@ PLOS | si5amoms:

CrossMark

dlick for updates

E OPEN ACCESS

Citation: Khan N, Kolimi N, Rathinavelan T (2015)
Twisting Right to Left: A. . .A Mismatch in a CAG
Trinucleotide Repeat Overexpansion Provokes Left-
Handed Z-DNA Conformation. PLoS Comput Biol
11(4): €1004162. doi:10.1371/journal.pcbi.1004162

Editor: Alexander MacKerell, Baltimore, UNITED
STATES

Received: September 25, 2014
Accepted: January 28, 2015
Published: April 13,2015

Copyright: © 2015 Khan et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All the relevant data
are withing the paper and its Supporting Information
files.

Funding: The work was supported by Department of
Biotechnology, Government of India [[YBA-2012 (D.
0.No.BT/06/IYBA/2012) to TR, BIO-CaRE (SAN.
No.102/IFD/SAN/1811/ 2013-2014) to TR, and R&D
(SAN.No.102/IFD/ SAN/3426/2013-2014) to TR] and
IIT Hyderabad start-up grant (To TR). The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

RESEARCH ARTICLE

Twisting Right to Left: A. . .A Mismatch ina
CAG Trinucleotide Repeat Overexpansion
Provokes Left-Handed Z-DNA Conformation

Noorain Khan®, Narendar Kolimi®, Thenmalarchelvi Rathinavelan*®

Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, India

® These authors contributed equally to this work.
* tr@iith.ac.in

Abstract

Conformational polymorphism of DNA is a major causative factor behind several incurable
trinucleotide repeat expansion disorders that arise from overexpansion of trinucleotide re-
peats located in coding/non-coding regions of specific genes. Hairpin DNA structures that
are formed due to overexpansion of CAG repeat lead to Huntington’s disorder and spinocer-
ebellar ataxias. Nonetheless, DNA hairpin stem structure that generally embraces B-form
with canonical base pairs is poorly understood in the context of periodic noncanonical A. . .A
mismatch as found in CAG repeat overexpansion. Molecular dynamics simulations on DNA
hairpin stems containing A. . .A mismatches in a CAG repeat overexpansion show that
A...Adictates local Z-form irrespective of starting glycosyl conformation, in sharp contrast
to canonical DNA duplex. Transition from B-to-Z is due to the mechanistic effect that origi-
nates from its pronounced nonisostericity with flanking canonical base pairs facilitated by
base extrusion, backbone and/or base flipping. Based on these structural insights we envis-
age that such an unusual DNA structure of the CAG hairpin stem may have a role in disease
pathogenesis. As this is the first study that delineates the influence of a single A. . .A mis-
match in reversing DNA helicity, it would further have an impact on understanding DNA
mismatch repair.

Author Summary

When a set of 3 nucleotides in a DNA sequence repeats beyond a certain number, it leads
to incurable neurological or neuromuscular disorders. Such DNA sequences tend to form
unusual DNA structures comprising of base pairing schemes different from the canonical
A...T/G...Cbase pairs. Influence of such unusual base pairing on the overall 3-
dimensional structure of DNA and its impact on the pathogenesis of disorder is not well
understood. CAG repeat overexpansion that leads to Huntington’s disorder and several
spinocerebellar ataxias forms noncanonical A. . .A base pair in between canonical C. . .G
and G. . .C base pairs. However, no detailed structural information is available on the in-
fluence of an A. . .A mismatch on a DNA structure under any sequence context. Here, we
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have shown for the first time that A. . .A base pairing in a CAG repeat provokes the forma-
tion of left-handed Z-DNA due to the pronounced structural dissimilarity of A. . .A base
pair with G. . .C base pair, leading to periodic B-Z junction. Thus, these results suggest
that formation of periodic B-Z junction may be one of the molecular bases for CAG

repeat instability.

Introduction

Apart from the ‘canonical’ B-DNA conformation, DNA can also adopt a variety of ‘non-canon-
ical’ conformations such as hairpin, triplex and tetraplex depending on the sequence and envi-
ronment. It is well known that formation of such unusual non-B-DNA structures during the
overexpansion of trinucleotide microsatellites (tandem repeats of 1-3 nucleotide length) is re-
sponsible for at least 22 incurable trinucleotide repeat expansion disorders (TREDs) that are
mainly neurological or neuromuscular in nature[1,2,3,4,5]. For instance, occurrence of hairpin
structure due to the abnormal increase in the CTG repeat length in the untranslated region of
DMPK gene causes myotonic dystrophy type-1[6,7]. Likewise, hairpin formation in CAG re-
peat expansion located in the protein-coding region leads to Huntington’s disorder & several
spinocerebellar ataxias[7]. Direct evidence for the role of such hairpin structure in instigating
replication-dependent instability has been demonstrated for the first time in human cells with
5'CTG.5’CAG microsatellite overexpanion[8]. Recently, it has been shown that CAG repeat
overexpansion in DNA leads to toxicity by triggering cell death[9,10] and thus, warranting a
detailed investigation on the hairpin structures formed under such abnormal expansion.

Although diverse mechanisms at DNA, RNA and protein levels have been identified for the
progression of TREDs[11], until now, the main focus as potential therapeutic targets has been
on RNA and protein levels. In fact, crystal structures of RNA duplex (hairpin stems) containing
CUGI[12] and CAG[13] repeats that form noncanonical U...U[12] & A...A[13] base-pairs of-
fers useful information as the pathogenic CUG and CAG RNA hairpins have a role in misregu-
lating the alternative splicing by MBNL1[14], leading to neurotoxicity. Though the
isosequential DNA also intends to form hairpin structure[15], detailed structural insights
about DNA duplex with CAG and CTG repeats that form A...A and T...T mismatches re-
spectively are still inaccessible. With emerging evidence on ‘DNA toxicity’ of CAG repeat over-
expansion[9,10], such structural information would facilitate the understanding of underlying
mechanisms behind repeat instability at DNA level which is yet another potential drug target.
In this context, we aim here to investigate the structure and dynamics of DNA duplex contain-
ing CAG repeat using molecular dynamics (MD) simulation technique. Surprisingly, results of
the MD simulations indicate that A. . .A mismatch in a CAG repeat overexpansion induces pe-
riodic B-Z junction irrespective of the starting conformation. Thus, we suggest that such an un-
usual DNA structure of CAG hairpin stem may affect the biological function and may be one
of the factors responsible for ‘DNA toxicity’ [9,10].

Results
Non-canonical A. . .A mismatch induces Z-DNA sandwich structure

Role of a single noncanonical Ag. . .A,; pair amidst canonical base pairs (Fig. 1A) is investigat-
ed through 300ns MD simulation, prior to the investigation of CAG repeats with periodic
A...A mismatch as in Huntington’s disorder. As CAG repeat containing RNA crystal struc-
tures[13] [16] exhibit two different glycosyl conformations for A. .. A mismatch, 2 starting
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Fig 1. Sugar-phosphate flipping mediated B- to Z-DNA conformational transition. (A) 15mer DNA duplex with a single Ag. . .A>3 mismatch used for MD
simulation. (B) Time vs RMSD and (C) Time vs chi profiles over 300ns simulation. (D) 3D plot showing the relationship between alpha & gamma and epsilon
& zeta over 100ns simulation at the AgGg and (E) G»4Cos steps. (F) Flipping of sugar-phosphate (marked by arrow) backbone during 13.9-14.3ns at Ag. . .A3
mismatch site. For comparison Ag. . .Ao3 mismatch at 0.1ns is shown. O4’ atom of the sugar is colored blue. (G) Time vs twist profile at C;Ag step over 300ns
simulation. (H) Superposition of 0.1ns (red) and 15ns (green) average structures (central 7mer). Note the effect of negative twist in forming Z-DNA like
structure. (I, J) Average structure calculated over 99.9-100ns and 299.9-300ns (central 11mer) showing the Z-DNA sandwich (Z-DNA flanked by B-DNA):
minor (I) and (J) major grooves at the mismatch (colored pink) site facing the viewer. Associated expansion in the minor groove and increase in Z-DNA
stretch with respect to time can be seenin I.

doi:10.1371/journal.pcbi.1004162.g001

models with N6(A,3). . .N1(Ag) hydrogen bond are considered for MD simulation: one with
anti. . .anti (~250°) and the other with +syn(~79°). . .anti(~250°) base glycosyl conformation.

A...Adisfavors anti. . .anti glycosyl conformation

Root mean square deviation (RMSD) calculated over 300ns simulation indicates the existence
of three different ensembles (Fig. 1B): the first ensemble persists till ~16.5ns with RMSD cen-
tered around 2.8(0.7)A, the second one persists between 16.5-181ns with a RMSD of 4.7(0.7) A
and the third one persists beyond ~181ns with the highest RMSD of 6.2(0.8)A.

Intriguingly, a high RMSD of 4.5(0.6) A observed between 16.5-100ns is associated with a
change in glycosyl conformation of mismatched A,; and Ag from the starting anti conforma-
tion to -syn conformation.

During the first 16.5ns, Ag and A,; fluctuate between -syn and anti glycosyl conformations.
Beyond 16.5ns, both Ag [-38(17)] and A, [-66(17)] stay in -syn conformation (Fig. 1C).
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Similar tendency is also seen in the neighboring G,,4, wherein, it prefers -syn [309 (15°)] confor-
mation beyond 16.5ns (Fig. 1C). Thus, it is clear that Ag. . .A,3; mismatch disfavors anti. . .anti
glycosyl conformation and causes distortion in the duplex.

Aforementioned conformational changes in chi are accompanied by transformations in
sugar-phosphate backbone at and around the mismatch site. For instance, during the first
100ns simulation, AgGo&G,4C,5 steps exhibit the characteristics of Z-DNA. The conforma-
tional angles (g,0,0,Y) at AgGo favor (g7,g",g" trans) [283(11°), 83(14°), 99(48°), 181(36°)]

(Fig. 1D). Similar tendency is seen at G,4C,5 step with (g,5,0,y) favoring (293(15°), 89(13°),
79(14°), 199(13°)) conformation (Fig. 1E). These conformational rearrangements lead to trans-
formation from right-handed B to left-handed Z form at the Ag. . .A,; mismatch site leading to
the formation of B-Z junction. These changes happen mainly due to the sugar phosphate flip-
ping (S1-S3 Movie), which can clearly be seen from the repositioning of O4’ atoms (Fig. 1F,
colored blue) of Ag&A,; sugars as well as the sugar-phosphate backbone (Fig. 1F, indicated in
arrow).

Strikingly, the effect of left-handed Z-DNA conformation observed between 16.5-100ns is
also reflected in the helical twist angle of C;Ag.A;»3G,4 step which favor low (negative) twist
of —4° (7) (Fig. 1G) flanked by high (positive) twists at the neighboring G¢C; (32 (4°)) & AgGy
(31(6°)) steps (S1 Fig). These, together with the conformational changes at A,;. . .Ag mismatch
reflect in the helicity of the duplex, which can be clearly seen from the superposition of average
structures calculated over 1-100ps and 14.9-15ns (Fig. 1H). While the former is in B-form con-
formation, the latter shows a change in helicity leading to local Z-DNA formation. Occurrence
of a low negative twist due to local Z-DNA formation in the midst of high twists at GsC;AGo
stretch leads to local unwinding of the helix as can be seen Fig. 11. As A,;. . .Ag mismatch site is
located exactly in the middle of DNA (Fig. 1A), aforementioned distortions lead to Z-DNA
sandwich, viz., a mini Z-DNA is embedded in a B-DNA. Essentially, similar features are ob-
served in B-Z junction formed by L-deoxy guanine and L-deoxy cytosine (S1 Fig).

As the Z-DNA formation happens due to the sugar-phosphate flipping, hydrogen bond be-
tween Ag&A,; undergoes minor changes (S2 Fig). During the first ~16.5ns, N1(Ag). . .N6(A,3)
hydrogen bond persists, whereas, between 16.5-100ns, N1(A,;). . .N6(Ag) hydrogen bond is
predominantly favored due to the slight movement of A,; towards the minor groove. Base ex-
trusion at the mismatch site is also observed during 100ns simulation.

B-Z junction induced by Ag. . .A,; mismatch propagates to the neighboring bases (As to
Ay;) beyond 181ns (Fig. 11-]), which reflects in the highest RMSD of 6.2A (Fig. 1B). Though
the chi angle at Ag, A,3 and Gy, remain in -syn conformation (Fig. 1C) as the 1** 100ns simula-
tion (see above), (€,5,0y) at the AgGy step takes up (trans,g ,g,g") with C;Ag.A53G,4 step
adopting a slightly higher helical twist of 11.1(9°) (Fig. 1G). However, (&,5,0,Y) at G3Cy, GsC,
GoCig A11G12, G21Caz, G24Csos and To6Gs; step also favor (g7,¢7,¢ " trans) (Fig. 2). Additionally,
AsGe&Cy5T 6 favor (¢7,¢7,¢"t) for (e,6,0,y), while C;Ag takes up (¢,¢7,¢.¢"). This eventually re-
flects in the helical twist angle at the central AsGg, G¢C;, C;As, AgGo & CjpA;; adopting lower
helical twist (S1 Fig). Notably, (g,¢,¢"»t) conformation for AsGg and for its complementary
C,5T 6 step results in a negative twist of -10°. Thus, there is an evident increase in Z-DNA
stretch at & around the mismatch site during the end of the simulation. It is noteworthy that
beyond 181ns, N1(Ag). . .N6(A,3) & N1(A,3). . .N6(Ag) hydrogen bonds are equally favorable,
while the canonical C,. . .Gy, and Gg. . .C,;, hydrogen bonds flanking the Ag. . .A,3 mismatch
remain unaffected throughout the simulation (S2 Fig).

Concomitant to above, major and minor groove widths also undergo changes. Unwinding
of the helix leads to the expansion of minor groove width at the mismatch site to ~20.1(0.4)A
flanked by comparatively narrower groove widths of 12.7A&14.9A on either side at the end of
the 300ns simulation.
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Fig 2. 2D plots indicating backbone conformational preference for d(CAG),CAG(CAG),.d(CTG).CAG
(CTG), duplex with Ag. . .Ay3 in anti. . .anti starting glycosyl conformation during the last 10ns. (¢&0)
and (a&y) 2D plots corresponding to the first strand is given in 2" column along with the appropriate step
marked in the 15! column. (&) and (a&y) 2D plots corresponding to the second strand is given in 4™ column
along with the appropriate step marked in the 3™ column. 2D plots of (¢&Z) and (a&y) are marked in black &

red respectively. Note that e&a are represented in X-axis and {&y are represented in Y-axis.

doi:10.1371/journal.pcbi.1004162.9002
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A...Adisfavors +syn. . .anti glycosyl conformation

Akin to Ag. . .A,; mismatch with anti. . .anti glycosyl starting conformation, the starting model
with +syn. . .anti glycosyl conformation also undergoes significant conformational changes.
This can be seen from RMSD (Fig. 3A) that increases to 2(0.3)A till ~9.1ns and subsequently to
3.1(0.5)A during 9.1-36ns. It stays ~5.5(0.8) A beyond 36ns.

Detailed analysis indicates that the increase in RMSD to 5.5A is due to the conformational
preference for local Z-DNA structure at & around the Ag. . .A,3 mismatch site to accommodate
the mismatch. In fact, an increase in Z-DNA stretch around the mismatch site is seen (Fig. 3B)
during the 300ns simulation. One of the marked changes associated with Z-DNA conforma-
tional preference is Ag adopting high-anti/-syn (287 (17°)) glycosyl conformation beyond 36ns
(Fig. 3C). Conformational changes at Ag beyond 36ns enforce -syn glycosyl conformation for
neighboring Gy (248 (26°) to 321(32°)) and G,4 (248(25°) to 324 (15°)) (S3A Fig). Other nota-
ble changes that happen during the early part of the simulation (~9ns) in seeding Z-DNA con-
formation are, the preference for -syn glycosyl conformation by G,; (from 249(24°) to 296
(25°)) (hydrogen bonded with C,,) and A;; (from 257(23°) to 302(32°)) (base paired with T,()
that are located in the neighborhood of Ag. . .A,3; mismatch site (S3A Fig). Irrespective of the
above conformational changes, chi at A,; stays close to the initial +syn (S3A Fig) conformation
throughout the simulation. It is noteworthy that a total loss of hydrogen bonds at N1(Ag). . .N6
(Az3) & N6(Ag). . .N7(A,;3) that happenes due to base extrusion during 30-40ns facilitates B-Z
transition (S3B-E Fig).

Yet another interesting observation is the preference for stacked conformation between the
mismatched Ag&A,; bases (Fig. 4) that is facilitated by the Z-DNA conformation. As a result,
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Fig 3. Z-DNA sandwich structure formed by Ag. . .A3 mismatch with +syn. . .anti starting glycosyl conformation for sequence given in Fig. 1A. (A)
Time vs RMSD profile showing three different ensembles during the 300ns simulation. (B) Cartoon diagram of representative average structures (calculated
over 100ps) corresponding to the 4 different time intervals. Note the increase in the Z-DNA stretch (marked by square bracket) with respect to time. (C) 2D
plot showing the conformational transformation occurring in chi at Ag. (D) Time vs helical twist profile showing the preference for low twist at C;Ag, AgGo,

GgCq0and C4pA1 steps due to the local Z-DNA formation.

doi:10.1371/journal.pcbi.1004162.9003
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Fig 4. Z-DNA sandwich structure formed by Ag. . .Ay3 mismatch with +syn. . .anti starting glycosyl conformation (Fig. 1A) promotes intercalation
between the mismatched bases. (Top) Snapshots of central 7mer illustrating the formation of intercalated Ag&A23 (colored magenta) during 133-144ns and
(Bottom) the associated interaction between Ag (magenta) & Ao3 (green). Note the loss of hydrogen bond at 133.6ns following which, Ag&A,3 move out of
plane with each other (133.8ns). Subsequently, Ag stacks onto A3 completely ~142ns and stays in the same conformation till the end of the simulation.

doi:10.1371/journal.pcbi.1004162.9004

there is a total loss of N1(Ag). . .N6(A,3) hydrogen bond as well as N6(Ag). . .N7(A,3) hydrogen
bond between the mismatched bases beyond 150ns (S3B Fig). It happens in such a way that
~133ns the hydrogen bond becomes longish, followed by Ag and A,3; moving out-of-plane with
each other. Subsequently, Ag stacks on top of A,; like an intercalator and stays till the end of
the simulation (Fig. 4). During the aforementioned conformational changes, the canonical
C;...Gygand Gy. . .Cy; that is located above and below the Ag. . .A,; mismatch respectively re-
main intact (S3B Fig).

Excitingly, aforementioned transformations are accompanied by prevalence for Z-DNA
backbone conformation. For instance, when both Ag & A,; are in plane during the first 100ns
simulation, -syn conformation for chi at Ag, Go, G,1, G24 & Ay is concomitant with (g,6,0,y)
adopting (g,¢".g -trans) at GoCjo (S4A Fig), A1,G1, (S4B Fig) & G,4Cys (S4F Fig) steps, while
T120Ga1 (S4C Fig), CyA53 (S4D Fig) & Ay3Gay (S4E Fig) steps taking up (g7,¢,¢" trans). Conse-
quent to the above sugar-phosphate conformational changes, helical twists at C;Ag (8.5 (12))°,
AgGo (7.4 (8))° and Cy9A1; (6.1 (9))° (Fig. 3D) steps adopt low twist values in between high
twist values (S5B Fig) resulting in a Z-DNA sandwich structure as before.

Stacked conformation of Ag&A,; that is formed after 150ns leads to large fluctuation in the
helical twist of C;Ag & AgGy steps, wherein, the C1’.. .C1’ vector of Ag. . .A,3 is nearly perpen-
dicular to the C1°.. .C1’ vectors of the neighboring canonical base pairs. This is associated with
large fluctuation in conformational angle alpha at C,,A,; step (S6 Fig). Additionally, (¢,5,0.y)
for GoCi0, A11G12, G21Ca25 G24Cos, CroA1r & T2oGyy steps also favor Z-DNA conformations
like (g,g".g " trans) & (¢,¢,¢ »trans) (S6 Fig). The general tendency in helical twist associated
with the above conformational preference is that AgGg (8 (11))°, GoCy (25(5))° and CipA 1,

(18 (8))° prefer a low twist during the 150-300ns (S5C,D Fig).

It is clear from above that like in the previous situation (Fig. 1), formation of local Z-DNA
conformation is propagated to the neighboring bases (from C; to Gi,) of Ag. . .A,; mismatch.
This eventually reflects in at least 3 steps located in the middle of the duplex taking up lower
helical twists (S5B-D Fig). Essentially, this leads to unwinding of the double helix (S5B-D Fig &
S7 Fig and S4 Movie), a typical characteristic of B-Z junction (PDB ID: 1FV7). Such unwinding
is accompanied by expansion in the major (maximum of 28 A) and minor (maximum of 20 A)
groove widths. However, at the mismatch site, the minor groove width shrinks to 11.5 A during
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the 100ns simulation. It further shrinks to 8 A, followed by the stacked conformation of
Ag&A,;.

Thus, formation of a local Z-DNA conformation accompanied by unwinding of the helix is
evident even with a single A. . .A mismatch irrespective of the starting conformation.

Periodic B-Z junction in (CAG)s. (CAG)e duplex

To investigate the effect of periodic occurrence of A. . .A mismatch as in the real situation of
Huntington’s disorder and several spinocerebellar ataxias, 300ns MD simulation has been
carried out for d(CAG).d(CAG)s sequence (Fig. 5A). As before, 2 starting models each with
+syn. . .anti and anti. . .anti glycosyl conformations are considered for all the six

A...A mismatches.

A...A pair with anti. . .anti starting conformation. A high RMSD of 8.2(0.5)A beyond
25ns (Fig. 5B) implicates that the initial model with A...A mismatches in anti. . .anti starting
conformation undergoes significant conformational rearrangement to accommodate
the mismatches.

Such a high RMSD is associated with all the A’s (As, Ag, A1y, Ayy, Ass, Asg, Aggand Ajp)
preferring high-anti(65%) and -syn(28%) conformation (Fig. 5C). Intriguingly, G’s that flank
A’s also have the preponderance for high-anti (22%) and -syn (55%) conformation (Fig. 5D),
while the C’s retain anti glycosyl conformation. Concomitant to such glycosyl conformational
change, sequence dependent twist angle variations are observed. The general tendency is that,
while CA (11.7(10°)) (Fig. 5E) and AG (12(9°)) (Fig. 5F) steps adopt a low twist, the GC step fa-
vors a high twist (28(6°)) (Fig. 5G) resulting in periodic presence of a high & a low twist adja-
cent to each other, a characteristic similar to B-Z junction (S8 Fig).

Above conformational rearrangements are further concomitant with predominantly falling
in g (95%) conformation at the CA step (Fig. 5H). This eventually leads to (g,{,0,y) equally fa-
voring (¢,¢.¢-¢") (BIII conformation wherein, (&,5,00) adopts (¢,¢,¢))[17] or (¢,g.g" trans) at
the CA step (S9(Top) Fig). Another notable observation is that 70% of € at GC step favors g’
conformation with v invariably adopting trans conformation. Thus, GC step tends to prefer (g,
g".¢ " trans) and (t,g ¢ .t) for (€,,0,y) (S9(Bottom) Fig). However, AG step has the preponder-
ance (greater than 80%) for BI, wherein, (&,{,0.) adopts (t,¢’,g) & BII, wherein, (¢,{,0) adopts
(g.t.g) geometry (S9(Middle) Fig). Irrespective of these glycosidic and sugar-phosphate confor-
mational changes, N1(A)...N6(A) hydrogen bond remains intact. Nonetheless, during the B-
to-Z transition, base extrusion in A. . .A mismatch is also observed.

Aforementioned conformational changes caused by A. . .A mismatch at the CA and GC
steps leads to sugar-phosphate backbone flipping causing helicity reversal that results in the
formation of periodic B-Z junction (Fig. 5I). Formation of such B-Z junction also reflects in
the solvation as both water and ion populate more in the minor groove than the major groove
(S10 Fig).

Thus, it is clear that A. . . A pair in the midst of G. . .C&C. . .G pairs in a DNA duplex disfa-
vors anti. . .anti glycosyl conformation and favors left-handed Z-form structure.

A. . A pair with +syn. . .anti starting conformation. Inline with the above, 300ns MD sim-
ulation carried out for A. . .A mismatch with +syn. . .anti glycosyl starting conformation also
reveals the preponderance for -syn. . .-syn/ +syn. . .high-anti glycosyl conformation. At the end
of the simulation, out of 4 A. . .A mismatches, 2 of them adopt +syn. . .high-anti conformation
(As. . .A3&Asg. . .Ajy), while the other 2 prefer -syn. . .-syn conformation
(Aqr. . Axe&Ayy. . Ags).

Most intriguingly, the transition to -syn. . .-syn takes place through base flipping (Fig. 6(top,
middle), S5&S6 Movie). At Ai4. . .A,; base pair, ~80ns N3(Ay,). . .N6(A,3) hydrogen bond
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Fig 5. Periodic B-Z junction induced by recurring A. . .A mismatches in CAG repeat expansion. (A) 18mer DNA duplex with 6 A. . .A mismatches used
in the present MD simulation. (B) Time vs RMSD profile showing the significant conformational change from the starting model. (C-H) Histogram
corresponding to: glycosyl conformation of (C) A’s & (D) G’s, twist angles at all the (E) CA (F) AG & (G) GC steps and epsilon at (H) CA step over 291-300ns.
() Cartoon diagram showing the conformational changes from B- to Z-DNA during the simulation. Note that terminal 2 base pairs on either ends are not

included due to end fraying effect.

doi:10.1371/journal.pcbi.1004162.9005

evolves instead of the initial N6(A4). . .N1(A,3) due to the movement of A,; towards the
minor groove and stays till ~162ns. Just in 200ps (between 162-162.2ns), base flipping occurs
accompanied by -syn glycosyl conformation for A,;&A;, (Fig. 6(top), S11 Fig and S5 Movie).

Similarly, at A,¢. . .A;; mismatch site, base extrusion happens ~205ns resulting in a total loss of
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Fig 6. Local Z-DNA formation by ‘base flipping’ mechanism in CAG repeat with periodic occurrence of A...A mismatches. (Top) Snapshots of

Ass. . A1, mismatch site illustrating base flipping of Aoz from +syn to -syn glycosyl conformation through cis glycosyl conformation that occurs at ~162ns.
Adoption of -syn glycosyl conformation by both A4, (black) & Ax3 (red) beyond 160ns can be seen in Time vs chi profile (Top row, Right most corner). (Middle)
Snapshots of Ayg. . .A11 mismatch site indicating +syn to -syn glycosyl/ conformation of A,g through trans glycosyl conformation ~205ns. Both A44 (black) &
Ao (red) assume -syn glycosyl conformation beyond 205ns as seen in Time vs chi profile (Middle row, Right most corner). (Bottom) Cartoon diagram
illustrating the formation of local Z-DNA concomitant with the above mentioned base extrusion & base flipping (A. . .A mismatches colored maroon). Positions
of Aas...Aqgand Age. . .Aq1 mismatches are indicated by arrow (Bottom row, Right most corner). Compact B-form structure at 0.001ns and the extended
Z-DNA like structure at 300ns can be clearly visualized (Bottom). Note that in all the figures the time associated with each snapshot is indicated.

doi:10.1371/journal.pcbi.1004162.9g006

hydrogen bond (Fig. 6(middle), S6 Movie). Soon after, A, undergoes base flipping and estab-
lishes N6(As). . .N1(A;;) hydrogen bond concomitant with -syn glycosyl conformation for
Ayc&A ;. Interestingly, Ay and A,; adopt 2 different pathways to undergo transition from
+syn to -syn. In the former, it happens through cis conformation (anti-clockwise rotation
around the glycosyl bond), while in the latter, it happens via trans conformation (clockwise ro-
tation). Both As. . .A3,&As. . .Ayg take-up +syn. . .high-anti (S12 Fig) via back-bone rearrange-
ment (not via base flipping) and thus, retain the N6(A). . .N7(A) hydrogen bond.

Intriguingly, 8 out of 10 G’s adopt -syn conformation (S13 Fig). In fact, in one of the strands,
all the G’s (G31,G24,G27,G30&G33) adopt -syn conformation. This is associated with (g,5,a.,y) fa-
voring (g,¢",¢"-trans) (>70%) at the GC step (S14 (I-L) Fig). While AG step tends to favor B-
form geometry (>75%) (S14 (E-H) Fig), CA step has equal prevalence for both BI and BIII
(S14 (A-D) Fig).

As before, this reflects in the helical twists with CA(9(16°)) and AG(11(9°)) steps confined
to lower values (including negative values), while GC step taking a higher twist (31(10°)), caus-
ing frequent left-handedness in the helix (Fig. 6 (bottom), S15 Fig). These indicate the periodic
occurrence of B-Z junction in d(CAG)s.d(CAG)s. Above conformational rearrangements re-
sult in a high RMSD of ~8A at the end of the simulation (S16 Fig). Further, similar to above
(S10 Fig), B-Z junction results in minor groove of the duplex occupied with more water and
ion molecules compared to the major groove (S17 Fig), a characteristic of the Z-DNA.
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A

Thus, it is clear that A. . .A mismatch favors (£)syn. . .high-anti/(-)syn conformation over
anti. . .anti and +syn. . .anti glycosyl conformation and invokes B-Z junction. Formation of B-Z
junction takes place either through base flipping or through backbone flipping without affect-
ing the canonical G...C and C. . .G hydrogen bonding pattern (S18 Fig).

Canonical (CTG)e.(CAG)g duplex retains B-form

RMSD (~3.3 (0.9) A) calculated over 300ns MD simulation of (CTG)s.(CAG)s duplex
(Fig. 7A) indicates that the molecule undergoes minimal conformational rearrangement from
the starting B-form geometry (Fig. 7B). Strikingly, the overall structure doesn’t show any ten-
dency to adopt Z-form, as can be visualized from Fig. 7C. Instead, it retains the compact B-
form geometry.

The helical twist always stays positive (Fig. 7D-F), adopting a trend of high helical twists at
GC (38.8(4°)) step compared to CT (23(4°)) and TG (28(5°)) steps over the last 10ns (S19 Fig).
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Fig 7. Canonical base pairs favor B-DNA structure for d(CTG)s.d(CAG)es duplex. (A) 18mer DNA duplex used for the MD simulation. (B) Time vs RMSD
profile showing confinement to starting B-form geometry. (C) Cartoon diagram showing compact B-DNA structures observed at various time intervals during
the simulation. Note that A-T pairs are colored pink. Histograms illustrating twist angle preference during last 10ns at (D) 5CT/5’AG, (E) 5TG/5'CA and (F)
5'GC/5'GC steps. Glycolsyl conformation (calculated for last 10ns) of (G) A’s & (H) G’s showing the preference for anti conformation.

doi:10.1371/journal.pcbi.1004162.9007
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Unlike before, both A’s and G’s don’t favor +syn conformation and have the tendency to retain
anti glycosyl conformation (180-270°) (~%70) (Fig. 7G,H). Significant conformational changes
in the backbone are also not observed as (&,0) fall profoundly in BI (t,¢") or BII (g',t) conforma-
tion (520 Fig). Similarly, (o&y) favor either (g-,g+) or (g-,t). All these together pinpoint
B-DNA conformational preference for (CTG)s.(CAG)s duplex.

Discussion
A...A mismatch propels Z-DNA conformation

Structural information about the distortions caused by A. .. A mismatch in a DNA duplex is
not yet well defined at the atomistic level. The only structure that has been reported so far with
A...A mismatch in a DNA is the complex of a DNA duplex and Muts, an E. coli mismatch re-
pair protein, with a significant bending at the mismatch site (PDB ID: 2WTU). NMR and ther-
modynamic studies of A. . .A mismatch containing DNA duplex offer controversial results.
While some of them suggest that A. . .A mismatch destabilizes[18,19,20,21] the DNA duplex
significantly, the others do not[22]. Physicochemical studies indicate that A...A mismatch in a
GAC repeat adopt several distinct conformations in solution including Z-DNA[23,24]. In fact,
it has been suggested that A. . .A mismatch in GAC repeat promotes Z-DNA formation [23].

Understanding the structural role of A. . .A mismatch is very important in the context of
Huntington’s disorder and several spinocerebellar ataxias due to the formation of hairpin
structures consisting of noncanonical A. . .A base-pairs. MD simulations carried out in this
context reveal a very exquisite observation that A. . .A mismatch in a CAG repeat induces
change in the helicity from right-handed B-DNA to left-handed Z-DNA. Even a single A. . .A
mismatch tends to form a local Z-DNA structure leading to Z-DNA sandwich (Figs. 1,3).
When the A. . .A mismatches occur in a regular interval, it leads to local left-handed Z-DNA
formation at the mismatch site followed by a right-handed DNA at the canonical WC pair site
leading to periodic B-Z junctions (Figs. 5,6). Formation of Z-DNA structure is evident from
the preference for (+)syn. . .high-anti/(-)syn glycosyl conformation by A. . .A mismatch and
backbone conformational angles (¢,(,0,y) favoring (¢,g".¢">1), (¢,g>¢">t) and (g, ,¢.g") at &
around the mismatch site. Additionally, G’s prefer -syn conformation. This results in a low he-
lical twist at the CA and AG steps in the midst of high twist at the GC step, a characteristic of
B-Z junction (PDB ID 1FV7).

Mechanism of formation of B-Z junction

An intriguing observation is that a single hydrogen bonded noncanonical A. . . A mismatch in-
duces Z-DNA conformation through zipper mechanism’ [25] assisted by base extrusion, base
and/or backbone flipping (Figs. 1,6 and 52,53&S521 Figs). While the sugar-phosphate backbone
flipping is prominent in anti. . .anti glycosyl conformation, base extrusion and sugar-phosphate
& base flipping are favored by +syn. . .anti conformation to transit from B-to-Z form DNA.
Yet another interesting fact is that the above-mentioned Z-DNA formation is a noninstanta-
neous event, rather it propagates in a stepwise manner (Figs. 51, 6 (Bottom) and S7 Fig).
Though the noncanonical A. . .A mismatch impels Z-DNA conformation, the canonical base
pairs have the prevalence for B-form geometry resulting in B-Z junction. Formation of such
B-Z junction can be readily visualized by unwinding of the double helix irrespective of the
starting glycosyl conformation (S22 Fig).
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Base flipping mechanism

A...A mismatch adopts 2 different ‘base flipping’ pathways to undergo transition from

+syn. . .anti to -syn. . .-syn (Fig. 6) accompanied by sugar phosphate rearrangements. One
mode of transition is +syn moving to -syn through cis conformation (via counter-clockwise ro-
tation around glycosidic bond), while the other is via trans conformation (through clockwise
rotation around the glycosidic bond). In general, DNA with +syn. . .anti conformation takes
longer time to undergo the B-Z transition, compared to anti. . .anti conformation.

Base pair nonisomorphism is the key factor for inducing Z-DNA
conformation by A. . .A mismatch

Reported structural changes provoked by A. . .A mismatch can be attributed to the higher de-
gree of nonisomorphism between A. . .A mismatch and the canonical base pairs. This can be
visualized from the larger value of residual twist and radial difference [17,26], the measures of
base pair nonisomorphism (523 Fig). In fact, both residual twist (16°) and radial difference
(1.6A) are quite prominent for A. . .A mismatch with anti. . .anti glycosyl conformation, but,
only residual twist (16°) is significant and the radial difference is negligible (0.2A) in the case of
+syn. . .anti glycosyl conformation. This may be the reason for the reluctance of A. . .A mis-
match to retain anti. . .anti conformation and the transition to -syn. . .-syn being quite fast
compared to +syn. . .anti starting conformation.

In general, the transition from B-to-Z involves complex mechanisms and exhibits a high-en-
ergy barrier to transit to Z-DNA conformation. In fact, several mechanisms have been proposed
for B-to-Z transition[27] and a recent adaptively biased and steered MD study demonstrates the
coexistence of zipper and stretch-collapse mechanisms engaged in transition[28]. However, the
mechanistic effect that arises from the intrinsic extreme nonisosterecity of A...A mismatch
with the canonical base pairs immediately dictates B-to-Z transition without the influence of
any external factors. As the A. . .A mismatch is single hydrogen bonded, it exhibits enormous
flexibility for base extrusion and flipping, facilitating the formation of Z-DNA through zipper
mechanism. Interestingly, such a conformational change is not seen in the crystal structure of
RNA duplex with A. . .A mismatch[13]. Thus, it is clear that the effect of A...A nonisomorph-
ism is pronounced in the DNA and not in the RNA.

Several experimental studies have revealed that d(GA) [29], d(GAA) [30], d(GGA) [31] and
d(GAC) [23,24] repeats that contain A. . .A mismatches are prone to adopt parallel homodu-
plex. Such preponderance for parallel duplex by these sequences may be due to left-handed
Z-DNA provoking nature of A. . .A mismatch, which is a high-energy conformation. Hitherto,
this aspect is not realized as there is no DNA duplex structure with A. . .A mismatch available
with any sequence context. Earlier low-resolution 1D NMR studies on DNA duplexes compris-
ing of A. . .A mismatch[18,19,20,21,22] offer only minimal information with some of them in-
dicating notable destabilization induced at A. . .A mismatch site[18,19,20,21]. Strikingly, it has
been shown by circular dichroism study that CAG repeat spectra resembles GA homoduplex
but not CCG and CTG[32]. Propensity of A. . .A mismatch containing DNA to adopt a parallel
DNA duplex is also reported[21]. However, the possibility of CAG repeat expansion to favor
parallel duplex can be ruled out as it forms hairpin structure[7,8], which eventually leads to an-
tiparallel orientation for the two strands of the DNA hairpin stem. Thus, DNA hairpin stems
containing CAG repeat may adopt local Z-DNA conformation at A. . .A mismatch site leading
to ‘B-Z junction’ as revealed by the current investigation. Our result gains support from earlier
surface probing using anti-DNA antibody that demonstrated the presence of Z-DNA structure
in CAG & CTG repeat expansions [33]. It can also be recalled that formation of hairpin struc-
ture with such Z-DNA stem has been observed earlier in a different sequence context
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[34,35,36]. Thus, we envisage that such noncanonical ‘B-Z junction’ in CAG repeat expansion
may be one of the factors responsible for the newly emerging mechanism of ‘DNA toxicity’ ob-
served in CAG repeat expansion[37].

Thus, for the first time it has been shown here that the A...A mismatch in a DNA duplex
with CAG repeat is an inducer of local Z-form conformation through ‘zipper mechanism’ that
stems from backbone flipping and base pair extrusion & flipping leading to B-Z junction. Such
B-Z junction instilled by A. . .A mismatch results from the mechanistic effect intrinsic to the
nonisoterecity of A. . .A mismatch with the flanking canonical base pairs. With emergence of
evidence on ‘DNA toxicity’ of CAG overexpansion and its role in triggering cell death [9,10],
one can envision that occurrence of B-Z junction is the molecular basis for Huntington’s disor-
der and several spinocerebellar ataxias. This further leads to the speculation that B-Z junction
binding protein may have a role in the diseased states. Reported results would further be useful
in understanding DNA repair mechanisms involving A. . .A mismatch, thus adding a new di-
mension to the role of A. . .A nonisosterecity on DNA structure.

Methods
Modeling of DNA duplex with A. . .A mismatch

Initially, (CTG.CAG)s & (CTG.CAG)s DNA duplexes containing canonical C...Gand G...C
base-pairs with ideal B-form geometry are generated using 3DNA[38]. These models are subse-
quently manipulated to introduce a non-canonical A. . .A mismatch in the middle of canonical
base pairs to generate a 15mer DNA duplex (Fig. 1A) using Pymol (www.pymol.org, Schro-
dinger, LLC) molecular modeling software. A. . .A mismatch is modeled so as to form N6
(A)...N1(A) hydrogen bond. For the generation of model with periodic A. ..A mismatches
(18mer, Fig. 3A), “T’s in the (CTG.CAG); duplex are replaced manually with A’s as mentioned
above. To establish base-sugar connectivity and to restraint the sugar-phosphate backbone
conformation, the models are refined using X-PLOR [39] by constrained-restrained molecular
geometry optimization and van der Waals energy minimization. The second conformation for
the A...A mismatch, viz.,, N6(A). . .N1(A) hydrogen bond with +syn. . .anti glycosyl conforma-
tion is generated using X-PLOR by applying appropriate restraints. Subsequently, the models
are subjected to a total of 1.5ps molecular dynamics simulations (MD) using Sander module of
AMBER 12 package [40].

Molecular dynamics simulation protocol

X-PLOR generated duplex models with A. ..A mismatches and the 3DNA generated canonical
(CTG.CAG)g duplex are solvated with TIP3P water molecules and net-neutralized with Na*
counter ions. Following the protocols described in our earlier papers [17,41,42], equilibration
and production runs are pursued for 300ns for the sequences given in Table 1. Simulations are
performed under isobaric and isothermal conditions with SHAKE (tolerance = 0.0005 A) on
the hydrogens [43], a 2fs integration time and a cut-off distance of 9 A for Lennard-Jones inter-
action. FF99SB forcefield is used and the simulation is carried out at neutral pH. Trajectories
are analyzed using Ptraj module of AMBER 12.0. Helical parameters and conformation angles
are extracted from the output of 3DNA using in-house programs. Due to the presence of non-
canonical base pairs, helical twist angles are calculated with respect to C1’...CI’ vector
[17,41,42]. Pymol is used for visualization and MATLAB software (The MathWorks Inc., Na-
tick, Massachusetts, United States) is used for plotting the graphs.
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Table 1. Sequences used for the 300ns MD simulation.

Sequence ID Sequence Chi angle for A...A mismatch
1 5’CTGCTGCAGCTGCTG anti. . .anti
FEEEEEE=rrrrrnl
GACGACGACGACGAC 5’
2 5’'CTGCTGCAGCTGCTG syn. . .anti
FEEETEE*rrrrnnd
GACGACGACGACGAC 5’
3 5’CAGCAGCAGCAGCAGCAG anti. . .anti
Il T T T T I Tl I T Y
GACGACGACGACGACGAC5’
4 5°CAGCAGCAGCAGCAGCAG syn. . .anti
R N N B B e B
GACGACGACGACGACGAC 5’
5 5’CAGCAGCAGCAGCAGCAG Not applicable
FEEEEEEEErrrrrernl
GTCGTCGTCGTCGTCGTC 5’

doi:10.1371/journal.pcbi.1004162.t001

Supporting Information

S1 Movie. Formation of B-Z junction provoked by As. . .A,; mismatch (colored pink)
through backbone flipping in d(CAG),CAG(CAG),.d(CTG),CAG(CTG), DNA duplex
(Fig. 1A). Central heptamer of the duplex is shown. Note that Ag. . .A,3 mismatch is in anti-
.. .anti starting glycosyl conformation.

(MOV)

S2 Movie. Ag. . .A,; mismatch (with anti. . .anti starting glycosyl conformation) induced
backbone flipping at the mismatch site leading to the formation of B-Z junction.
(MOV)

S$3 Movie. Formation of B-Z junction provoked by Ag. . .A,; mismatch (with anti. . .anti
starting glycosyl conformation) in d(CAG),CAG(CAG),.d(CTG),CAG (CTG), DNA du-
plex through backbone flipping. Note that the central 11mer is shown.

(MOV)

S$4 Movie. Formation of B-Z junction provoked by As. . .A,3 mismatch (colored pink)
through backbone flipping in d(CAG),CAG(CAG),.d(CTG),CAG(CTG), DNA duplex
(Fig. 1A). Central heptamer of the duplex is shown. Note that Ag. . .A,3 mismatch is in +-
syn. . .anti starting glycosyl conformation.

(MOV)

S5 Movie. Base flipping leading to the formation of B-Z junction at A, ,. . .A,; mismatch
site in d(CAG)s.d(CAG)s DNA duplex with +syn. . .anti starting conformation for the mis-
match (Fig. 5A). Note that one of the A’s moves towards minor groove and undergoes flipping
by rotating in counter-clockwise direction.

(MOV)

S$6 Movie. Base flipping leading to the formation of B-Z junction at A,;;. . .A,¢ mismatch
site in d(CAG)s.d(CAG)s DNA duplex with +syn. . .anti starting conformation for the mis-
match (Fig. 5A). Note that prior to flipping, both the A’s are moving apart that results in total
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loss of hydrogen bond and subsequently, one of the A’s flips by rotating in clockwise direction.
(MOV)

S1 Fig. Local unwinding of d(CAG),CAG(CAG),.d(CTG),CAG(CTG), DNA duplex by

Asg. . .A,; mismatch and formation of Z-DNA sandwich. Comparison of B-Z junction formed
by As. . .A,3 mismatch (Top-Left & Top-middle, current study) and by L-deoxy guanine and
L-deoxy cytosine (Top-Right, PDB ID: 1FV7, Lowest energy structure). (Bottom) Sequence
vs helical twist angle of the central 11-mer (Fig. 1A) corresponding to the average structure cal-
culated over 99.9-100ns (Bottom-Left) and 299.9-300ns (Bottom-middle). Note the low heli-
cal twist at the mismatch site. Similar trend is also seen in B-Z junction induced by L-deoxy
guanine and L-deoxy cytosine (Bottom-Right, PDB ID: 1FV7, Lowest energy structure) lead-
ing to Z-DNA sandwich structure (calculated with respect to C1’. . .C1’ vector).

(TIF)

S2 Fig. Hydrogen bond conformational dynamics at Ag. . .A,3 mismatch (Fig. 1A) with
anti. . .anti starting glycosyl conformation. (Top and Middle) Snapshots showing the occur-
rence of different hydrogen bonding patterns during the simulation. Possibilities for N1(Ag). ..
N6(A,3) & N6(Aj3). . .N3(Ag) hydrogen bonds or total loss of hydrogen bond between Ag and
A,3 can also be seen. (Bottom) Time vs hydrogen bond distance profile for: (Left) N1(Ag). ..
N6(A,3) (black) & N6(Ag). . .N1(A,3) (red), (Middle) 02(C,). . .N2(G,,) (black), N3(C,)...N1
(Gs4) (red) & N4(C5). . .06(G,4) (blue) and (Right) N2(Gy). . .02(C,,) (black), N3(Gy). . .N1
(Cyz) (red) and O6(Gy). . .N2(C,;) (blue) that correspond to Ag. . .Az3, C;. . .Gyg and Gy. . .Cyy
base pairs respectively. Note the equal preference for N1(Ag). . .N6(A,;) (black) & N6(Ay). . .
N1(A,;) (red) hydrogen bonds after 150ns for A,;. . .Ag.

(TIF)

S3 Fig. Glycosyl conformation and hydrogen bonding associated with local Z-DNA forma-
tion for d(CAG),CAG(CAG),.d(CTG),CAG(CTG), duplex with Ag. . .A,; in +syn. . .anti
starting glycosyl conformation. (A) Time vs chi angle profile for (Left) Go&A; and (Right)
G21,A23&G,,4 bases. Note the preference for -syn glycosyl conformation for Go,A;1,G21&Goy
and +syn glycosyl conformation for A,; (B) Time vs hydrogen bond distance profile for: (Left)
N6(A,3). . .N1(Ag) (black) & N7(A,3). . .N6(Ag) (red), (Middle) O2(C,). . .N2(G,y) (black), N3
(Cy). . N1(Gyy) (red) & N4(Cy). . .06(G,y4) (blue) and (Right) N2(Gy). . .02(C,,) (black), N3
(Gy). . .N1(Cy,) (red) and O6(Gy). . .N2(C,,) (blue) that correspond to Ag. . .A,3, C;. . .Gyq and
Go. . .Cy, base pairs respectively. Note the total loss of hydrogen bonds after 150ns for

A,;. . . Ag (Left) that arises due to the stacked conformation of A,3;&Ag, while the canonical
C;.. .Gy and Gy. . .C,; retain their hydrogen bonds. (C-E) Different hydrogen bonding pat-
terns observed for Ag. . .A,; during the simulation. Note the total loss of hydrogen bond in (E)
that happens between 30-40ns.

(TIF)

S4 Fig. Influence of Ag. . .A,; mismatch on the sugar-phosphate backbone conformation.
3D plots showing the relationship between € & { and o & y with respect to time in the case of d
(CAG),CAG(CAG),.d(CTG),CAG(CTG), duplex with +syn. . .anti glycosyl starting confor-
mation. The corresponding step is indicated on top of the 3D plot.

(TIF)

S5 Fig. Formation of Z-DNA sandwich structure and unwinding of the double helix with
Ag. . .A,; mismatch in +syn. . .anti starting glycosyl conformation. Sequence vs helical twist
angle (central 11-mer) and the corresponding average structure (cartoon representation) calcu-
lated over (A) 0.09-0.1ns (B) 99.9-100ns (C) 149.9-150ns and (D) 299.9-300ns. Note that the
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low helical twists at and around the mismatch site are sandwiched between high helical twists
(sequence vs twist profiles given in A-D). Ag. . .A,3; mismatch is colored pink and O4’ atoms of
the sugars are colored orange in the cartoon representation of the average structures. Dotted
lines indicate the helical twist angle corresponding to ideal B-form. Note the unwinding of the
double helix around the mismatch site.

(TIF)

S6 Fig. 2D plots indicating backbone conformational preference for d(CAG),CAG(CAG),.
d(CTG),CAG(CTG), duplex with Ag. . .A,; in +syn. . .anti starting glycosyl conformation
during the last 10ns. (e&C) and (a.&y) 2D plots corresponding to the first strand is given in
2" and 3™ columns respectively along with the appropriate step marked in the 1* column.
(e&L) and (a&y) 2D plots corresponding to the second strand is given in 5% and 6™ columns
respectively along with the appropriate step marked in the 4™ column.

(TIF)

S7 Fig. Transition from B- to Z-DNA. Snapshots showing transition from B- to Z-DNA
through sugar-phosphate conformational rearrangement at and around As. . .A,3 mismatch
(colored pink) in d(CAG),CAG(CAG),.d(CTG),CAG(CTG), duplex with +syn. . .anti starting
glycosyl conformation.

(TIF)

S8 Fig. Helical twist angles reflecting the characteristic of B-Z junction in a d(CAG)e.d
(CAG)g duplex with A. . .A mismatch in anti. . .anti starting glycosyl conformation. Se-
quence vs helical twist angle calculated for the average structure over last 100ps showing a high
twist at GC step and a low twist at CA and AG steps.

(TTF)

S9 Fig. Contour density plot indicating backbone conformational preference for d(CAG)s.
d(CAG)¢ duplex with anti. . .anti starting glycosyl conformation for A. . .A mismatch.
(e&{) and (a&y) contour density plot corresponding to (A-D) CA, (E-H) AG & (I-L) GC
steps. Note that the first two columns belong to residues from C; to G, of the duplex, while
the third and fourth belong to the complementary residues (C;q to G36) of the duplex. While
the first and third columns indicate the relationship between € & { (€ in X-axis and { in Y-
axis), the second and fourth columns illustrate the relationship between o & y (o in X-axis and
y in Y-axis). Scaling used for contour density plot is shown in the 4™ row. Note the strong pre-
ponderance for Z-form geometry by CA and GC steps.

(TIF)

$10 Fig. Ion (top) and water (bottom) density around d(CAG)s.d(CAG)s duplex with anti-
.. .anti starting glycosyl conformation for A. . .A mismatch. Note that the minor groove

(100ns, 200ns, 300ns) is highly solvated compared to the major groove.
(TIF)

S11 Fig. Snapshots showing in detail about base flipping at A,;. . .A;, mismatch site. The
corresponding simulation time scale is mentioned below the mismatch.
(TIF)

S12 Fig. +Syn. . .high-anti glycosyl conformational preference for A. . .A mismatches in d
(CAG)6.d(CAG)g duplex with +syn. . .anti starting glycosyl conformation. Time vs chi pro-
file for As;...As (Top) and A,y. . .Ag (Bottom) mismatches showing the transition from +-
syn. . .anti to +syn. . .high-anti conformation.

(TTF)
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$13 Fig. Time vs chi profile for G’s in d(CAG)s.d(CAG)s duplex with +syn. . .anti glycosyl
starting conformation for A. . . A mismatches. Time vs chi angle profile for G’s indicating the
preponderance for -syn conformation (except Gg and Go) favoring Z-DNA conformation.
(TTF)

$14 Fig. Contour density plot indicating backbone conformational preference for d
(CAG)6.d(CAG)¢ duplex with +syn. . .anti starting glycosyl conformation for A. . .A mis-
matches. (e&() and (a&y) contour density plot corresponding to CA (A-D), AG (E-H) & GC
(I-L) steps. Note that the first two columns belong to one of the strands of the duplex (C; to
Gisg), while the third and fourth columns belong to the complementary second strand of the
duplex (C;o to Gs6). While the first and third columns indicate the relationship between € & {
(g in X-axis and { in Y-axis), the second and fourth columns illustrate the relationship between
o &y (o in X-axis and y in Y-axis). Scaling used for contour density plot is shown in the 4™
row. Note the strong preponderance for Z-form geometry by GC step (viz., more than 70% of
(&,€0,y) in (¢,¢".g".t) conformation). CA step as well shows the tendency for Z-form geometry
with (e,€,0,7) in (¢,¢,¢¢") conformation. AG step favors B-form geometry with ~59% of (t,¢,
g5, ~23% of (t,¢,¢,t) and 18% of (t,¢,¢,¢") for (e.E,ay).

(TTF)

S15 Fig. Helical twists corresponding to d(CAG)s.d(CAG)s duplex with +syn. . .anti start-
ing glycosyl conformation for A. . .A mismatches. (Top) Histogram of twist angles calculated
over 291-300ns. (Bottom) Sequence vs. twist angle corresponding to the average structure cal-
culated over last 100ps. Note the low twist at the CA & AG steps and high twist at the GC step.
Though CA step takes wide range of helical twist (between -20° to +50°), it has preference for
low twist in the range of -20 to +20 (~70%).

(TTF)

$16 Fig. Time vs RMSD profile corresponding to d(CAG)s.d(CAG)¢ duplex with +-

syn. . .anti (black) and anti. . .anti (red) starting glycosyl conformation for A. . .A mismatch.
Note that while the latter attains the RMSD of ~8 A very early in the simulation, the former at-
tains the RMSD of ~8 A only ~200ns as indicated by solid arrows. Dotted double-headed ar-
rows indicate two ensembles of structures in the case of +syn. . .anti starting glycosyl
conformation: one with RMSD of ~5 A during 200ns and other with RMSD of ~8 A beyond
200ns.

(TIF)

$17 Fig. Ion (top) and water (bottom) density around d(CAG)s.d(CAG)g duplex with +-
syn. . .anti starting glycosyl conformation for A. . .A mismatch. Note that the minor groove
(100ns, 200ns, 300ns) is highly solvated compared to the major groove.

(TIF)

S18 Fig. Histogram corresponding to the canonical G...C and C. . .G hydrogen bonding
distance of d(CAG)¢.d(CAG)¢ duplex with (A&B) anti. . .anti and (C&D) +syn. . .anti start-
ing glycosyl conformation. Note that the normalized frequency (Y-axis) is represented against
hydrogen bonding distance (X-axis) over the last 10ns of the 300ns simulation.

(TTF)

S19 Fig. Sequence vs helical twist angles calculated for the average structure (last 100ps)
corresponding to d(CTG)s.d(CAG)s duplex with canonical base pairs. Note that unlike in
S8&S15 (Bottom) Figs, the helical twist stays close to 30° indicative of geometry close to
B-DNA.

(TTF)
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$20 Fig. B-DNA like backbone conformational preference for d(CTG)s.d(CAG)s duplex.
(e&{) and (a&y) 2D contour density plots corresponding to (Top) 5CT/5’AG, (Middle)
5'TG/5'CA and (Bottom) 5GC/5’GC steps. Note that (e&C) does not exhibit any other confor-
mational preference apart from BI (83%) and BII (17%). Similarly, as in the B-form, (a&y)
tavor (g-, g+) or (g+, t) conformations. Exceptionally, at the TG step, (a&y) also favor (g-, t)
conformation, which is also favored by B-DNA. First two columns belong to one of the strands
of the duplex (C; to Gig), while the third and fourth columns belong to the complementary sec-
ond strand of the duplex (C;9 to Gs¢). While the first and third columns indicate the relation-
ship between € & { (e in X-axis and { in Y-axis), the second and fourth columns illustrate the
relationship between o & ¥ (o in X-axis and y in Y-axis). Scaling used for contour density plot
is shown in the 4™ row.

(TIF)

S21 Fig. Base extrusion observed at the A. . .A mismatch site (colored red) leading to the
formation of Z-DNA observed in d(CAG)s.d(CAG)s duplex with A. . .A mismatch in anti-
.. .anti starting glycosyl conformation. Note that only the pentamer sequence is shown

for clarity.

(TTF)

$22 Fig. Average structures at 300ns (calculated over last 100ps) illustrating the character-
istic of B-Z junction enforced by A. . .A mismatch. Cartoon representation of central hex-
amer corresponding to d(C;XgGoC10X11G12).-d(Cr5A26G27Cr8A,9G30), wherein X = T for
canonical duplex (Top) and X = A for non-canonical duplex (Middle and Bottom). A. . .A
mismatch with anti. . .anti and syn. . .anti glycosyl starting conformations are shown in the
middle and bottom respectively. Note the smooth right-handedness in canonical duplex,
whereas, the A...A mismatch induced B-Z junction leads to opening of the double helix.
(TIF)

$23 Fig. Superposition of canonical G. . .C pair with noncanonical A. . .A mismatch show-
ing the extent of base pair nonisomorphism. Residual twist and radial difference, the quanti-
tative measures of base triplet nonisomorphism, are quite high between G...Cand A.. A (~16
is ~1.6A), when the latter is in anti. . .anti glycosyl conformation (Top). When A. . A is in

syn. . .anti glycosyl conformation only the residual twist is quite high and the radial difference
is negligible (~16 is ~0.24).

(TIF)
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