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A b s t r a c t

Previous work from our laboratory has established that cellular signaling
processes of endogenous morphine are mediated by cognate G protein coupled
receptor (GPCR) proteins, designated µ3 and µ4 opiate receptors. µ3 and µ4 opiate
receptors are structurally unique “short” 6 transmembrane helical (TMH) domain
GPCRs that are selectively responsive to endogenous morphine, not to families
of endogenous opioid peptides, and are uniquely coupled to activation of
constitutive nitric oxide synthase (cNOS). Based on high resolution predictive
measures, it appears likely that domestic poultry express a µ opiate receptor
mRNA encoding potentially two novel GPCRs with similar biochemical
characteristics as described for µ3 and µ4 opiate receptors as well as traditional
µ1 opioid receptors. The biological indications of these novel µ opiate receptors
are discussed within the context of this short review. 
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Introduction 

Previous work from our laboratory has focused on the elucidation of
biochemical, cellular, and molecular mechanisms underlying the regulatory
roles of endogenously expressed, chemically authentic, morphine in animal
cells and organ systems [1-9]. As a critical corollary, we have established
that cellular signaling processes of endogenous morphine are mediated
by cognate G protein coupled receptor (GPCR) proteins, designated µ3 and
µ4 opiate receptors. µ3 and µ4 opiate receptors are structurally tailored to
be selectively activated by morphine and morphine-related opiate alkaloids
and not by related families of endogenous opioid peptides [10, 11] and are
functionally coupled to activation of constitutive nitric oxide (NO)
production and release [3, 6, 8, 9, 12-14].

The unique structural features of µ3 and µ4 opiate receptors are
determined post-transcriptionally via selective splicing of the primary
transcript of the µ1 opioid receptor (MOR) gene [1, 15-17]. Mature µ3 and
µ4 opiate receptor-encoding mRNAs translate into receptor proteins lacking
an amino acid sequence of approximately 90 amino acids that constitute
the extracellular N-terminal and transmembrane helical (TMH)1 domains
and part of the first intracellular loop of the µ1 receptor, but retain the
empirically defined ligand binding pocket distributed across conserved
TMH2, TMH3, and TMH7 domains of the µ1 sequence. In effect, µ3 and µ4
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opiate receptors are “short” 6TMH domain GPCRs
that are selectively responsive to endogenous
morphine. 

Predictive measures indicate a novel “short”
µ opiate receptor in domestic chicken

Our compelling demonstration of novel “short”
6 TMH domain µ opiate receptors stimulated an
exhaustive search of existing databases to
determine whether additional 6TMH domain
u opiate receptors were expressed in various animal
species [17]. The National Center for Biotechnology
Information (NCBI) database yielded a predicted
chicken µ opioid receptor mRNA sequence that
provided putative evidence supporting the existence
of a novel “short” µ opiate receptor in the domestic
chicken. Interestingly, the 5’ end of predicted mRNA
sequence was observed to contain three potential
ATG start codons (Figure 1). Consensus sequence
analysis of probable translation initiation site (TIS)
was performed as according to Kozak sequence
guidelines, as previously described [18-23].
Accordingly, predicted nucleotide sequences utilizing
the first and the third initiation codons as likely TIS
candidates were translated into two probable
protein sequences of 327 and 300 amino acids,
respectively, using the Translation Web Tool
provided by EXPASY. 

Conformational analysis of the smaller 300
amino acid µ opiate receptor protein species,
performed by computer program TMHMM,
indicated a 6TMH domain GPCR with an identical
membrane topology to native µ3 and µ4 opiate
receptors (Figure 2A) [16, 17]. Interestingly, com -
putational analysis of the larger 327 amino acid µ
opiate receptor protein species indicated a novel
7TMH domain GPCR lacking a typical extracellular
domain containing consensus N-linked glyco -
sylation sites (Figure 2B). In both cases, predictive
measures indicate that the domestic chicken
expresses one or two novel “short” GPCRs with
similar biochemical characteristics as previously
described for µ3 and µ4 opiate receptors as well as
traditional MOR’s.

Finally, BLAST (Basic Local Alignment Search
Tool)-mediated comparative amino acid sequence
analysis yielded an N-terminal sequence homology
of 96% for an alignment containing amino acid
residues 1-290 of the predicted 300 amino acid
chicken µ opiate receptor in comparison to amino
acid residues 1-290 of the 292 amino acid µ4 opiate
receptor [16, 17]. BLAST analysis also yielded 
a C-terminal sequence homology of 96% for an
alignment containing amino acid residues 1-300 of
the predicted 300 amino acid chicken µ opiate
receptor in comparison to amino acid residues 101
to 400 of the 400 amino acid µ1 opiate receptor.
Thus, the 300 amino acid 6 TMH domain chicken 

µ opiate receptor may be operationally defined as
an N-terminally truncated “short” homolog of 
the µ1 opioid receptor (Figure 3). Due to the 
novel 6 TMH domain configuration and sequence
identity to µ3 and µ4 opiate receptors at its 
N-terminus, we predict that the 300 amino acid
chicken µ opiate receptor functions as a “hybrid”
signaling GPCR with selective preference for
morphine and related morphinan alkaloids with the
exclusion of endogenous opioid peptides [10, 11].
Similar criteria relating to ligand selectivity will most
certainly apply to the predicted novel “short” 7TMH
domain 327 amino acid chicken µ opiate receptor
due to the genetic deletion of the glycosylated
extracellular N-terminal domain. 

Biological indications of a novel “short”
µ opiate receptor in domestic chicken

Based on guidelines established by Kozak et al.
[22, 23] it appears that mature chicken µ opiate
receptor-encoding mRNA contains two probable
TISs with the potential for translation of two distinct
300 and 327 amino acid µ opiate receptor proteins.
Prior literature indicates that many mRNAs are
capable of producing functionally distinct proteins
using different in frame start codons within 
the same mature fully spliced mRNA [20, 24]. 
Furt hermore, the effects of upstream start codons
can vary with cell type during differentiation 
[25-28]. Accordingly, mature chicken µ opiate
receptor-encoding mRNA may be similarly
translated into one or two functional receptor
proteins that are sorted or expressed according to
tissue or cell type. Morphine and other chemically
related opiate alkaloids represent classical and
reliable analgesic principles for management of
severe pain associated with disease [5, 8, 9, 12, 14,
29-43]. Paradoxical morphine-mediated hyperal -
gesia in the presence of typical morphine-mediated
respiratory depression has been observed in the
domestic chicken [44-46]. It is a reasonable,
therefore, to speculate that these markedly different
physiological responses to administered morphine
may be due differential expression of the 300 vs.

Figure 1. Full length untranslated mRNA species from
novel chicken opioid receptor has the potential for
three different start sites, the first will produce 
a protein species equivalent to 37 kDa, and the last
will produce a protein species equivalent to 34 kDa

M – start codon (methionine)

Potential translation initiation sites

M    M   M5’ 3’
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the 327 amino acid µ opiate receptor in spinal cord
and brain stem loci.

Conclusions

The presence of this biologically unique,
functional “short” membrane bound receptor
protein in the chicken not only reinforces the
primacy of said receptor but in doing that it also

gives us view into a window of learning and
understanding the history of evolution. The chicken
is evolutionarily placed to bridge the gap between
mammals and non-amniote vertebrates, and is
therefore the best studied representative of all avian
species, thus providing a valuable resource for
understanding comparative genomics [47].
Interestingly, inspection of the chicken MOR gene

Figure 2A. Graphic representation of the predicted 300 amino acid receptor species based on the previously shown
TMHMM predictions and determinations. Image was provided by the Sequence Analysis and Consulting Service
using TOPO2 [52] software funded by the University of California, San Francisco, USA
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Figure 2B. Graphic representation of the predicted 327 amino acid receptor species based on TMHMM determinations.
Image was provided by the Sequence Analysis and Consulting Service using TOPO2 [52] software funded by the
University of California, San Francisco, USA
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indicated a very streamlined nucleotide sequence.
The link between genome size and metabolic rate
was first made in 1970 by Henryk Szarski [48-50].
Birds have the smallest genome when compared
to other vertebrates including humans [51]. Avian
species require a high metabolic rate to carry out
basic physiological functions. The metabolic
advantage of a smaller, relatively streamlined
genome within all cells allows cells not only to be
smaller but operationally expands cellular surface
area to volume ratios. Smaller genomes do not
necessarily mean fewer genes, but rather a more
succinct use of space on the chromosomes. In
effect, smaller cells are more energy efficient that
larger ones, resulting in an increased metabolic
advantage. These complementary data may also
contribute to understanding the physiological role
of nucleated red blood cells in birds [16, 17]. It is
possible that avian species due to their relatively
streamlined genome and smaller size do not require
expulsion of the nucleus from the red blood cells
before its entry into the blood stream. In effect, the
high surface to volume ratio of nucleated red cells
in avian species facilitates markedly efficient gas
exchange with surrounding tissues. Future studies
to elucidate the physiological role of novel µ opiate
receptors in these same metabolic processes are
highly necessitated by our initial findings.
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