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A B S T R A C T

Dynamic biogeochemical models are crucial tools for simulating the complex interaction between soils, climate
and plants; thus the need for improving understanding of nutrient cycling and reduction of greenhouse gases
(GHG) from the environment. This study aimed to calibrate and validate the DeNitrification-DeComposition
(DNDC) model for soil moisture, temperature, respiration, nitrous oxide and maize crop growth simulation in
drier sub-humid parts of the central highlands of Kenya. We measured soil GHG fluxes from a maize field under
four different soil fertility management practices for one year using static chambers and gas chromatography.
Using experimental data collected from four management practices during GHG sampling period, we parame-
terized the DNDC model. The results indicate that the DNDC model simulates daily and annual soil moisture, soil
temperature, soil respiration (CO2), nitrous oxide (N2O), N2O yield-scaled emissions (YSE), N2O emission factors
(EFs) and maize crop growth with a high degree of fitness. However, the DNDC simulations slightly under-
estimated soil temperature (2–6%), crop growth (2–45%) and N2O emissions (5–23%). The simulation over-
estimated soil moisture (9–17%) and CO2 emissions (3–10%). It however, perfectly simulated YSE and EFs.
Compared to the observed/measured annual GHG trends, the simulation results were relatively good, with an
almost perfect fitting of emission peaks during soil rewetting at the onset of rains, coinciding with soil fertil-
isation. These findings provide reliable information in selecting best farm management practice, which simul-
taneously improves agricultural productivity and reduces GHG emissions, thus permitting climate-smart
agriculture. The good DNDC simulated YSE and EFs values (Tier III) provide cheaper and reliable ways of filling
the huge GHG data gap, reducing uncertainties in national GHG inventories and result to efficient targeting of
mitigation measures in sub-Saharan Africa.
1. Introduction

Climate change is principally a result of emissions of greenhouse gas
(GHG), and which have been on the rise resulting to increased average
global surface temperature (IPCC, 2014). The warming effects have been
projected to potentially result to adverse climate-based issues such as low
and erratic rainfall alongside prolonged drought conditions which in the
long run results to a low agriculture production and food insecurity
among the rain-fed agriculture smallholder farmers (Agovino et al.,
2018). This calls for concerted efforts to address the needs of the ever
increasing global population including food and general livelihoods
improvement and a better understanding of the climate-related agricul-
tural dynamics. More so, there is need for careful selection of sound
cropland management practices which promotes soil carbon
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sequestration, agricultural productivity and reduces GHG emissions, thus
permitting climate-smart agriculture (Francaviglia et al., 2012).

Direct measurements of soil GHG fluxes for national inventories are
almost impractical due to the high cost involved in quantification as it
requires numerous measurements over large spatial and temporal extents
(Giltrap et al., 2010). Thus, most developing countries cannot afford to
establish these empirical studies and therefore rely heavily on default
Tier I emission factors (EF) from the Intergovernmental Panel on Climate
Change (IPCC) to report their nationally determined contributions
(NDCs) as an obligation to the Paris Climate Agreement of 2015. Ac-
cording to Macharia et al. (2020) and Musafiri et al. (2020),
agriculture-related Tier I emission factors tend to over-estimate GHG
status in sub-Saharan Africa (SSA) leading to inflated national GHG in-
ventories that may result in poor targeting of efficient adaptation and
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mitigation measures (Pelster et al., 2017). However, to overcome un-
certainties in national GHG inventories, process-based models have been
developed and which over time has been validated and found reliable to
provide supplementary information on large spatial-temporal scales from
areas with which it would have been too costly and impractical to acquire
relevant information (Giltrap et al., 2010).

Dynamic biogeochemical models are essential tools for improving
agricultural management and decision making (Guest et al., 2017). These
models are great tools in deciphering the existing relationship between
crop productivity and changing environmental and farm management
practices (Lenz-Wiedemann et al., 2012) at the field, regional, national
and global scales (Rui et al., 2017) and under different soil management
technologies (Musafiri et al., 2021). More so, most of the process-based C
and N cycling models simulate GHG emissions (Yue et al., 2019).
Therefore, modelling of agroecosystems offers insight into C and N dy-
namics and provides an avenue for exploring practical mitigation mea-
sures (Giltrap et al., 2010). However, there is generally a scanty of
information on the application of dynamic biogeochemical models for
simulating soil GHG fluxes from different management practices for
improvement of the existing inconsistencies in the national inventories in
Kenya and SSA.

In this study, we used the DeNitrification-DeComposition (DNDC)
model, which is one of the most utilized models for simulating crop
growth as well as GHG emissions. The model has been put together to
simulate various processes in agroecosystems' biogeochemistry (Yu et al.,
2014). The model has had a global application in simulating crop pro-
duction of major crops, such as maize (Musafiri et al., 2021), wheat and
rice (Katayanagi et al., 2012) following application of different man-
agement practices, as well as simulating GHG fluxes (Rui et al., 2017; He
et al., 2019). As such, this study aimed to achieve the following objec-
tives; i) calibrate and validate the DNDC model, ii) simulate maize crop
growth through carbon allocation along the crop components; leaves,
stems, roots, and grains, and iii) evaluate the model's ability in simulating
field-measured soil moisture, temperature, greenhouse gas emissions
(CO2 and N2O), N2O emission factors (EFs) and N2O yield-scaled emis-
sions (YSE) from four different fertiliser treatments in the central high-
lands of Kenya for a period of one year (February 2017 to February
2018).

2. Materials and methods

2.1. Experimental site description

This study was conducted in Embu County, Kenya (00� 470 26.800S;
37� 390 45.300E). The trial was established in 2004 as described by
Mucheru-Muna et al. (2010) which is located at an altitude of 1030 m
a.s.l. The area experiences two rainfall seasons with the long rain (LR)
season running from March to May while the short rain (SR) season runs
from October to December of every year which annually averages be-
tween 430mm and 350mm for SR and LR season, respectively. The mean
annual temperature is 21.6 �C where the climate is classified as tropical
savanna based on K€oppen climate classification. The soils are predomi-
nantly sandy loam, less weathered with good permeability, yellowish
red, low pH and low soil organic carbon, Xanthic Ferrasols (Ngetich et al.,
2014). The study area is characterised by relatively short seasons which
are predominant in the drier low agricultural potential areas (Ngetich
et al., 2014). However, the study has been found suitable for the low-land
drought tolerant crop varieties of green grams, sorghum, cowpea,
chicken pea, maize, common beans amongst other crops (Macharia et al.,
2020).

2.2. Experimental design

The trial was established as researcher-managed, in a randomized
complete block design (RCBD) with treatments replicated thrice. The
experiment is composed of twelve different treatments containing
2

organics, inorganics and their combinations alongside treatments with
no external input of nutrients (control) under maize production. How-
ever, only four treatments were selected for this study on soil greenhouse
gas quantification and simulation: i) inorganic fertiliser; ii) animal
manure; iii) animal manure combined with inorganic fertiliser, the three
applied at 120 kg N ha�1 yr�1; and iv) a control (no external inputs)
(Macharia et al., 2020). Selection of the four treatments were based on
their high adoption level in the area (Macharia et al., 2014). We sourced
animal manure from the surrounding local farmers and which was later
incorporated manually using hand hoes, a fortnight before planning. To
supply the required 60 kg N ha�1 yr�1 based on (FURP, 1987), we took a
composite of three manure samples to the laboratory for analysis. Based
on the manure results we applied 6 t ha�1 yr�1 of dry goat manure for
sole manure treatment and 3 t ha�1 yr�1 for manure þ fertiliser treat-
ment. Mineral fertilisers were applied following the local practice during
planting at the onset of the rains on 6th of April 2017 and 23rd of October
2017 for the two seasons under study. Manual land preparations were
carried out by removing all the aboveground biomass at the beginning of
each cropping season. The trial plots measured 6 m by 4.5 m with one
meter as a buffer between plots and at least two meters between blocks
and which were maintained weeds-free through hand hoeing, ensuring
least soil disturbance. Dry highlands (DH 04) maize variety was planted
as the test crop at 0.90 m inter-row by 0.60 m intra-row spacing.
2.3. The DNDC model

The Denitrification-Decomposition (DNDC) model version 9.5 was
used in this study. The DNDC is a dynamic model of nitrogen (N) and
carbon (C) biogeochemistry in agricultural ecosystems. The DNDCmodel
framework includes edaphic, environmental, crop growth, C and N dy-
namics and trace gas emissions which are reported daily (Jarecki et al.,
2018). The model was initially developed for quantifying C sequestration
and emissions of greenhouse gas (Li et al., 1992). The first component
contains sub-models for soil (texture, SOC, bulk density and soil hy-
draulic parameters), climate (solar radiation, wind speed, air tempera-
ture, humidity and precipitation), crop growth (water demand, crop type,
C/N ratio, potential yield, optimal temperature and biomass fractions),
agricultural management (irrigation, residue, fertiliser, harvest dates,
tillage, and planting dates) and decomposition (microbial biomass, labile
humus, litter and passive humus). The model converts primary drivers
(human activity, climate, soil, and vegetation) into soil environmental
factors (humidity, redox potential, pH, soil temperature and concentra-
tion gradients of substrates) (Zhang et al., 2018a; 2018b). The second
component comprises of sub-models for denitrification, fermentation and
nitrification and estimates both emissions and sequestration of N2O and
CH4 (Li, 2007).

2.3.1. Model set up
Daily climatic data (rainfall (cm), maximum and minimum air tem-

perature (�C), wind speed (m s�1), solar radiation MJ m�2 d�1 and
relative humidity (%)) were collected using HOBO U30 NRC station data
logger from an installed weather station within the experimental study
site. The weather files for the above climate parameters for the period of
study were prepared following DNDC guide (version 9.5). Soils were
sampled from each of the plots prior to setting up of the experiment
(February 2017) and taken to the laboratory for analysis following
standard procedures as described by Macharia et al. (2020). They were
tested for mineral nitrogen, bulk density, texture, soil organic carbon
(SOC) and soil pH. Field capacity, slope, porosity, conductivity and
wilting point had earlier on been determined in the same study site by
Ngetich et al. (2014). Cropping data (the type of crop, planting and
harvesting), tillage data (method of ploughing, day and month of land
preparation, biomass fraction and biomass C/N ratio), fertiliser data
(type, amount and method of fertiliser applied and the day and month of
application) and manure amendments (type, amount, method of
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application and day and month applied) were all collected from the
experiment as described in Macharia et al. (2020).

2.3.2. Model calibration and validation
The DNDC model was calibrated using measured field data from

experimental plots. Grain yields were converted to carbon equivalent
following the DNDC model user guide where 1 kg of Maize was taken to
contain 0.4 kg of Carbon. It's worth noting that during calibration of the
model, all crop and soil data were based on sample analysis in the lab-
oratory from a field experiment outlined in section 2.2 and 2.3.

Model calibration portrayed a good fit between the field observations
andmodel-simulated data with R2 ranging from 0.93–0.99 (Figure 1 a-p),
and which were statistically similar at P ¼ 0.05. This is an indication that
the model was successfully calibrated and that the simulated data can be
relied on for other purposes (García et al., 2014). From the measured and
simulated data, the DNDC model tended to start the simulations slightly
later than the measured values and with higher values compared to
measured values (Figure 1). It was also observed that the simulated
biomass increased in the last stage of plant growth - grain filling (Figure 1
d, h, i, p).

2.4. GHG concentration determination and other field measurements

Vented manual static plastic chambers and gas chromatography were
used to measure the two greenhouse gases: carbon dioxide - CO2, and
nitrous oxide - N2O for a whole year (7th February 2017 to 6th February
2018).

The gas chambers comprised of a base and a lid, and which were
inserted into the soils to a depth of 7 cm two weeks prior to our first
sampling (Macharia et al., 2020). The chamber bases remained in-situ
for the whole of the study period and only removed twice during key
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Figure 1. Comparison between the field-measured and DNDC simulated maize plant
grain yields (d, h, i, p) from control, fertiliser, manure and manure þ fertiliser plots
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agronomic activities such as manure incorporation and which coincided
with land preparation. During sampling, the chamber bases and lids
were held tightly together using metallic clips and deployed for a
duration of 30 minutes. Gas sampling was generally on a weekly basis
but also followed key agronomic activities such as weeding, rainfall
events, manure and fertiliser application (Parkin and Venterea 2010).
Sampling was done through gas pooling from three chambers per plot,
measuring 6 m by 4.5 m, using 60 mL propylene syringe fitted with
luerlocks. The chambers were deployed for 30 min (0, 10, 20 and 30
min). Gas samples were transferred to 20 mL pre-evacuated glass vials
and taken to the laboratory for analysis at Mazingira Centre (ILRI--
Nairobi, Kenya).

The gas chromatography (GC) comprised of 63Ni-electron capture
detector (ECD) for determining the levels of concentration of N2O and a
flame ionisation detector (FID) for determining the level of CO2 in every
vial. We utilized Nitrogen gas (N2) at 20 mLmin�1

flow rate as the carrier
gas for both (ECD & FID) channels. To obtain the concentrations of each
gas, a comparison between peak areas from the GC and peak areas of four
calibration gas concentrations. We used linear regression determine the
concentrations of CO2 from the FID channel and a power function for the
determination of N2O concentrations since the ECD channel assumes a
non-linear dimension and power function results to better fits (Pavelka
et al., 2018).

Biomass and grain yields were measured during same period as gas
sampling and which were collected through destructive sampling done
every two weeks from the 21st day after planting until harvest. Other
measurements collected included soil water contents and soil tempera-
ture using Procheck at 0–10 cm depth. Meteorological data were
collected using different sensors and archived in a HOBO U30 NRC sta-
tion data logger. The GHG and biomass data were linearly interpolated
between sampling dates for the whole year.
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, respectively, used for DNDC model calibration in Embu County, Kenya.



Table 1. Statistical evaluation of DNDC daily simulated (soil temperature and moisture) values in comparison with the measured values in Embu County, Kenya.

Treatment1 Measured Simulated N E* RMSE* nRMSE (%) ME R2

Soil temperature (�C) Control 32.3 30.3 47 -2.05 14.20 44 0.93 0.19

Inorganic fertiliser 32.6 31.9 47 -0.70 4.86 15 0.98 0.27

Animal manure 32.9 31.5 47 -1.36 9.21 28 0.96 0.35

Manure þ Fertiliser 32.6 31.9 47 -0.70 8.70 27 0.98 0.14

Soil Moisture (m3m3) Control 0.11 0.11 47 0.01 0.04 9 0.93 0.40

Inorganic fertiliser 0.11 0.12 47 0.01 0.02 7 0.89 0.74

Animal manure 0.14 0.16 47 0.05 0.06 5 0.94 0.72

Manure þ Fertiliser 0.12 0.14 47 0.05 0.05 5 0.92 0.32

* The unit for E and RMSE is oC for soil temperature and m3m3 for soil moisture.
1 Treatments: Control ¼ no external input, Inorganic fertiliser, Animal manure and Manure þ fertiliser; the three applied at 120 kg N ha�1 yr�1.
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2.5. Model accuracy determination

To ascertain the general performance of the DNDC model, five sta-
tistical metrics were used to evaluate biomass production, maize yields,
and daily soil moisture, temperature, N2O and CO2 emissions between
the measured and simulated values. They include mean error (ME), root
mean squared error (RMSE), relative root mean squared error (rRMSE),
model efficiency (ME) and the coefficient of determination (R2). Since
using one of the metrics is not sufficient, a combination of the metrics
gives a better response on the performance of the model as noted by Li
et al. (2017).
2.6. Yield-scaled N2O emissions and N2O emission factors

We calculated yield-scaled nitrous oxide, which is a scale expressed as
a unit (g) of N2O emitted during production of a unit of grains (kg), by
dividing cumulative annual N2O emissions by annual grain yields. We
also determined N2O emission factors as shown in Eq. (1).

EF ¼
�
N2O� Nfertilized

�� �
N2Ounfertilized

�

Napplied
(1)
Table 2. Comparison between the measured and the DNDC simulated crop growth u

Treatment1 Component Measured (kg ha�1) S
(k

Control Leaf 1570 1

Stem 690 5

Roots 270 2

Grains 90 8

Total biomass 2620 2

Fertiliser Leaf 2100 1

Stem 1370 1

Roots 460 3

Grains 310 2

Total biomass 4240 3

Manure Leaf 3250 2

Stem 1860 1

Roots 610 5

Grains 2410 2

Total biomass 8130 7

Manure þ Fertiliser Leaf 2200 1

Stem 1230 8

Roots 430 2

Grains 220 1

Total biomass 4080 2

1 Treatments: Control ¼ no external input, Inorganic fertiliser, Animal manure and

4

Where: “N2O-Nfertilised”¼ annual N2O emissions from fertilised treatment,
“N2O-Nunfertilised” ¼ annual N2O emissions from no external input treat-
ment, and “Napplied” ¼ annual N rate

3. Results and discussion

3.1. Soil temperature

The DNDC model accurately estimated daily soil temperature across
treatments and which were a function of daily air temperatures. The
simulated trends were in good agreement with the observed soil tem-
perature, although slightly lower than the measured values indicating an
underestimation of soil temperature by the model. Underestimation of
soil temperature was highest from control plots (6%) and lowest in both
inorganic fertiliser and manure combined with inorganic fertiliser
treatments at 2% (Table 1). The simulated E ranged from -2.05 to -0.70
�C, RMSE from 4.86–14.20, nRMSE from 15–44%, ME from 0.93–0.98
while R2 ranged from 0.14 to 0.35 across treatments (Table 1). The DNDC
model performance was comparable with the one of Uzoma et al. (2015),
who reported underestimation of soil temperature by DNDC in most of
the years and whose estimate ranged between 5–8% between systems.
The results also agree with Smith et al. (2008), who reported an average
nder maize crop in in Embu County, Kenya.

imulated
g ha�1)

E
(kg ha�1)

RMSE nRMSE
(%)

ME

450 -120 85 5 0.92

15 -175 124 18 0.75

25 -45 32 12 0.83

0 -10 7 8 0.89

270 -350 247 43 0.87

990 -110 78 4 0.95

290 -80 57 4 0.94

57.5 -103 72 16 0.78

15 -95 67 22 0.69

853 -388 274 45 0.91

975 -275 194 6 0.92

613 -247 175 9 0.87

80 -30 21 3 0.95

190 -220 156 6 0.91

358 -772 546 25 0.91

425 -775 548 25 0.65

47 -383 271 22 0.69

38 -192 136 32 0.55

90 -30 21 10 0.86

700 -1380 976 88 0.66

Manure þ fertiliser; the three applied at 120 kg N ha�1 yr�1.



Table 3. Comparison between daily measured and simulated soil CO2 and N2O emissions from maize crop in Embu County, Kenya.

GHG Treatment1 Measured Simulated N E RMSE nRMSE ME R2

CO2

(kg CO2-C ha�1 d�1)
Control 3.8d � 0.20 4.0 47 0.2 1.2 31 0.94 0.40

Inorganic fertiliser 5.2c � 0.30 5.7 47 0.5 2.7 52 0.91 0.22

Animal manure 9.8a � 0.31 10.6 47 0.8 4.1 42 0.93 0.62

Manure þ Fertiliser 7.4b � 0.45 7.5 47 0.2 2.9 39 0.98 0.60

P value <0.001

N2O
(g N2O-N ha�1 d�1)

Control 0.36d � 0.22 0.4 47 -0.08 0.1 21 0.77 0.21

Inorganic fertiliser 1.07c � 0.36 0.98 47 -0.08 0.4 40 0.92 0.39

Animal manure 3.34a � 0.33 2.85 47 -0.49 2.6 77 0.85 0.24

Manure þ Fertiliser 1.72b � 0.66 1.64 47 -0.08 0.4 25 0.95 0.48

P value <0.001

The letters a,b,c & d in the Table denote significance of the statistical difference between treatment means (column difference).
1 Treatments: Control ¼ no external input, Inorganic fertiliser, Animal manure and Manure þ fertiliser; the three applied at 120 kg N ha�1 yr�1.

J.M. Macharia et al. Heliyon 7 (2021) e06977
underestimation of 7% of soil temperature by DNDC model, across
treatments. However, the results disagree with Li et al. (2017), who re-
ported an overestimation of soil temperature in the range between 2–6%
across cropping systems. It is worth noting that temperature influences
soil moisture, microbial activities and evaporation. This implies that the
accurate estimation by DNDC model is paramount since all these have a
direct influence on GHG emissions and could have a direct effect towards
accurate targeting of adaptation and mitigation measures. The relatively
lower underestimation of soil temperature in plots treated with inorganic
fertiliser, either sole or combined, could be ascribed to the model taking
into consideration that inorganic fertilisers provides readily available
nutrients for plant uptakes, promotes relatively faster crop growth, thus
improving the canopy growth resulting to reduced thermal radiation
along the soil profiles.
3.2. Soil moisture

The DNDC model simulated daily trends of soil moisture content
across treatments and which were primarily a function of precipitation.
The model accurately simulated rainfall seasonality in the study site with
moisture increasing to attain highest peaks at the onset of rainfall in each
season. The DNDCmodel slightly overestimated moisture contents across
treatments with the calculated E ranging from 0.01–0.05 m3m3, RMSE
from 0.02–0.06 m3m3, nRMSE from 5–9%, ME from 0.89–0.94 and R2

ranging from 0.32–0.74 (Table 1). Generally, the DNDC model over-
estimated soil moisture contents across treatments ranging between
9–17%with the highest overestimations recorded from plots treated with
animal manure either sole or combined with inorganic fertiliser
(Table 1). These results agree with Li et al. (2017), who recorded an
overestimation of soil moisture content by DNDCmodel ranging between
2–8% across cropping systems. With the study period having recorded
approximately 15% lower precipitation than seasonal average, these
results were in agreement with Uzoma et al. (2015) who recorded an
overestimated soil water content ranging from 15–21% in a relatively
drier year. Results also agree with Smith et al. (2019) who recorded an
overestimation of soil water content by DNDC model near soil surface
and which was presumably caused by lack of root distribution algo-
rithms, inability to simulate a heterogeneous soil profile and no water
table. Further, results corroborate those of He et al. (2019) who reported
an overestimation of soil water content by DNDC at 0–0.1 m depth and
which was attributed to low root distribution algorithms in DNDC, and its
inability to simulate heterogeneous soils. The overestimation could also
be ascribed to the DNDC characterizing water flow in its hydrological
sub-model between field capacity and wilting point (strictly) resulting to
over-prediction of SWC (Dutta et al., 2016). The overestimation of soil
moisture could result to high GHG emissions estimations which could
result to inaccurate targeting of adaptation and mitigation measures.
Results, however, disagree with Smith et al. (2008) who reported an
5

underestimation of soil moisture by the DNDC model by approximately
17%. It should be noted that continued application of manure in the
study area resulted to increased soil organic matter (Macharia et al.,
2020), and which could have ensured higher retention of water in plots
treated with manure than plots without manure, a possible assumption
made by DNDC model.

3.3. Simulation of maize growth

The DNDC simulated seasonal crop production separated into
different maize crop components (leaves, stems, roots and grain yields)
were lower than the measured values across treatments (Table 2). This
indicates that the DNDC model tended to underestimate crop production
in the study area. Overall, plots treated with animal manure had highest
amounts of carbon allocated along maize crop components, while control
plots had least amounts of carbon allocated along maize plant compo-
nents (Table 2). Underestimations were in the range of 5–35%, 6–31%,
5–45%, 9–31% and 9–34% for leaves, stems, roots, grains and total
biomass, respectively, across treatments. Calculated E ranged from
350–1380 kg ha�1, RMSE from 247–976 kg ha�1, nRMSE from 25–88%
and ME from 0.66–0.91 for total maize biomass across treatments
(Table 2). The DNDC simulated data underestimated aboveground
biomass (AGB) by 37% compared to the findings by Ngetich et al. (2014)
in the same study site and who recorded an average AGB of 11.51 Mg
ha�1 (4.60Mg C ha�1) after application of inorganic fertiliser at 120 kg N
ha�1 yr�1.

The underestimation of maize crop productivity by the DNDC model
could be ascribed to uneven rainfall distribution across the cropping year
with most (64%) of rainfall during long rains season (LR 2017) being
received during April while 96% of rainfall in the short rains season (SR,
2017) season being received in first month at the onset of rains rendering
the rest of crop growing period to remain relatively dry as observed by
Macharia et al. (2020). Results from this study agree with Zhang et al.
(2018a; 2018b) who in their study reported that crop yields in years that
reported low rainfall (similar to our study) were very likely to be
underestimated in DNDC simulations. However, our results disagree with
Muhammed et al. (2018) who reported a slight overestimation of crop
production by the DNDC model.

3.4. Simulation of soil respiration

Daily simulated CO2 emissions ranged from 3.8–9.8 kg CO2-C ha�1

d�1 and were slightly higher than measured emissions, which ranged
from 4.0–10.6 kg CO2-C ha�1 d�1 across treatments (Table 3). Over-
estimations of CO2 emissions ranged between 3–10% across treatments
with manure þ fertiliser recording lowest overestimations while inor-
ganic fertiliser recorded highest overestimations. The simulated CO2
emissions were in good agreement with the measured emissions with a
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Figure 2. Comparison between measured and simulated CO2 emissions from four different treatments; (a) control, (b) inorganic fertiliser, (c) animal manure, (d)
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calculated E ranging from 0.2–0.8 kg CO2-C ha�1 d�1, RMSE¼ 1.2–4.1 kg
CO2-C ha�1 d�1, nRMSE ¼ 31–52%, ME ¼ 0.91–0.94 and R2 from
0.22–0.62 across treatments (Table 3). These daily emissions resulted in
higher annual cumulative simulated CO2 emissions that ranged from
1474–3860 kg CO2-C ha�1 yr�1 relative to measured CO2 emissions
which ranged from 1391–3574 kg CO2-C ha�1 yr�1 across treatments.

The DNDC simulated CO2 emissions followed seasonality rising
immediately after soil rewetting and which coincides with fertilization at
the onset of the rains (Figure 2) similar to what was reported byMacharia
et al. (2020). The CO2 emission peaks were well-timed and accurately
coincided with the measured peaks across treatments. These simulated
CO2 emission peaks could have been influenced by climate, fertilization
regime and crop growth stage. The highest soil respiration peak during
SR 2017 was 4.3 kg CO2-C ha�1 day�1 from manure treatment (Figure 2
c). It should be noted that during dry period, CO2 emissions remained
relatively low due to low microbial activities but upon soil rewetting,
there was a pulse of CO2 at onset immediately after a rainfall event
(Figure 2). Similarly, immediately upon application of manure, there
were no pulses of CO2 emissions which could be because manure had not
6

decomposed due to its dryness, but upon addition of moisture from
rainfall at onset, manure mineralised giving rise to CO2 peaks. The low
CO2 emissions during this period could also be as a result of having no
crop growing, therefore limited root respiration.

The low prediction of CO2 from control treatment could be attributed
to low amounts of substrates for microorganism thus leading to low CO2
emissions while high amounts of CO2 emissions from animal manure
treatment could be associated with easily available substrates from
decomposition of organic materials. Overestimation in simulated data
could be attributed to ability of DNDC model to factor in more dynamics
of C fluxes occurring at the interface between terrestrial ecosystems and
atmosphere compared with measured CO2 emissions. According to Li
et al. (2010), simulated CO2 emissions include photosynthesis, plant
autotrophic respiration, soil microbial heterotrophic respiration, and
dissolved organic carbon (DOC) leaching. The slight overestimation of
soil CO2 emissions could as well be a function of the overestimated soil
moisture across the study period by the model which could have resulted
to relatively higher microbial activities and enhanced plant root growth
as measured by Uzoma et al. (2015). More so, higher CO2 emissions could
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have originated from the model underestimating crop growth hence
allocating more carbon to be lost as CO2 emissions other than being
sequestered by maize crop during its growth.

3.5. Simulation of soil N2O fluxes

The DNDC simulated N2O emissions rose immediately after soil
rewetting and which coincided with fertilization and onset of rainy
season (Figure 3). In most parts of the study period, the simulated N2O
emissions remained relatively lower than measured and which in the
overall resulted in an underestimation of annual N2O emissions
(Figure 3). Underestimations of N2O emissions ranged from 5–23%
across treatments with manure combined with fertilisers recording the
lowest while control recorded the highest underestimations, respectively.
These results agree with Uzoma et al. (2015) and Yue et al. (2019) who
found DNDC model to underestimate N2O emissions generally. Under-
estimation of N2O fluxes from current study could be attributed to
semiarid soils in the study area remaining dry most of the year and
therefore very little or no denitrification. Sandy loam soils, similar to
soils in our study area, tend to dry up very fast after a rainfall event and
probably the DNDC model was unable to accurately capture the abrupt
changes in the soil water content, which doesn't last long before drying
up. According to Smith et al. (2008), the DNDC model underestimations
of N2O fluxes may be as a result of soil draining too quickly following
rainfall, un-simulated lateral flow, or inaccurate model calculation of
porosity. Further, Uzoma et al. (2015) noted that soil hydrology
sub-model in DNDC model, have a cascade flow routine which drains the
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Figure 3. Measured and predicted N2O fluxes from four different treatments; (a)
inorganic fertiliser in Embu County, Kenya. Solid arrows indicate timing of land pre
show timing of planting and fertiliser application.
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profile to field capacity, which likely underestimated denitrification
events during a period of high rainfall shortly after fertiliser application
at the onset, resulting to underestimation of N2O fluxes.

All the daily simulations described temporal dynamics in N2O fluxes
and which were generally in agreement with the measured N2O fluxes
with an E ranging from -0.08 to -0.49, RMSE ¼ 0.1–2.6, nRMSE ¼
21–77%while R2 ranged from 0.21 to 0.48 (Table 3). The daily simulated
data resulted to an annual cumulative N2O flux ranging from 100–1040 g
N2O-N ha�1 d�1 compared to annual cumulative N2O fluxes ranging from
130–1220 g N2O-N ha�1 d�1 across treatments with control plots
recording the least amounts while animal manure recorded the highest
amounts of N2O fluxes, respectively.

In control plots, the low amounts of simulated N2O fluxes could be
ascribed to low amounts of substrates while high amounts of N2O fluxes
could be attributed to the availability of more labile C in the manure
treatments providing the necessary condition for denitrification
(Macharia et al., 2020). According to Li et al. (2010), manure amendment
increases soil organic carbon which acts as a source of substrates for N2O
stimulation through both soil nitrification and denitrification. It's worth
noting that manure improves soil organic carbon build-up over time and
which is capable of retaining soil moisture during the dry periods of
cropping season, resulting in overall more denitrification.

The DNDC-simulated daily N2O in peak emissions form, mainly come
from both nitrification and denitrification processes. For this study, the
simulated peaks for N2O flux were well aligned with the timing of
measured peaks which followed rainfall events with a slight difference in
magnitude of simulated N2O peaks (Figure 3). Our results are consistent
(a)Simulated

(b)

(c)

-17 S-17 O-17 N-17 D-17 J-18 F-18

ate

(d)

control, (b) inorganic fertiliser, (c) animal manure and (d) animal manure þ
paration coinciding with incorporation of animal manure, while dotted arrows



Table 4. Comparison between measured and simulated yield-scaled N2O emissions and N2O emission factors (EF) from four different fertiliser treatments under maize
crop in Embu County, Kenya.

Treatment1 Measured YSE2 Simulated YSE Measured EF3 Simulated EF

Control 0.8c � 0.02 0.9

Inorganic fertiliser 1.1b � 0.06 1.1 0.2 0.2

Animal manure 0.5c � 0.10 0.5 0.9 0.8

Manure þ Fertiliser 2.2a � 0.54 2.5 0.4 0.4

The letters a,b,c & d in the Table denote significance of the statistical difference between treatment means (column difference).
1 Treatments: Control ¼ no external input, Inorganic fertiliser, Animal manure and Manure þ fertiliser; the three applied at 120 kg N ha�1 yr�1.
2 YSE ¼ cumulative annual N2O emissions divided by the total grain yields (kg ha�1 yr�1).
3 Emission factors (EF) ¼ N2O difference between fertilized and unfertilized divided by annual N application rate.
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with the findings of other studies which identified the DNDC model to
generally capture the peaks of daily N2O flux induced by precipitation,
although slight discrepancies remained between magnitude of the
modelled N2O peaks and the corresponding observations (Uzoma et al.,
2015; Deng et al., 2018). Simulated data also predicted more frequent
N2O peaks after rainfall events than field observations (e.g. mid-October
to end of Dec 2017). This is consistent with Deng et al. (2018) who re-
ported more frequent N2O peaks after rainfall events during the rainy
season than the measured peaks, which could not have been observed in
field studies. As was observed by other N2O modelling studies, accurate
simulation of timing and daily N2O flux variability possess a significant
challenge (Smith et al., 2008; Uzoma et al., 2015).

3.6. Yield-scaled N2O emissions and N2O emission factors (EF)

The DNDC simulated YSE were lowest from animal manure and
highest frommanureþ fertiliser treatments (Table 4). Simulated YSEwas
similar for sole inorganic fertiliser and sole manure application but
slightly higher than the observed for control (13%) and manure þ fer-
tilisers (14%) treatments. The relatively higher simulated YSE from
control treatment could be attributed to highest (23%) N2O underesti-
mation across treatments while that of manureþ fertiliser could be more
explained by underestimation (11%) of maize yields. It should be noted
that YSE can evaluate trade-offs between crop production and environ-
mental impacts under different soil fertility management technologies
(Van Groenigen et al., 2010). The YSE from this study were relatively
lower compared with what has been observed within the region and
which ranged between 0.7 and 41.6 g N2O-Nkg�1 N aboveground
biomass. These YSE could be attributed to low N2O emissions rather than
to high crop yields due to the inherent soil fertility challenges experi-
enced in the study area (Macharia et al., 2020). The simulated N2O
emission factors (EF) were lowest (0.2%) from inorganic fertiliser and
highest (0.8%) in animal manure treatment (Table 4). Simulated N2O EFs
were similar to observed values for sole inorganic fertiliser and manureþ
fertiliser but slightly (14%) lower than observed value for animal manure
treatment (Table 4).

4. Conclusion

The results indicate that the DNDC-simulated soil temperature and
soil moisture contents were lower than and higher than the measured
values from experimental site, respectively, suggesting that the DNDC
model tended to underestimate soil temperature by 2–6% and over-
estimate SWC by 9–17% across treatments. Further, the DNDC model
tended to underestimate crop growth by 2–45% for all the maize crop
component (i.e. leaves, stems, roots and grains). Still, it accurately
simulated treatment performance across treatments with animal
manure and control, producing the highest and the lowest total
biomass, respectively. The DNDC simulated soil respiration (CO2) was
in good agreement with the measured values though they were slightly
higher by 3–10% compared to measured values from the experimental
site, attributed to the relatively higher simulated SWC resulting in
8

enhanced soil and root respiration. The DNDC-simulated CO2 emissions
followed seasonality, remaining relatively low during dry periods and
having high peaks upon rewetting and fertilization at the onset of the
rains. For N2O emissions, the DNDC simulated values were slightly
lower than the measured values (5–23%) a factor attributed to the fact
that the model is unable to capture abrupt changes in the soil water
content from sandy soils which tends to dry up almost immediately after
a rainfall event, thus provoking lower denitrification. Similar to CO2
simulated values, the DNDC model followed seasonality for N2O emis-
sions but had more peaks than measured values. The simulated data
captured well the timing of the N2O fluxes with a slight variation in the
magnitude of the N2O fluxes. Further, the simulated N2O YSE was
similar with the measured values for sole manure and sole fertiliser but
slightly higher for control (12%) and manure combined with inorganic
fertiliser (14%) while the EFs were similar for sole inorganic fertiliser
and manure combined with inorganic fertiliser but slightly lower for
sole manure treatment (11%). With all the EFs from this study ranging
between 1.25 to 5 folds lower than the IPCC Tier I emission factors
(1%), and which were overall in good agreement with the measured
values, we conclude that DNDC model is an accurate and reliable model
which can be used to simulate emission factors which could be used as a
credible alternative by the developing nations to report to the United
Nations Framework Convention on Climate Change (UNFCCC) on their
agriculture-based NDCs in line with Paris Agreement of 2015. Further,
the DNDC model could be used to fill the huge data gaps in developing
countries on GHG emissions, attributed to the paucity of observation
data on GHG emissions due to the high cost involved in direct GHG
quantification studies resulting to uncertainty in national GHG in-
ventories. More so, DNDC model could also be applied across different
regions across countries in confidently simulating EF from different soil
management practices thus bringing out the nexus between improved
agricultural productivity and reduced GHG emissions across different
agricultural soil types and landscapes. However, attention should be
paid to the fluxes due to the slight underestimation of N2O and slight
overestimation of CO2 fluxes. We, therefore, recommend the estab-
lishment of more similar studies across sub-Saharan African which
could act as a source of data for the continued model improvement
hence target to achieve correct climate change adaptation and mitiga-
tion measures across the region.
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