = 4/4) are in protein signature 2 (S2).
Comparison of proteins between the signatures shows significant differences
in relative expression for 38 proteins. Protein expression summary plots
suggest less translational activity in combination with a less proliferative
character for S2 compared to signature 1.
Conclusions and Clinical Relevance: This study provides a potential
proteomic-based classification of APL patients that may be useful for risk
stratification and therapeutic guidance. Validation in a larger independent
cohort is required.
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1. Introduction

Acute promyelocytic leukemia (APL) ac-
counts for 10–12%[1] of all acute myeloid
leukemia (AML) cases and is the most
prognostically favorable subtype of AML.
Epidemiologically, it is more common
in younger patients and those with a
Hispanic background.[2] APL, historically
classified under the French–American–
British classification system as M3, is
cytogenetically defined by the reciprocal
translocation t(15;17)(q24;q21) between
the promyelocytic leukemia (PML) gene
on chromosome 15 and the transcription
factor retinoic acid receptor α (RARα)
on chromosome 17, which is present in
more than 95% of APL patients.[3–6] This
genetic cancer driver results in the PML-
RARα fusion oncogene and chimeric
protein, which interferes with the RARα

signaling, thus blocking cell differen-
tiation of the myeloid progenitor and
stimulating aberrant self-renewal.[3,7] In
5% of the patients, other chromosomal
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rearrangements such as complex translocations or insertions
drive the APL, including ZBTB16–RARA, NUMA1-RARA, and
NPM1–RARA. Current synergistic treatment with the all-trans-
retinoic acid (ATRA) vitamin A derivative, which induces termi-
nal differentiation of promyelocytes, in combination with arsenic
trioxide (ATO), which binds to PML and accelerates degradation
of the PML-RARα fusion protein resulting in partial differentia-
tion and induction of apoptosis,[4,6,8] produces remission in over
90% of cases. However, 5–20% of the patients will relapse and
not all can be salvaged by additional therapy or stem cell trans-
plantation. Therefore, a clinical need exists to identify those who
are likely to relapse and to find novel therapeutics to add into the
therapeutic regimen.[4]

Previously, we demonstrated that AML could be classified by
recurrent patterns of protein expression using Reverse Phase
Protein Arrays (RPPA),[9–11] a highly sensitive and reproducible,
high-throughput technique that provided prognostic informa-
tion and suggested targets for drug development.[9–13] Gene
expression profiling (GEP) has revealed recurrent patterns of
gene expression,[14] but has the limitation that messenger RNA
transcript expression correlates with protein abundance for
less than 50% of genes and does not reflect post-translational
modifications.[15–17] In this study, we aimed to define the pro-
tein expression patterns of APL with the additional goals of deter-
mining how they compare to those of AML and to see if certain
patterns would be prognostic for outcome, and thereby suggest
novel therapy targets. Herein, we demonstrate that even though
APL and AML share significant similarities in the expression lev-
els of many proteins, there are distinct protein expression pat-
terns that may explain differences in response to therapy. In ad-
dition, we found that protein expression patterns distinguished
a subset of APL patients as high-risk for relapse.

2. Experimental Section

2.1. Patient Population

Peripheral blood and bone marrow samples were collected from
20 newly diagnosed APL patients and 511 newly diagnosed AML
patients that were evaluated at The University of Texas MD An-
derson Cancer Center between September 1999 andMarch 2007.
Samples were collected prior to induction therapy in accordance
with institutional IRB policies. Informed consent was obtained
in accordance with theDeclaration of Helsinki and applicable local
and state laws. Because it was observed that some protein expres-
sion patterns were exclusively present in cryopreserved cells,[9]

the analysis was restricted to the 205 non-APL AML fresh sam-
ples to work with more native patterns. For the APL cases, a mix-
ture of cryopreserved (n = 9) and fresh samples (n = 11) was
used due to the sample size. The APL patient demographics are
described in Table 1 and those of the AML cases in Table S1,
Supporting Information. APL patients had a median age of 42.5
years, which is representative for APL. Seventeen patients had
the t(15;17) translocation, while the other three were confirmed
to be APL by the PML oncogenic domains (POD) test or by PCR.
All but one of the patients were treated with ATRA, including
14 in combination with ATO alone (n = 8) or with gemtuzumab
(n = 5) or idarubicin (n = 1) if high risk features were present,

Clinical Relevance

APL is a very different formofAML,mostly drivenby the recip-
rocal translocation t(15;17)(q24;q21), and in contrast to other
subtypes of AMLhas a relatively favorable prognosis. This sug-
gests amuchgreater homogeneity of leukemogenesis inAPL
than in other formsofAML.Although, the cure rate of APL is
highwith a complete remission rate ofmore than90%, 5–20%
of thepatientswill relapse andnot all canbe salvaged. A clin-
ical need exists to identify thosewhoare likely to relapse and
to findnovel therapeutics to add into the therapeutic regimen.
Since the combined consequences of genetic and epigenetic
events culminate in anet effectmanifested at theprotein level,
we applied theRPPAmethodology to determineprotein expres-
sion levels in 20APLpatients.We identified the existenceof
twoprotein signatures basedon recurrences in protein expres-
sionpatterns. Protein signatureswere associatedwith relapse,
suggesting that high-riskAPLpatients couldpotentially be
identifiedbasedon their proteomic profiles. Identificationof
aberrantly expressedproteins in thosepatients could thenbe
used in theprocess of risk-stratification and to select drugs that
target thoseproteins in combinationwith standard therapy in
high-risk patients.

another five received ATRA with gemtuzumab (n = 1) or idaru-
bicin (n = 2) or both (n = 1), and one received only liposomal
ATRA. One patient was treated only with idarubicin and cyto-
sine arabinoside. All but one (95.0%) achieved complete remis-
sion (CR), with one early death due to hemorrhage. Four patients
relapsed (two received ATRA plus ATO, one ATRA plus gem-
tuzumab, and one ATRA plus idarubicin) and one patient died
of concurrent metastatic breast cancer with bone marrow infil-
tration and was therefore excluded from the outcome analysis.
Eighty-five percent (n = 17) were still alive at the end of follow-
up (range 83–437 weeks).

2.2. RPPA Methodology

RPPA were performed on samples from patients with APL and
AML. The methodology and validation of this technique are fully
described in previous publications.[13,18,19] Briefly, samples were
enriched for leukemic cells by performing Ficoll separation to
yield a mononuclear fraction followed by CD3/CD19 depletion
to remove contaminating T and B cells, if they were calculated
to be>5% based on the post-Ficoll differential. All samples were
normalized to a concentration of 1 × 104 cells mL−1 and printed
in five (1:2) serial dilutions onto slides along with normaliza-
tion and expression controls. Slides were probed with 230 strictly
validated primary antibodies and a secondary antibody to am-
plify the signal, and finally a stable dye was precipitated. This in-
cluded antibodies targeting 169 different proteins, together with
52 antibodies against phosphorylation sites, 6 targeting Caspase
and Parp1 cleavage forms and 3 targeting histone methylation
sites. Antibodies were selected based on interest or suspected
interest based on their reported function, or based on prior re-
ports suggesting a relationship to leukemogenesis. A table of the

Proteomics Clin. Appl. 2019, 13, 1800133
C© 2019 The Authors. Proteomics – Clinical Application published by

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.1800133 (2 of 9)

http://www.advancedsciencenews.com
http://www.clinical.proteomics-journal.com


www.advancedsciencenews.com www.clinical.proteomics-journal.com

Table 1. Demographics and clinical characteristics of 20 newly diagnosed
APL patients.

Variable category All Signature 1 Signature 2 p

Number of cases (n) 20 7 13

Male 55.0% 57.1% 53.8% 1.000

Age, y

Mean 42.0 44.1 41.0 0.552

Median 42.5 48.3 39.2

Maximum 71.0 71.0 67.7

Minimum 14.8 14.8 18.0

Cytogenetics

t(15;17) 85.0% 75.7% 84.6% 0.523

Diploida) 10.0% 14.3% 7.7%

Unknowna) 5.0% 0.0% 7.7%

FLT3

ITD 30.0% 28.6% 30.8% 1.000

D835 20.0% 28.6% 15.4%

Unknown 10.0% 0.0% 28.6%

NPM1

Mutant 15.0% 0.0% 23.1% 1.000

Wildtype 50.0% 28.6% 61.5%

Unknown 35.0% 71.4% 15.4%

Response

CR 95.0% 100.0% 92.3% 1.000

Early death 5.0% 0.0% 7.7%

Event

Yes 25.0% 0.0% 38.5% 0.106

Alive

Yes 85.0% 100.0% 76.9% 0.521

a)Those patients were confirmed to be APL by the POD test or PCR.

manufacturer, antibody name, and primary and secondary anti-
body dilution can be found in Table S2, Supporting Information.
The stained slides were analyzed using MicroVigene software
(Version 3.4, Vigene Tech, Carlisle, MA) to produce quantified
data.

2.3. Data Normalization and Processing

SuperCurve algorithms[20] were used to generate a single value
from the five serial dilutions. Loading controls[21] and topograph-
ical normalization procedures[22] were performed to account for
protein concentration and background staining variations. All
samples were printed in replicate, and the average expression
level of each replicate was used as a single expression level. Pro-
tein expression levels were shifted relative to the median of the
normal CD34+ bone marrow samples.

2.4. Computational Analysis

The computational analysis schema was done using the “Meta-
Galaxy” analysis as previously fully described by the group.[10–12]

Briefly, the 230 proteins were first divided into 31 “protein
functional groups” (PFGs) based on their known functions or
pathway membership from the existing literature or based on
strong associations within the dataset. The allocation of anti-
bodies into their PFG is listed in Table S2, Supporting Infor-
mation. Various “protein clusters” that expressed similar cor-
related protein expression patterns were identified within each
PFG for the AML patients.[11] To identify whether each new APL
case belonged to one of the AML-defined protein clusters, or to
a novel protein cluster, linear discriminant analysis[23] was per-
formed. Next, the 205 AML patients were clustered based on
a compilation of their protein cluster membership. This iden-
tified 11 “protein constellations”: strong recurrent correlations
between protein clusters. A group of patients with similar pat-
terns of protein constellations were defined and 13 “protein ex-
pression signatures” identified. To determine if protein expres-
sion patterns in APL were similar to, or distinct from, those
of AML, Random Forest[24] decision tree was applied to pre-
dict constellation membership of the newly formed APL pro-
tein clusters and signature membership for the 20 APL cases.
Correlations between signatures and clinical features were as-
sessed using the Fisher’s exact test for categorical variables and
the Kruskal–Wallis test for continuous variables. Survival curves
were generated using the Kaplan–Meier method. Individual pro-
teins were compared between the APL and AML samples and
between the APL signatures using the Student’s t-test with Bon-
ferroni correction (p < 0.05). All the statistical tests and plots
were generated in R (Version 0.99.484 – 2009–2015 RStudio,
Inc.).

2.5. Pathway Analysis

Differentially expressed proteins between AML and APL were
analyzed for pathway enrichment by utilizing BP, KEGG, and
Reactome compendiums, using over-representation analysis
with a hypergeometric distribution; significance was consid-
ered for p < 0.05. STRING software (String 10.5; available
from http://string-db.org) was used to determine protein associ-
ations between the differentially expressed proteins between the
signatures.

2.6. Immunohistochemistry

Formalin-fixed paraffin-embedded bone marrow biopsies corre-
sponding to samples that were analyzed on the RPPA were de-
paraffinized in xylene and rehydrated in an alcohol gradient.
Antigen retrieval was performed using citric acid buffer 10 mm
sodium citrate, 0.05% Tween 20 (pH 6.0) in a steam chamber
for 45 min. Slides were incubated in a 3% hydrogen perox-
ide/methanol solution to deactivate endogenous peroxidase and
then incubated with a primary antibody against HNRNPK (Ab-
cam, ab18195, primary dilution 1:3000) at 4 °C overnight in a hu-
midity chamber. Biotinylated anti-mouse secondary antibody was
added at room temperature for 30 min, and antibody–protein in-
teractions were visualized with the Vectastain Elite ABC andDAB
peroxidase substrate kits. Counterstainswere performedwith nu-
clear fast red.
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Table 2.Nineteen differentially expressed proteins (log 2 scale) between the APL and non-APL AML patient samples. Median expression levels are relative
to the healthy CD34+ cells. p-Values are Bonferroni adjusted (alpha < 0.05). Proteins are listed alphabetically.

Higher APL Higher AML

Protein Median AML Median APL p Protein Median AML Median APL p

ASNS −0.210 0.395 0.032 ATG7 0.406 −0.011 0.001

BCL2 −0.489 0.814 0.000 EIF4EBP1.pS65 0.590 −0.019 0.001

BCL2L1 −0.065 0.391 0.005 GSKA B 0.153 −0.242 0.003

CDKN2A −0.215 0.642 0.000 GSKA B.pS21 9 0.021 −0.324 0.001

DIABLO 0.019 0.642 0.040 INPPL1 0.395 0.116 0.012

IGFBP2 −0.654 0.756 0.000 KDR 0.013 −0.181 0.033

PIK3CA −0.024 0.346 0.003 PTPN11 0.317 0.125 0.016

RPS6.pS240 244 0.019 1.105 0.002 RPS6KB1.pT389 1.522 −0.160 0.000

YAP1.p −0.449 0.062 0.000 ZNF346 0.075 −0.025 0.010

YWHAZ −3.067 −0.005 0.000

3. Results

3.1. Leukemic Cells of APL and Non-APL AML Patients Express
Distinct Protein Expression Levels

Expression levels were measured in our cohort of AML and APL
patients relative to normal CD34+ bone marrow samples and
compared. The significance of differences was assessed using
the Student’s t-test with Bonferroni adjusted p-value (0.05/230
= 0.000217). This resulted in 19 (8.3%) proteins (Table 2) that
were differentially expressed between AML and APL. To investi-
gate which pathways were enriched among the 19 proteins that
were differentially expressed betweenAPL andAML, pathway en-
richment analysis was performed.We identified that pathways in-
volved in apoptosis and cell development were the most strongly
enriched. The seven proteins that contributed to those pathways
included ASNS, BCL2, BCL2L1, CDKN2A, DIABLO, YWHAZ,
and ZNF346, which were all elevated in APL compared to AML,
except for ZNF346 which was higher in AML. Corresponding en-
riched pathways are summarized in Table S3, Supporting Infor-
mation.
Next, protein antibodies were divided into 31 PFGs based on

their known pathway membership and functionality from the
literature to analyze proteins in the context of other function-
ally related proteins. As previously published,[9–12] the Progeny
Clustering algorithm[25] was applied to each group of proteins
and this identified that within each PFG, subgroups of AML pa-
tients could be recognized that expressed similar (correlated) pat-
terns of protein expression of key proteinmembers of that group.
These correlated patternswere defined as a protein cluster. In this
study, we integrated our cohort of 20 APL patients into the 154
existing AML protein clusters and identified that for almost all
PFGs, the APL patients fell into one of the clusters already iden-
tified as occurring in AML. Only for the PFGs “Apoptosis reg-
ulating”, “HIPPO,” and “TP53” did we observe that some APL
cases had expression patterns that were distinct from the AML
cases. These three clusters were primarily formed by altered ex-
pression of YAP1 (relatively low in APL) and 14-3-3 protein zeta
(YWHAZ) (higher in APL compared to AML), and these are both

members of the HIPPO and TP53 PFG, again highlighting dif-
ferences between APL and AML in apoptosis-regulating path-
ways. Although, protein clusters in the “Apoptosis BH3” PFG
were not exclusively formed by APL (Figure 1C), the APL pa-
tients were all clustered in protein cluster 1 and 5, two clusters
that showed higher BCL2 compared to the healthy CD34+ sam-
ples, whereas protein clusters 2, 3, and 4 had all lower BCL2
compared to normal. Figure 1 provides an overview of the previ-
ously established AML clusters in addition to the newly defined
APL-exclusive PFG clusters (Figure 1A, black fill indicates APL-
exclusive clusters). It also provides an example of where the APL
cases form an exclusively new PFG cluster (Figure 1B) and an ex-
ample of where the APL cases are intermixed with the AML cases
(Figure 1C).

3.2. Global Recurrences in Protein Expression Could Not Identify
APL from AML

We next looked to see if recurrent protein patterns also occurred
in APL and if those were similar to, or distinct from, those seen
in AML. Previously, we combined the AML patients and protein
clusters into one binary matrix by coding each patient as 1 or 0
for their protein cluster membership which we called the “Meta-
Galaxy”: 1 if a member, 0 if not a member. Block clustering iden-
tified highly correlated protein clusters and recognized an opti-
mal number of 13 protein constellations. These are protein clus-
ters from different PFGs that tightly co-cluster with each other.
Subsequently, patients that expressed similar patterns of protein
constellations could be characterized by 13 protein expression
signatures. Here, we applied Random Forest decision trees to
predict constellation membership for the three new protein clus-
ters (Apoptosis Regulating C5, HIPPO C4, TP53 C6) and to predict
protein signature membership for the 20 APL patients. Figure 2
shows the extended version of “MetaGalaxy,” showing AML pa-
tient in dark blue andAPL patients in pink (annotation bar “DX”).
Within the 13 protein signatures, we observed seven signatures
that included someAPL patients, with several APL patients found
in signatures 4, 11, and 12, and individual cases appearing in
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Figure 1. A) The optimal number of protein clusters for each protein functional group. The annotation bar on top of the heatmaps (“Disease”) shows
non-APL AML patients in pink and APL patients in blue. B) Protein cluster C5 (dark green) of the PFG “Apoptosis Regulating” was exclusive to APL
patients and is outlined by the black box. C) For the PFG “Apoptosis BH3,” APL cases were intermixed with the non-APL AML cases in protein cluster
C1 and C5.

signatures 1, 5, 7, and 10. This suggests that in contrast to the
differences that exist in the individual pathways, the global pro-
tein expression patterns of APL patients are comparable to those
of non-APL AML cases.

3.3. Co-Clustering Revealed APL Protein Expression Signatures
Correlated With Outcome

When we considered our APL cohort separately, we were able
to identify two distinct protein expression signatures (S1 and
S2) using the “MetaGalaxy” approach that yielded prognostic in-
formation (Figure 3). Again, protein signatures were defined as
a group of patients that expressed similar patterns of protein
constellations. The robustness of the signatures was confirmed
by the traditional unsupervised hierarchical clustering approach
and by consensus clustering; eachmethod identified two clusters
formed by the same clusters of patients (Figure S1, Supporting
Information). S1 showed strong associations with constellation
1 and 6, whereas S2 included patients that expressed patterns
seen in constellation 4, 6, 7, and 8. Survival analysis showed that
all of the patients that relapsed were in S2, which suggests a fa-
vorable prognosis for patients that express protein patterns asso-
ciated with S1. However, due to the high overall survival (OS)
of 89.5% (n = 17/19), the low relapse rate (n = 4/18, 22.2%),

and the small number of patients in our cohort, OS (p = 0.258)
and CR duration (p = 0.084) were not statistically significantly
different between the two signatures. Other variables that were
associated with protein signatures were the number of promye-
locytes in the bone marrow (low in S1, median 47% vs 71% over-
all; p = 0.070) and fibrinogen levels (higher in S1, median 235
mg dL−1 vs 159 mg dL−1; p = 0.052). Although we had small
numbers, all NPM1 mutated patients (n = 3/3) were within S2.
No association with the FLT3-ITD mutation status was observed.
Cryopreservation did not seem to affect the protein expression
patterns, and there was no signature dominated by cryopreserved
samples.

3.4. APL Patient Signatures Express Dissimilar Protein Patterns

Direct comparison of protein expression levels between the
two signatures showed 38 differentially expressed proteins
(Figure 4). Seventeen of those proteins had a higher expression
in S1, including ACTB, AKT1/2/3.pT308, BID, CDKN1B.pS10,
CTSG, ITGA2, ITGB3, LCK, PRKAA1/2, PRKCA, PRKCB.II,
PTGS2, PTK2, SRC, SRC.pY416, SRC.pY527, and VASP. The
other 21 proteins had a generally higher expression in S2: BRAF,
EIF2AK2, EIF2S1, EIF4EBP1, ERG, HNRNPK, HSP90AA1/B1,
JUN.pS73, MTOR, NCL, NPM1, NR4A1, PPR2A/B/C/D,
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Figure 2. Binary block clustering of the protein clusters identified 13 protein constellations (horizontally) that formed 12 protein-expression signatures
(vertically). A vertical line represents one individual patient. A row represents one protein cluster. Annotations are included at the top (“DX”) and show
whether a patient was diagnosed with APL (pink) or another classification of AML (dark blue).

PRKAA1/2.pT172, PTEN.pS380T382, RB1, SMAD1, SMAD4,
STMN1, SSBP2, and WTAP. To assess the relation between
the proteins that characterized the protein signatures, pathway
analysis was applied using STRING 10.5. If an antibody was not
specific to one protein member (e.g., HSPAA1 B1, PRKAA1 2)
a representative member was selected and included in the
analysis. We created two sets of proteins, one set associated
with S1 and one set associated with S2. This resulted in signif-
icant enrichments with proteins in S1 in pathways including
platelet activation (p = 8.43E-9), vascular endothelial growth
factor receptor signaling (p = 8.43E-9), and transmembrane
receptor protein tyrosine kinase signaling pathway (p= 1.15E-8).
Proteins associated with S2 were significantly enriched for
cellular component biogenesis (p = 4.79E-8), regulation of gene
expression (p = 2.05E-6), signal transduction (p = 1.39E-5), tran-
scription from RNA polymerase II promoter (p = 2.80E-5), and
RNA metabolic processes (p = 8.44E-5) (Table S4, Supporting
Information, for the full list of enrichments). Given that we have
previously identified differential expression of heterogeneous
nuclear ribonucleoprotein K (HNRNPK) as being prognostic in
AML,[26,27] we sought to validate its differential expression by
performing immunohistochemistry analysis. IHC confirmed
variable expression in APL, with higher HNRNPK expression
in S2 patients, correlating with the RPPA results (Figure S2,
Supporting Information).

4. Discussion

Although APL is the most favorable form of AML, it still remains
a life-threating disease for a subset of high-risk APL patients,
which indicates that there is a need to be able to identify these
patients and to develop additional therapies for them. In this
study, we aimed to identify protein expression levels and protein
profiles using RPPA from primary APL samples and to compare
protein expression seen in APL to those observed in non-APL
AML. We found that despite global overlap between APL and
AML, which may be because AML and APL are both malignant
myeloid hematological diseases and thus sharing many path-
ways, approximately 10% of the protein expression levels in
APL were significantly different when compared to AML. Most
proteins that were higher expressed in APL were involved in the
pro-apoptotic pathway (e.g., BCL2, BCL2L1, DIABLO, YAP1p,
YWHAZ) or were linked to a higher proliferation (e.g., CDKN2A,
PIK3CA), which may suggest a more pro-apoptotic tendency of
those cells, and that once the differentiation block is abrogated by
the ATRA treatment, those cells tend to be more sensitive to the
ATO-induced apoptosis. Proteins that were higher expressed in
non-APL AML were also involved in pro-proliferative regulation
(e.g., GSK3A B, KDR), suggesting that all AML subtypes were
characterized by an increased proliferation rate, though via
slightly different mechanisms.
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Figure 3. A) Co-clustering of protein clusters from all protein functional groups for our cohort of APL patients. Columns indicate individual patients and
rows represent the protein clusters. B) Overall survival and complete remission duration are shown stratified by signature. Colors indicate signature
membership as annotated on the “MetaGalaxy”(“Signature”).

Analysis of the 20 APL patients separately from the non-APL
AML cases discerned two signatures solely based on their
proteomic profiles and, thus, irrespective of mutant FLT3 status
or cytogenetic aberrations that yielded prognostic information.
S2 had a nearly significant higher relapse rate with all the relapse
patients clustered within this signature. A selection of
those differentially expressed proteins were also previ-
ously identified by Harris et al. as being ATRA respon-
sive, either induced or suppressed. In their study, they
found that upon treatment, proteins involved in translation
initiation and elongation were significantly down regu-
lated, as well as down regulation of heterogeneous nuclear
ribonucleoproteins and the protein phosphatase 2A (PP2A),
suggesting that post-transcriptional suppressive pathways are
activated during ATRA-induced growth inhibition and differenti-
ation processes in APL.[28] Liu et al. selected amultidrug-resistant
leukemia cell line (HL-60[R]) and a non-resistant cell line, which
they exposed to ATRA, followed by a sequential increase of the
concentration.[29] They found differential expression of genes
involved in oxidative phosphorylation and metabolism in HL-

60[R] cells, as well as upregulation of genes involved in protein
synthesis, such as eukaryotic translation initiation factors,
transcription and elongation factors, and splicing factors. In our
samples, taken at the time of diagnosis, we observed higher ex-
pression in S2 of the translation and elongation factors EIF2S1,
EIF2AK2, EIF4EBP1, as well as of the heterogeneous hnRNP
K, an important protein that is known to bind to and regulate
the expression of various eIF genes.[26,27] EIF2AK2 is a protein
kinase that, in its activated form, can phosphorylate (activate)
the translation initiation factor EIF2S1, which in turn acts as an
inhibitor of its own subunit EIF2B with the consequence that
translation comes to a halt. Notably, EIF2S1 phosphorylation on
serine domain 51 was indeed strongly expressed in S2 compared
to normal CD34+ cells. In addition, EIF4EBP1 is a member of
the translation repressor proteins and only in its phosphorylated
form can EIF4EBP1 dissociate from EIF4E and in turn activate
the cap-dependent mRNA translation. Therefore, upregulation
of those three proteins may suggest lower baseline activity
of protein synthesis in S2 compared to S1. As in neoplastic
cell ribosome biogenesis, translation initiation and elongation
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Figure 4. Heat map showing the differentially expressed proteins between APL S1 and S2. Seventeen proteins were upregulated in S1 and 21 proteins
were upregulated in S2. Colors reflect the median expression levels relative to the healthy CD34+ cells, ranging from low (dark blue) to high (red).

processes are increased to sustain the high proliferation rate,
and ribosome composition is altered to modulate specific gene
expression driving tumorigenesis. This may be associated
with a lower proliferation rate in the more chemoresistant
patients (higher frequency of relapse) that formed S2 based
on their expression patterns. Additionally, we observed lower
levels of LCK, SRC, PIK3CA, CDKN1B.pS10 (p27), and upreg-
ulation of RB1 (active, non-phosphorylated) in S2, which also
suggest a decreased proliferation rate in S2. Because cells that
proliferate less are cycling less, they might not receive as much
input through interaction with the stromal cells as highly cycling
cells do, which again may contribute to more chemoresistance.
Previously, Radu et al. also reported phosphorylation at the
serine 10 (S10) residue of CDKN1B as an important event in
mediating a role of CDKN1B in ATRA-induced growth arrest in
ovarian carcinoma cell lines.[30] Phosphorylation at S10 increases
the stability of CDKN1B and signals the nuclear export of
CDKN1B to the cytoplasm upon cell cycle re-entry. When they
created a mutant form by replacing serine by alanine so that
CDKN1B could not be phosphorylated anymore at S10, they
saw that cells were more resistant to therapy. In ATRA-sensitive
CAOV3 cells, they also found an increase in the level of S10

phosphorylation of CDKN1B upon treatment. Together, this
suggested that phosphorylation of S10 of CDKN1B was critical
for inhibition of growth by ATRA. Furthermore, we found
three proteins that were part of the histone modification core
in S2, NCL, NPM1.3542, and WTAP. Abnormal expression of
histone modulators leads to aberrant gene expression and could
contribute to leukemogenesis via misregulation of gene tran-
scription of tumor suppressor genes and oncogenes. Previously,
our group already found tight correlations in the 205 adult
AML patients that were also part of this study between KDM1A,
HNRNPK, NCL, SIRT1, ASH2L, and WTAP.[9] In that study,
we observed that patients that expressed high levels of KDM1A,
HNRNPK, NCL, SIRT1, ASH2L, and WTAP expressed lower
levels of correlated CBL, LCK, SRC phosphorylated on tyrosine
416 and 452, PTK2, ITGA2, SRC, PTG2S, PIK3AC, and FN1,
which was again replicated by our observations here.
In conclusion, these data suggest that high-risk APL patients

could be identified and stratified from low-risk APL patients
based on their protein expression patterns. Additionally, these
findings provide a potential explanation as to why some patients
are more resistant to therapy than others that can be examined
in the laboratory. The next step would be to identify a panel of
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a limited number of proteins that could relatively quickly de-
termine to which signature a new patient belongs at the time
of diagnosis and be implemented during risk stratification. By
knowing the signature membership of individual APL patients
at an early stage, we could then decide whether or not additional
therapies are required, based on their high- or low-risk protein
profiles. However, to test whether this classification could be
used for real purposes, validation is required in a larger inde-
pendent cohort of APL patients and a broader number of an-
tibodies that cover the pathways that were studied with more
depth. A complete and in-depth proteomic analysis (e.g., 2DE-
DIGE or iTRAQLC-MS/MS) onAPL protein extracts can guide to
identify differential proteins that would indicate which antibod-
ies to use. Another clinical application could be to select drugs
that target aberrant protein patterns in combination with stan-
dard therapy in high-risk patients. For instance, S2 was linked
to higher levels of BRAF, HSP90AA1 B1, PPP2R2A B C D, and
PTEN.pS380T382T383 proteins that are all potentially targetable.
However, further research is needed to test those combinations
of drugs.
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