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Objective: To evaluate the microstructural changes of the vestibulocochlear

nerve in patients with Ménière’s disease.

Methods: A total of 26 subjects, 13 patients with MD and 13 healthy controls,

underwent di�usion tensor imaging (DTI) on a 3T scanner. The independent

sample t-test was used to compare the di�erences in fractional anisotropy (FA)

and apparent di�usion coe�cient (ADC) between the two groups. A Pearson

correlation was used between DTI and the dizziness handicap inventory

(DHI) scores.

Results: There was a significant decrease in FA and an increase in ADC of

the vestibulocochlear nerve in MD patients compared with healthy controls

(P = 0.04, P = 0.001). FA had negative correlations with the DHI score

(r = −0.62, P = 0.02) and DHI-functional score (r = −0.64, P = 0.02).

Conclusion: These results are the first evidence of possible changes in the

microstructure of the vestibulocochlear nerves in patients with MD. DTI is

a potential technique for evaluating the vestibulocochlear nerve in patients

with MD.

KEYWORDS

di�usion tensor imaging, Ménière’s disease, vestibulocochlear nerve, microstructure,

fractional anisotropy (FA)

Introduction

Ménière’s disease (MD) is an inner ear disease and characterized by episodic

attacks of vertigo, fluctuating hearing loss, tinnitus, aural pressure, and a progressive

loss of audiovestibular functions (1). Endolymphatic hydrops (EH) was discovered

and correlated with MD in 1938 (2). Recently, developments in gadolinium chelate

(GdC)-enhanced MRI have provided a tool for visualizing endolymphatic hydrops

non-invasively (3–6). With these new imaging techniques, EH can be used to confirm the

diagnosis. However, there was no evidence that shown the correlation between EH and
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the severity and frequency of vertigo attacks (7–9). Currently,

decreased hippocampal volume was found in Meniere’s disease

patients, and the volume was significantly correlated with

severity of hearing and vestibular function of affected side

(10). It indicates that MD may not only affect the inner

ear. The syndromes of MD include vestibular function and

hearing loss, and the vestibulocochlear nerve is a complex of

cochlear and vestibular nerves. Thus, this research hypothesized

there may be subtle changes in the vestibulocochlear nerve in

MD patients and aimed to detect them with diffusion tensor

imaging (DTI).

DTI can show the movement of neural fiber bundles under

living conditions by describing and quantifying the extent and

direction of water molecule diffusion (11, 12). In the healthy

neural fiber bundles, the local water molecules that diffuse along

the axon encounter smaller obstacles than those perpendicular

to the axon (13, 14). Among the DTI parameters, the fractional

anisotropy (FA) is a measure that essentially represents the SD

of the eigenvalues, and the apparent diffusion coefficient (ADC)

quantifies the amount of diffusion in all directions (15, 16). An

FA is a scalar value between zero and one that describes the

degree of anisotropy of a diffusion process. A value of zero

means that diffusion is isotropic it is unrestricted (or equally

restricted) in all directions. A value of one means that diffusion

occurs only along one axis and is fully restricted along all other

directions. FA is a measure often used in diffusion imaging

where it is thought to reflect fiber density, axonal diameter,

and myelination in white matter. ADC is a measure of the

freedom of water molecular diffusion in the tissue environment.

Research on cytotoxic edema suggests that the ADC is sensitive

to a small change in the distribution of water between intra-

and extra-cellular environments, and can be viewed as a probe

of cell fluid electrolyte homeostasis. DTI has been used as

a technique for various pathologies investigations, including

stroke, amyotrophic lateral sclerosis, multiple sclerosis, and

epilepsy in the central nerve system (17–20). Recent works

evaluated the auditory pathway and facial nerves by DTI

successfully, which indicated that DTI may be a potential

tool for evaluating the integrity of the vestibulocochlear

nerve by obtaining quantitative information (21–23). DTI

parameters even can detect the development of white matter

lesions before quantifiable changes in normal-appearing white

matter (24). Moreover, it was reported that DTI parameters

correlated strongly with neurophysiological measures in chronic

inflammatory demyelinating polyneuropathy and lumbar spinal

nerves (25, 26).

In this research, DTI was used to evaluate the

vestibulocochlear nerve in MD, and the relation, between

DTI parameters (FA and ADC) and clinical syndromes was also

detected. The severity of vertigo was measured by the dizziness

handicap inventory (DHI) scores. The outcomes of this research

may contribute to the diagnosis of MD and understanding the

pathogenesis of MD.

Materials and methods

Participants

With ethical approval and written informed consent, 13

patients with definite MD (7 female; mean ± SD age, 55.08 ±

12.72 years) and 13 healthy adults (7 female; mean ± SD age,

50.08 ±12.91 years) who were balanced in years and sexuality

were recruited in our hospital for this study. The healthy

control group were excluded if they had a history of vestibular

symptoms or cochlear symptoms. Definite MD: Two or more

spontaneous attacks of vertigo, each lasting 20min to 12 h;

audiometrically documented fluctuating low- to midfrequency

sensorineural hearing loss (SNHL) in the affected ear on at least

1 occasion before, during, or after 1 of the episodes of vertigo;

fluctuating aural symptoms (hearing loss, tinnitus, or fullness)

in the affected ear; other causes excluded by other tests. All the

patients were enrolled within 48 h of the vertigo attacks.

MRI data acquisition

All MRI DTI data were acquired from all subjects on a

3T Siemens Verio clinical MRI scanner (Siemens Healthcare).

T2∗WI: thickness = 0.5mm, TR = 1500ms, TE = 289ms,

FA = 120◦, FOV = 200mm, matrix = 384 × 384. DTI

sequence: slice thickness = 2.0mm, FOV = 220mm, matrix =

128 × 128, fractional anisotropy (FA) = 90◦, b0 images = 65,

diffusion gradient directions = 31, b-value = 1,000 s/mm2, TR

= 10,500ms, TE= 82 ms.

Assessment of vestibular symptoms

The degrees of severity of dizziness were evaluated using

the dizziness handicap inventory (DHI). The DHI is a 25-item

questionnaire addressing the self-perceived handicapping effects

of vestibular disease in terms of the patient’s quality of life

emotionally, physically, and functionally (27). Each score is

evaluated by the patients separately. The DHI scores were 53

± 20.76, DHI-functional were 23.69 ± 6.37, DHI-physical were

11.08± 8.07, and DHI-emotional were 18.15± 9.33.

Data analysis

The diffusion tensor data was measured using a dedicated

workstation (Ziostation2, Ziosoft Inc., https://ziosoftinc.com).

FA and ADC maps were generated using the same software.

This software provides a novel technique that can counterpoint

the T2 map with the FA/ADC map by spatial location

automatically. The 3D T2 image was rigidly registered to the

DTI data automatically and midsagittal plane were transformed
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FIGURE 1

Vestibulocochlear nerve (arrows) and facial nerve (triangle) were separated on the T2-weighted axial (a) and sagittal (b) images from a

representative subject.

FIGURE 2

FA/ADC measurement. VCN was located on the T2 map (a,e), registered to FA (b,d) map and ADC map (c,f) automatically, measured on FA/ADC

map in the MR axial (a–c) and sagittal (d–f) images.

accordingly. FA and ADC values were obtained from the

vestibulocochlear nerve (VCN). To determine whether the DTI

parameters deviate from the normal range of values, the facial

nerve (FN) was also measured. VCN and FN showed up clearly

on the T2 image (Figure 1). They were located on the T2 map

andmeasured on the FAmap and ADCmap by multi-points (an

average of five points per nerve, Figure 2). Themeasurement was

operated separately by two senior radiologists who were blinded

between the control subjects and the MD patients. The average

of each metric was taken forward into further analysis.

Statistical analysis

Data were analyzed using SPSS 25 (IBM Corp). The FA

and ADC values per nerve were compared using two sample

t-tests to investigate the differences in patients and controls.

The FA and ADC values from the side with hearing loss

were compared separately against the other side to investigate

whether there was a difference between the two sides in patients

with unilateral deafness. A Pearson correlation coefficient

analysis was performed on DTI parameters and DHI scores to

examine the correlation between VCN changes and the degrees

of dizziness. The receiver operating characteristic (ROC) curve

was used to analyses the diagnostic efficacy of FA and ADC

values. The statistical significance was set at P < 0.05. Data are

presented as mean± SD in the text.

Results

DTI of the interested nerves

The FA and ADC values of VCN and FN are shown in

Tables 1, 2. In healthy controls, FA and ADC values of these

nerves showed no significant difference in the left and right side.
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TABLE 1 Clinical information and di�usion tensor imaging (DTI) parameters of MD patients.

MD 1 2 3 4 5 6 7 8 9 10 11 12 13

Sex M F F F M M F F M F M F M

Age 51 51 68 58 32 65 56 54 27 66 59 64 65

Disease course 2 years 4 years 20 years 2 years 4 years 10 years 2 months 15 years 7 months 2 years 2 weeks 1 years 6 months

DHI 40 46 64 84 32 40 70 96 66 32 42 40 38

DHI-functional 18 20 24 32 16 24 32 36 26 16 20 24 20

DHI-emotional 12 20 30 36 16 4 16 32 20 12 14 10 14

DHI-physical 10 6 10 14 0 12 22 28 20 4 8 6 4

Stage of MD I (R, L) II (R) III (R) I (L) I (R) III (R) I (L) III (R, L) I (L) I (R, L) I (R) I (R, L) I (R, L)

Frequency of attacks Weeks Months Years Months Months Years Weeks Years Months Years Weeks Months Months

Number of attacks in last 3 months 10 2 1 3 2 1 6 1 2 1 2 2 1

FA of VCN (R) 0.19 0.14 0.15 0.14 0.33 0.20 0.13 0.17 0.26 0.29 0.24 0.16 0.28

FA of VCN (L) 0.21 0.20 0.15 0.13 0.25 0.24 0.16 0.13 0.26 0.22 0.31 0.25 0.14

ADC of VCN(R) 2.39 3.11 3.04 1.85 2.61 2.33 2.54 2.62 2.82 1.66 3.05 2.33 2.38

ADC of VCN (L) 2.56 3.00 2.65 2.80 2.88 3.04 1.97 2.57 2.91 2.90 1.81 1.90 3.15

FA of FN (R) 0.23 0.29 0.19 0.21 0.20 0.22 0.33 0.24 0.20 0.32 0.20 0.20 0.19

FA of FN (L) 0.24 0.19 0.23 0.32 0.24 0.24 0.45 0.18 0.43 0.37 0.30 0.18 0.18

ADC of FN(R) 2.42 2.89 2.83 2.92 3.03 2.42 1.43 3.51 3.60 2.79 3.17 2.49 2.88

ADC of FN (L) 2.45 2.51 2.56 2.25 3.42 3.33 1.97 3.84 2.97 3.07 2.69 2.35 2.90

FA, fractional anisotropy; ADC, apparent diffusion coefficient (10−3 mm2/s); VCN, vestibulocochlear nerve; FN, facial nerve; R, right side; L, left side.

TABLE 2 Di�usion tensor imaging (DTI) parameters of healthy controls.

Healthy

controls

Sex Age FA of

VCN (R)

FA of

VCN (L)

ADC of

VCN (R)

ADC of

VCN (L)

FA of FN

(R)

FA of FN

(L)

ADC of

FN (R)

ADC of

FN (L)

1 F 43 0.27 0.25 2.22 2.30 0.18 0.33 2.91 1.82

2 M 32 0.25 0.18 1.67 1.18 0.23 0.28 2.65 2.32

3 M 41 0.24 0.28 2.26 2.32 0.18 0.18 2.45 2.35

4 F 41 0.24 0.26 2.46 2.49 0.19 0.26 2.85 1.86

5 F 46 0.24 0.20 2.79 3.29 0.27 0.19 2.13 2.64

6 M 68 0.18 0.24 2.95 2.67 0.19 0.16 2.88 3.10

7 M 48 0.21 0.35 2.23 2.21 0.18 0.31 2.53 2.55

8 F 67 0.25 0.19 1.06 2.91 0.35 0.18 2.31 2.90

9 F 60 0.26 0.28 2.54 1.81 0.27 0.16 2.10 3.18

10 M 58 0.34 0.26 1.76 1.03 0.27 0.36 2.62 1.74

11 M 61 0.24 0.23 1.92 1.30 0.21 0.30 1.14 1.78

12 F 28 0.37 0.25 1.80 2.30 0.39 0.27 2.02 1.55

13 F 58 0.30 0.18 1.00 1.18 0.41 0.27 2.45 2.16

FA, fractional anisotropy; ADC, apparent diffusion coefficient (10−3 mm2/s); VCN, vestibulocochlear nerve; FN, facial nerve; R, right side; L, left side.

Comparison of DTI parameters

FA of VCN was lower in patients (0.21 ± 0.01) compared

with controls (0.24 ± 0.01, P = 0.04, Figure 3). ADC of VCN

was higher in patients (2.59 ± 0.09) compared with controls

(2.06 ± 0.13, P = 0.001, Figure 4). No differences were detected

in FA and ADC values from FN, CN, and VN in the patients

and healthy controls. Further, the FA of VCN was significantly

lower than that of the facial nerve (0.24 ± 0.08, P = 0.02).

Eight patients showed unilateral hearing loss, FA and ADC of

the vestibulocochlear nerve showed no significant difference

between the deafness side and the other side (P = 0.73,

P = 0.56). Based on ROC curve analysis, the FA cutoff point

was 0.18, with the area under the ROC curve (AUC) 0.68,
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FIGURE 3

Comparison of FA values (VCN) between MD patients and healthy controls (HC).

FIGURE 4

Comparison of ADC values (VCN) between MD patients and healthy controls (HC).

sensitivity 0.42, specificity 1; the ADC cutoff point was 2.56 ×

10−3 mm2/s, with AUC 0.73, sensitivity 0.62, specificity 0.81

(Figure 5).

DTI parameters correlate with
assessment of vestibular symptoms

TheDHI score and FA of VCN showed a negative correlation

(r = −0.62, P = 0.02), so as the DHI-functional score and FA

value (r = −0.64, P = 0.02, Figure 6), which indicates the more

serious of the dizziness, the lower the FA was detected.

Discussion

In this work, we have used diffusion tensor to investigate

the microstructural properties of the vestibulocochlear nerve. A

lower FA and a higher ADC were found in the vestibulocochlear

nerve in MD patients compared with healthy controls. The

decrease in FA and increase in ADC were presented on both the

deafness side and the other side. Further, the FA and DHI had a

negative correlation in patients with MD.

FA is highly sensitive to the change in microstructure,

decreased FA was related to changes of neural fiber integrity,

myelin, and axonal integrity (23, 28, 29). The increase in ADC

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.915826
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yuan et al. 10.3389/fneur.2022.915826

was shown to be associated with inflammation, edema, and

axonal injury (30–32). In summary, the decreased FA and

increased ADC may indicate microstructural changes occurred

in vestibulocochlear nerves, whichmay be edema, inflammation,

the damage of neural fiber integrity, myelin, or axonal integrity

in active MD.

In this research, DTI parameters were analyzed by the

affected side or the average value of the two sides in bilateral

MD patients. The FA of VCN was lower than that of FN in

MD, while they showed no difference in the healthy control

FIGURE 5

The ROC curves of FA and ADC values.

group. This suggested that DTI acquisition could provide stable

DTI measures in the cisternal segment. FA and ADC showed

alterations in VCNmay be associated with its special anatomical

structure, the cisternal segment of the vestibulocochlear nerve is

the transition pathway from the central nerve to the peripheral

nerve, and the nerve sheath is thin and easily damaged.

In patients with unilateral deafness, DTI parameters showed

no difference on both sides in MD, which indicated that the

alteration may originate from both the vestibular nerve fibers

and the cochlear nerve fibers. On one hand, recent work on

patients with unilateral hearing loss showed FA decrease on

both sides, indicating bilateral changes in microstructure of the

auditory nerve and auditory pathway in unilaterally deaf subjects

(21, 23). On the other hand, the attack of vertigo is always

associated with abnormal vestibular signals, whether there were

subtle changes in vestibular nerve fibers was unknown. In our

research, the decreased FA had negative correlation with DHI

and DHI-functional scores. There was no correlation between

FA and DHI-emotional, so as FA and DHI-physical. The DHI is

very commonly used to qualify the life measure for vestibular

disorders and is quite efficient in evaluating the severity of

dizziness (33). It means that patients with higher DHI and

DHI-functional scores had lower FA, which could indicate a

change in vestibular nerve fibers.

Limitations

The sample size in this study was small, which may affect the

result of whether there was a DTI parameter difference between

the two sides. However, alterations in FA and ADC were found

in vestibulocochlear nerve in patients, suggesting that there were

FIGURE 6

Pearson correlation between FA and DHI and DHI-functional scores.
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possible changes in the microstructure of the vestibulocochlear

nerves in patients with MD. The pathophysiological mechanism

of the alterations in DTI was unclear. The separation of the

different nerves was processed on T2 map, the counterpoint was

processed by the Ziosoft automatically and cloud be manually

corrected. Since the nerve cross-section is small, the software

cannot observe FA and ADC values with multi-points. To more

specifically image the vestibulocochlear nerve, a high-resolution

T2WI with 0.5mm slice thickness, and a DTI technique with 31

directions were used.

Conclusion

Decreased FA and increased ADC were detected in the

vestibulocochlear nerve in patients with MD, and the change

in FA was correlated with DHI, these results indicated possible

changes in the microstructure of the vestibulocochlear nerve

in MD. DTI may be a potential imaging biomarker for the

diagnosis of MD.
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