Full Research Paper

An efficient synthesis of tetramic acid derivatives with extended conjugation from *L*-Ascorbic Acid Biswajit K Singh, Surendra S Bisht and Rama P Tripathi*

Address: Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow-226001, India

Email: Biswajit K Singh - singhbiswajit25@rediffmail.com; Surendra S Bisht - surendrabisht97cdri@rediffmail.com; Rama P Tripathi* - rpt.cdri@gmail.com

* Corresponding author

Published: 06 December 2006

Beilstein Journal of Organic Chemistry 2006, 2:24 doi:10.1186/1860-5397-2-24

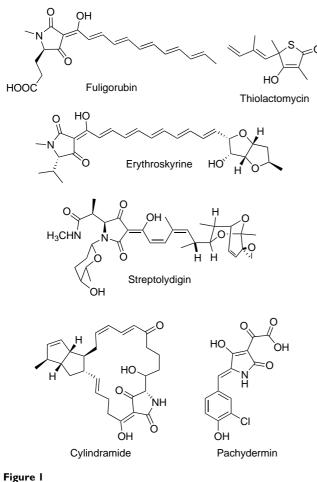
This article is available from: http://bjoc.beilstein-journals.org/content/2/1/24

© 2006 Singh et al; licensee Beilstein-Institut.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 18 October 2006 Accepted: 06 December 2006

Abstract

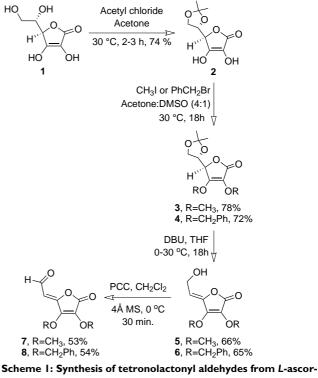

Background: Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from *L*- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives.

Results: 5,6-*O*-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with *p*-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good.

Conclusion: An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

I. Background

Tetramic acid derivatives constitute an important class of nitrogen heterocycles with pyrrolidine-2,4-dione moieties and are key structural motifs in many natural products of terrestrial and marine origin. [1-6] They exhibit a wide range of biological activities including antibiotic, antiviral, antifungal, cytotoxic and enzyme inhibitory activities against bacterial DNA-directed RNA polymerases. [7-9] A few of the recently discovered tetramic acid antibiotics with dienyl or polyenyl units are shown in Figure 1. 3-Acetyl tetramic acid derivatives are known to act as anti-HSV and anti-HIV agents with potent tyrosine phos-


Tetramic acid antibiotics from natural sources.

phatase inhibitory activities. [10-12] The distinct structural features and pharmacological properties of tetramic acid antibiotics pose challenges to organic chemists [13,14] to develop simple, practical and efficient syntheses of these compounds. Many groups are engaged in the synthesis of such molecules in sufficient quantities in order to study their *in vivo* activities and detailed modes of action. A variety of multi-step solid and solution phase syntheses exist for the preparation of both achiral and chiral tetramic acid derivatives. [15-31]

In an ongoing programme towards the development of new antitubercular agents from sugars, we have been interested in the synthesis of tetramic acid analogues bearing alkenyl chains at C-5. Our curiosity in this class was based on reports that similar structures, the thiolactomycins [32,33] (Fig 1), a class of thiotetronic acid with an alkenyl chain at C-5, possess mycobacterial FAS-II inhibitory activity and are potentially new tuberculosis drugs. 5-Alkenyl tetramic acids, being structurally similar to thiolactomycins, possess anti-HCV and anti-HIV activities [34,35] and are likely to yield new antitubercular prototype compounds active against tuberculosis in HIV cases. We have developed a one-pot synthesis of 5-hydroxyl tetramic acid derivatives without alkenyl substitutents at C-5, [36] but none of these compounds possesses significant activity against *Mycobacterium tuberculosis*. In continuation of this study tetramic acid derivatives with 5-alkenyl substitutents were synthesized starting from cheap and easily accessible ascorbic acid, commonly known as vitamin C.

2. Results and discussion

Ascorbic acid 1 was converted into 2,3-di-O-methyl and benzyl-5,6-O-isopropylidene ascorbic acid derivatives 3 and 4 via 5,6-O-isopropylidene ascorbic acid 2 following our modified earlier method. [36] These compounds were treated with DBU separately to get the intermediate allyl alcohols 5 and 6 in good yields, and the structures were confirmed by analysis of the spectroscopic data (Additional file 1). The *Z* geometry of the double bond in these compounds has been established based on mechanistic grounds. [36,37]

bic acid

Pyrdinium chlorochromate oxidation of allylic alcohols 5 and 6 in dichloromethane, in the presence of molecular sieves (4 Å), led to the formation of tetronolactonyl allylic aldehydes 7 and 8 in good yields respectively (Scheme 1). The structures and geometry (Z) of these compounds were

determined on the basis of their spectroscopic data (Additional file 1).

Wittig olefination of aldehydes 7 and 8 with carbethoxymethylene triphenylphosphorane in THF at ambient temperature led to the formation of the respective exo-dienyl esters of the tetronolactones as a mixture of ZZ and ZE isomers 9 and 9a (17:3), and 10 and 10a (9:1) respectively in quantitative yield (Scheme 2). The two isomers in each case were separated by column chromatography; the ratio and the structure of the individual isomers of the above compounds were determined on the basis of spectroscopic studies. In such an earlier study, [37] with BuLi at -78°C used as the base for the Wittig olefination, lower yields and poor stereoselection was observed as compared to our uncatalysed ambient temperature reaction where ZZ isomers were predominantly formed. The Z configuration of the allylic alcohol was already established. [36] The geometry of the newly generated double bond in 9 and 9a was decided on the basis of ¹H NMR spectroscopic data (Additional file 1) wherein H-7 and H-8 in the major isomer 9 appeared as dd (δ = 7.57) with J = 11.9 Hz each and d, 5.96 (J = 11.9 Hz, H-7). The analogous protons in the minor isomer 9a appeared as a dd δ = 7.0 (J = 11.3 Hz, 11.4 Hz, H-7) and $\delta = 7.27$ (d, J = 11.1Hz, 1H, H-8) respectively indicating the Z and E relationship of H-7 with H-8 in the above two isomers. The ¹H NMR spectra of the ZZ and ZE isomers were similar to those reported earlier [37] and the chemical shifts of H-6 and H-8 were almost similar in the major isomer 9 in spite of the close proximity of H-8 with the carbethoxy group. The low chemical shift of H-8 in minor isomer 9a may be due to its locked hydrogen bonded six member ring conformation. The low chemical shift of H-7 in the ZZ isomer may again be explained in terms of conformation II (Figure 2) as proposed by Khan et al, [37] where H-7 is hydrogen bonded to the lactone ring oxygen. Similarly, the structure and geometrical stereochemistry of the two isomers (10 and 10a) were also established.

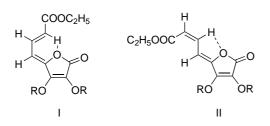
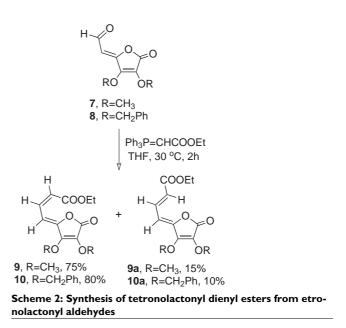
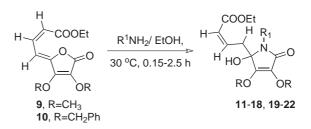
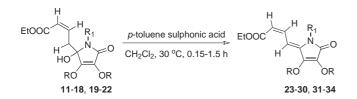




Figure 2 H-bonding in tetronolactonyl dienyl esters.

The next step consists of reaction of the above dienyl tetronic acids with different amines separately to form the required intermediate 5-hydroxy tetramic acid derivatives. Thus reaction of 9 first with ethanolic ammonia led to the formation of 5-hydroxy lactam derivative 11 in good yield. The structure elucidation of compound 11 was based on its spectroscopic data and microanalysis (Additional file 1). ESI MS of the compound showed [M+Na]⁺¹ at 294.1 corresponding to its molecular formula. In the ¹H NMR spectrum of compound 11

Scheme 3: Synthesis of 5-hydroxy lactams from dienyl tetronic esters


, H-6 appeared as a multiplet at δ 2.60–2.77 integrating for two protons, with H-7 at δ 6.81. The exchangeable C5-OH appeared as a singlet at δ 1.9, while H-8 appeared at its usual chemical shift of δ 5.87 as a doublet. The geometry of the double bond between C-7/C-8 was unaffected and it was Z only. Furthermore, we did not observe any conjugate addition product in the above reaction.

H COOEt H RO OR 9, 10	R ¹ NH ₂ / EtOH	COOEt H R1 HO RO OR 11-18, 19-22			
Reactant	Product	R	R ₁	% Yield	
9	П	-CH3	н	98	
9	12	-CH ₃	-CH ₂ Ph	73	
9	13	-CH ₃	n-butyl	80	
9	14	-CH ₃	cyclopropyl	80	
9	15	-CH ₃	iso-butyl	65	
9	16	-CH ₃	<i>n</i> -hexyl	77	
9	17	-CH ₃	n-octyl	73	
9	18	-CH ₃	<i>n</i> -propyl	81	
10	19	-CH ₂ Ph	H Í	86	
10	20	-CH ₂ Ph	n-butyl	74	
10	21	-CH ₂ Ph	<i>n</i> -hexyl	73	
10	22	-CH ₂ Ph	-CH ₂ Ph	82	

Table I: Synthesis of 5-hydroxy lactams (II-22) from dienyl tetronic acid derivatives

Similarly, reaction of dienyl ester 9 with *n*-propyl-, cyclopropyl-, *n*-butyl-, *iso*-butyl-, *n*-hexyl-, *n*-octyl- and benzyl amines separately led to the formation of the respective *N*alkyl lactams (12–18) in good to very good yields. However, reaction of compound 9, bearing a 3, 4-dibenzyloxy substituent, with selected amines, *viz. n*-butyl-, *n*-hexyl and benzyl amines separately under the identical experimental conditions, led to the formation of the respective 5-hydroxy lactam derivatives (19–22) in good yields (see Table 1).

Finally, the hydroxy lactams so obtained were dehydrated to the respective dienyl tetramic acid derivatives with *p*toluenesulphonic acid (*p*-TSA) catalysed reaction at ambient temperature (Scheme 4). Thus, reaction of the above 5-hydroxy lactam 11 with *p*-TSA in CH_2Cl_2 at room temperature led to the formation of dienyl tetramic acid 23 in quantitative yield. The *ZZ*

Scheme 4: Synthesis of dienyl tetramic acid from 5- hydroxy lactams

geometry of the two double bonds in compound 23 was established based on the basis of its ¹H NMR spectrum (Additional file 1).

Similarly, other dienyl tetramic acid derivatives **24–30** were prepared simply by dehydration of the respective hydroxyl lactams **12–18** in good yields. Similar dehydration of the hydroxy lactam derivatives **19–22** with *p*TSA in CH_2Cl_2 led to the formation of dienyl lactam derivatives **31–34** in good yields (see Table 2).

The structures of all the compounds were determined on the basis of spectroscopic data and microanalysis (Additional file 1). Detailed experimental procedures for the preparation of compounds and full characterization data can be found in Additional file 1.

3. Conclusion

In conclusion, we have developed an efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid. The method involves Wittig olefination of the allylic aldehydes obtained from ascorbic acid followed by reaction of the resulting esters with amines to give the intermediate 5-hydroxy lactams. The latter on dehydration with p-toluene sulphonic acid resulted in dienyl tetramic acid derivatives. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and the method paves the way for the synthesis of a variety of

$H = H_{R_1} - P_{R_1} - $	TSA/CH ₂ Cl ₂ EtOOC			
11-18, 19-22 Reactant	23-3 Product	0, 31-34 R	RI	% Yield
Reactant	FIOduct	ĸ	KI	% Heid
н	23	-CH ₃	Н	69
2		-CH ₃	-CH₂Ph	65.5
3	25	-CH ₃	n-butyl	71
4	26	-CH ₃	cyclopropyl	62
5	27	-CH ₃	iso-butyl	58
6	28	-CH ₃	n-hexyl	55
7	29	-CH ₃	n-octyl	60.5
8	30	-CH ₃	n-propyl	62
9	31	-CH ₂ Ph	Н	63
0		-CH ₂ Ph	<i>n</i> -butyl	55
21		-CH ₂ Ph	n-hexyl	62
22		-CH ₂ Ph	-CH ₂ Ph	55

Table 2: Synthesis of dienyl tetramic acid derivatives from 5-hydroxy lactams

tetramic acid derivatives with different substitutents. Detailed bioevaluation of these compounds for different activities is under way.

Additional material

Additional File 1

supplementary information Click here for file [http://www.biomedcentral.com/content/supplementary/1860-5397-2-24-S1.pdf

Acknowledgements

This is CDRI communication no. 7040. The authors thank RSIC for spectral data. BKS and SSB are thankful to CSIR New Delhi for JRF. Financial assistance from DRDO, New Delhi in the form of a grant is also acknowledged:

References

- Royles BJL: Chem Rev 1995, 95:1981.
- Hopmann C, Kurz M, Bronstrup M, Wink J, LeBeller D: Tetrahedron 2. Lett 2002, 43:435-438.
- Yamada S, Yaguchi S, Matsuda K: Tetrahedron Lett 2002, 43:647-651. 3.
- Haskins CM, Knight DW: Chem Commun 2005:3162-3164.
- 5. Wolf D, Schmitz IJ, Qiu F, Kelly-Borges M: J Nat Prod 1999, 62:170-172
- 6 Lang G, Cole ALJ, Blunt JW, Munro MHG: J Nat Prod 2006, 69:151-153
- Rinehart KL, Borders DB: J Am Chem Soc 1963, 85:4037. 7
- Reusser F: Antimicrob Agents Chemother 1976, 10:618.
- 9 Karwowski JP, Jackson M, Theriault RJ, Barlow GJ, Cohen L, Hensey DM, Humphry PE: J Antibiot 1992, 45:1125-1132.
- Skylaris C-K, Igglessi-Markopoulou O, Detsi A, Markopoulos J: J Chem 10. Phys 2003, 239:355-363.

- 11. Tomita F, Tamaoki T, Shirahata K, Kasai M, Morimoto M, Ohkubo S, Mineura K, Ishii S: / Antibiot 1980, 33:668.
- 12 Kusumi T, Ichikawa H, Kakisawa M, Tsunkawa M, Konishi M, Oki T: J Am Chem Soc 1991, 113:8947.
- 13. Cramer N, Buchweitz M, Laschat S, Frey W, Baro A, Mathieu D, Richter C, Schwalbe H: Chemistry - A European Journal 2006, 12:2488-2503. references cited therein
- 14 Lambert TH, Danishefsky SJ: J Am Chem Soc 2006, 128(2):426-427.
- Jouin P, Castro B, Nisato DJ: Chem Soc Perkin Trans / 1987:1177-1182. 15
- Courcambeck J, Bihel F, De Michelis C, Quelever G, Kraus JL: J Chem 16. Soc Perkin Trans I 2001:1421-1430.
- 17. Wang W, Yang J, Ying J, Xiong C, Zhang J, Cai C, Hruby VJ: J Org Chem 2002, 67:6353-6360.
- 18. Fustero S, Garcia de la Torre M, Sanz-Cervera JF, Ramirez de Arellano C, Piera J, Simón A: Org Lett 2002, 4(21):3651-3654.
- 19. Hamilakis S, Kontonassios D, Sandris C: | Heterocyclic Chem 1996, 33:825-833.
- 20. Hamilakis S, Kontonassios D, Sandris C: J Heterocyclic Chem 1996, 33:1145-1151
- Li BQ, Franck RD: Bioorg Med Chem Lett 1999, 9:2629-2634. 21.
- Pei HQ, Wu TJ, Ruan YP: Org Lett 2003, 5:4341-4344. references 22. cited therein
- 23. McNab H: Chem Soc Rev 1978, 7:345.
- 24. Chen BC: Heterocycles 1991, 32:529.
- 25. Gaber Abd El-Aal M, McNab H: Synthesis 2001:2059-2074.
- Franzen RG: J Comb Chem 2000, 2:195-214. 26
- 27. Nefzi A, Ostresh JM, Houghten RA: Chem Rev 1997, 97:449-472.
- 28. Thompson LA, Ellman JA: Chem Rev 1996, 96:555-600.
- 29. Kulkarni BA, Ganesan A: Tetrahedron Lett 1998, 39:4369-4372.
- Matthews J, Rivero RA: J Org Chem 1998, 63:4808. 30.
- 31.
- Romoff TT, Ma L, Wang YW, Campell DA: *Synlett* 1998:1341-1342. Kremer L, Douglas JD, Baulard AR, Morehouse C, Guy MR, Alland D, 32. Dover LG, Lakey JH, Jacobs WR Jr, Brennan PJ, Minnikin DE, Besra GS: J Biol Chem 2000, 275:16857-16864.
- Roggo BE, Petersen F, Delmendo R, Jenny HB, Peter HH, Rossel J: J 33 Antibiotics 1994, 47:136-142.
- Evans KA, Chai D, Graybill TL, Burton G, Sarisky RT, Lin-Goerke J, 34. Johnston VK, Rivers RA: Bioorg Med Chem Lett 2006, 16:2205-2208.
- 35. Marfori EC, Kojiyama S, Fukusaki E, Kobayashi A: Naturforsch 2002, 57C:465-700.
- 36. Singh BK, Verma SS, Dwivedi N, Tripathi RP: Tetrahedron Lett 2006, 47:2219-2222.
- 37. Khan MA, Boyes SA: Molecules 1996, 1:27-36.