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Free radicals that form from reactive species of nitrogen and oxygen can react dangerously with cellular compo-
nents and are involved with the pathogenesis of diabetes, cancer, Parkinson's, and heart disease. Cysteine amino
acids, due to their reactive nature, are prone to oxidation by these free radicals. Determining which cysteines ox-
idize within proteins is crucial to our understanding of these chronic diseases. Wet lab techniques, like differen-
tial alkylation, to determine which cysteines oxidize are often expensive and time-consuming. We utilize
machine learning as a fast and inexpensive approach to identifying cysteines with oxidative capabilities.We cre-
ated the original features RAMmod and RAMseq for use in classification. We also incorporated well-known fea-
tures such as PROPKA, SASA, PSS, and PSSM. Our algorithm requires only the protein sequence to operate;
however,we do use templatematching byMODELLER to acquire 3D coordinates for additional feature extraction.
Therewas amean improvement of RAM over N6C by 22.04%MCC. It was statistically significantwith a p-value of
0.015. RAM provided a significant increase over PSSM with a p-value of 0.040 and an average 70.09% improve-
ment MCC.
© 2019 Mapes et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Free radicals are known to adversely alter various biological struc-
tures (like lipids, proteins, and DNA) by introducing uneven charge dis-
tributions. If free radicals become too abundant in the body, then a
condition known as oxidative stress can occur. This condition can lead
to diseases such as cancer and Alzheimer's disease [38]. Oxidation sus-
ceptible cysteines in the mitochondria have been proven to play a criti-
cal role in defense against free radicals by absorbing these species [12].
Approximately 14% of the proteins studiedwere predicted to havemito-
chondrion subcellular localizations using the iLOC prediction server
[35]. Cysteines also assist the body's antioxidant defense responses by
inducing the glutathione response pathways [11]. Due to cysteine's crit-
ical role in combating oxidative stress, there has been growing interest
in determining oxidation susceptible cysteines [13].

Cysteine is a unique amino acid that is a functional site inmany pro-
teins. It can be nitrosylated and glutathionylated, and can form sulfinic
acid, sulfenic acid, sulfonic acid, disulfide bonds, selenocysteine, coordi-
nate metals as well as other less common oxidations [22]. Our research
and the prior works to which we compare our results focus on the for-
mer six chemistries. Some additional distinguishing properties of cyste-
ine are its chemical plasticity, nucleophilicity, high reactivity, relative
rarity, involvement in structural stabilization, catalytic activity, its status
onbehalf of theResearchNetwork of
as a most common metal coordinator, and its high degree of conserva-
tion [23,26]. Cysteine plays an interesting role in redox regulation and
signaling, but this role is not entirely understood. Through our predic-
tion and scoring of cysteines that are redox susceptible, we expect
that researchers can more easily understand the role of cysteine in
free radical and disease states for the advancement of treatment op-
tions. Fig. 1 illustrates a typical protein that has both redox susceptible
and reduced cysteines.

In this figure, the sulfur atoms of reactive cysteines in the protein
1ADO are emphasized with a blue sphere (residues 201, 338, 72 from
top to bottom). The five red spheres in the protein correspond to the
sulfur atoms of the non-reactive cysteines.

We hypothesize that the Residue Adjacency Matrix (RAM) based
feature engineering reveals cysteine reactivity patterns for evolution-
arily conserved homologous proteins. Where RAM is the n-nearest
residue's distances sequentially or spatially (approximated if necessary
with MODELLER) to cysteine. We also incorporate features from prior
works PROPKA, SASA, PSS, and PSSM in addition to RAMseq and
RAMmod. Our technique notably includes both features froma template
matched 3Dmodel (PROPKA, SASA, and RAMmod) and techniques that
just require the amino acid sequence (PSS, PSSM, and RAMseq).

1.1. Prior Works

DISULFIND [16] and DIANNA [15] were among the first to incorpo-
rate machine learning techniques to predict the oxidation state of
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Fig. 1. Reactive vs. Non-Reactive Sulfurs in Cysteine Residue for Protein 1ADO.

Table 1
Summary of features.

Feature Original
publication

Unabbreviated form Typical
dimensionality

RAMseq This work Residue adjacency matrix from
primary sequence

≥ 120

RAMmod This work Residue adjacency matrix from
MODELLER data

≥ 120

N6C
(Sun's
D)

Sun 2016 Nearest 6 cysteines distance 6

PSSM [31] Position specific scoring matrix ≥ 260
PSS [33] Predicted secondary structure ≥ 39
PROPKA [2] Protein pKa at cysteine sulfur 1
SASA [4] Solvent accessible surface area at

cysteine sulfur
1
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cysteines in proteins. They used only the amino acid sequence informa-
tion as inputs. These tools first predicted which of the cysteines would
form disulfide bonds via SVM classification. Their work focused solely
on disulfide bonding and did not consider other oxidation states of the
cysteines. After DISULFIND and DIANNA, COPA [3] was invented to clas-
sify cysteines into the four potential reactivity groups: those that form
disulfide bonds, those that coordinate with metals, those that remain
reduced, and those that are susceptible to reversible oxidation. Their
program required 3-D coordinates, so a protein's structure must be
solved using expensive techniques like X-Ray crystallography or NMR.
ROCD [27], Reversibly Oxidized Cysteine Detector, was created to
work similarly to COPA and also required 3-D coordinates. The goal of
Lee's study was to improve the understanding of oxidative stress. [24]
paper, predicted which cysteines form nitrosocysteines using solvent
accessible surface area, pKa and predicted secondary structure. Hydro-
gen bonding and its relation to pKa was investigated for redox-
sensitive cysteines to gain biochemical insights into signaling [25].
Thiol chemistry and specifically cysteine redox susceptibilitywere stud-
ied using quantummechanics computational simulations for finding ca-
talysis and regulation [28]. RSCP [7], Redox Sensitive Cysteine
Prediction, was made to predict redox-sensitive cysteines. RSCP was
slightly less accurate than COPA and ROCD, but the program only re-
quired the protein's amino acid sequence, eliminating the need to
solve the protein's tertiary structure. Most recently, CPIPE was devel-
oped to provide a comprehensive computational platform to study var-
ious properties of cysteine residues [14]. It can work with either the
sequence data alone or with both the sequence data and additional
structural data. Our work is benchmarked against prior works by utiliz-
ing new features, RAMseq and RAMmod.

2. Materials and Methods

Our tool takes the amino acid sequence of the protein in question as
an input, compares it to databases for 3-D structural data, extracts 6 fea-
tures (see Table 1) from the collected data for a total of 541 dimensions
to be used in our predictors, this number may vary depending on
dataset validation. In Fig. 2 first we send our data to RAMseq for feature
extraction. Then we BLAST align our protein, from this alignment we
calculate PSSM and PSS. Next we use the alignment for MODELLER
and extract 3 sources of features PROPKA, SASA and RAMmod. For
multidimensional feature sources we optionally normalize the data (re-
quired for SVM classifiers). Finally we send the extracted features to the
classifier and perform 10 fold cross validation or train/test, the choice is
dependent on prior works so that we can make a fair comparison. Fi-
nally we calculate metrics of success such as AUC, MCC and more. Also
a confidence scores for each oxidation ismade for decisionmaking in bi-
ological workflows. Our originally engineered features, RAMseq and
RAMmod, can also be applied to post-translational modification prob-
lems (PTM) generally. This is because every PTM problem has a target
residue and a modification in this case it was cysteine and its modifica-
tion being oxidation.

We decided to take only the amino acid sequence of the protein as
input, and not require the protein's 3-D coordinates as input. Re-
searchers have determined sequence data from around 93 million pro-
teins whereas only 130 thousand proteins have known 3-D structures
[9,10] . Our work, therefore, remains general enough to be useful to a
more significant portion of the proteomics community. Although we
start with only the primary amino acid sequence, we do use predictive
algorithms to estimate the secondary and tertiary structures for use in
some of our features e.g. predictive algorithms like MODELLER and
PSSPred. If structural information of the protein exists in the RSCB Pro-
tein Data Bank, we can then integrate that information directly instead
of relying on estimations from MODELLER.
2.1. Dataset Creation and Availability

In order to validate our methods, we decided to use three datasets:
OSCTdb, BALOSCTdb, andRSC758. Sanchezandhis teamcreated the inde-
pendent dataset OSCTdb (Oxidation susceptible cysteine thiol database)
in 2008 by using the blastall program of the BLAST software package [6]
to reduce similar records that had identities higher than 35% and e-
values less than one. OSCTdb has 161 oxidation-susceptible cysteines,
301 oxidation-non-susceptible cysteines, and a total of 99 polypeptides.
The BALOSCTdb (BALanced OSCTdb) dataset was created from OSCTdb
by limiting the non-oxidation-susceptible cysteines to 161, which bal-
ances the number of oxidization-susceptible cysteine thiols with the
number of non-oxidation-susceptible cysteine thiols. RSC758, Redox-
Sensitive Cysteine 758, [7] was designed to be similar to BALOSCTdb but
with ahighernumberof entries. RSC758has 758entries for both oxidized
and non-oxidized cysteines. Table 2 details our dataset:

The datasets can be found at the availability link mentioned below.
The data is in the BALOSCTdb.fa, BALOSCTdb.txt, RSC758.fa and
RSC758.txt, these datasets were originally from https://biocomputer.
bio.cuhk.edu.hk/RSCP/download.html We are providing the CSVs with
the class label, RAMseq, RAMmod, PSSM, PSS, PROPKA and SASA fea-
tures for each of the three datasets as a supplemental material and on-
line through the availability link in the file called Features 3 Datasets.
zip. The feature's abbreviations in the files are the same as the for the
feature importance supplementary file.

https://biocomputer.bio.cuhk.edu.hk/RSCP/download.html
https://biocomputer.bio.cuhk.edu.hk/RSCP/download.html


Fig. 2. Description of the process via flowchart diagram.

Table 2
Summary description of data.

Dataset Oxidized
cysteines

Reduced
cysteines

Optimal
RAMseq n

Optimal
RAMmod
n

Number of
features

RSC758 758 758 12 18 901
BALOSCTdb 161 161 6 7 561
OSCTdb 161 376 5 6 521
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2.2. RAMseq

The RAMseq (ResidueAdjacencyMatrix from sequence data), can be
calculated on the raw sequence data without any other accompanied
data (like 3-D coordinates or the secondary structure). RAMseq is an n
by 20 matrix formed by taking the distance of the target cysteine to
thefirst, second, third,…, n'th closest amino acids of each type in the se-
quence (see Table 3 and Fig. 3 for examples). n is chosen for each dataset
for optimal performance and six is a value of n that is expected to work
well on an unknown dataset based on the validation experiments we
performed in Table 8. RAMseq is similar to a cysteine separation profile
[17] because it is a sequential index measurement, but is used for all
amino acid residues instead of solely cysteine. RAMseq is a type of ho-
mology match because similar RAM matrices are correlated to similar
Table. 3
Genomic residue adjacencymatrix sequential, as an illustration of RAM's constructionwewill u
are going to analyze the first cytosine. To calculate the first entry in A we subtract the interest
value: |4–3|= 1. For the second entry in Awe calculate |4–2|= 2. For the third entry in Awe cal
unless there are no entries in the column, in this casewe use themean of thematrix.Means pro
problems. For example themean of the C column is (1+2+6)/3=3 andG is (1+2+4+5+
any real number is a valid entry for a RAM cell.

A T C G A T

1 3 1 N/A 1 3
2 3 2 N/A 2 3
4 N/A 6 N/A 4 Mean
5 N/A N/A N/A 5 Mean
reactivities of cysteine. The data for cysteine and tryptophan distances
consistently score as one of the most prominent features. These are
the two most conserved amino acids residues, as indicated by the diag-
onals on the BLOSUM62matrix (a substitutionmatrix used for sequence
alignment of proteins) [29].

RAMseq compliments PSSM (Position Specific Scoring Matrix) in
several keyways. Firstly, RAMseqmeasures amino acid residue proxim-
ity to the target cysteine whereas PSSM only measures the frequency of
each amino acid in a specific window. Secondly, RAMseq's data can ex-
tend to positions that are further away than a PSSM reaches without
oversaturating models with higher dimensionality and thereby reduc-
ing predictive capability. Thirdly, RAMseq is more compact than
PSSMs: as n increases the window increases by 1, while RAMseq's non-
contiguous window increases by 20*n. This means for an equivalent
window size PSSM will be 20 times larger. Finally, RAMseq works di-
rectly on the inputted sequence datawithout relying on sequence align-
ments like PSSM.

The 20× 12matrix is an example of an optimal value of n for RSC758
its metrics of success were optimal with an n value of 12. Table 2 shows
the optimal values for RAMseq as 12, 6, 5 and RAMmod as 18, 7, 6 for
each of the three datasets. We used 6 as a general number that can be
expected to perform well on any new dataset based on the validation
results. The absolute distance in RAM is calculated by taking the index
of cysteine and subtracting it from the index of the amino acid of the
se thefirst 10 base pairs of chromosome 1 of the human genome: TAACCCTAAC. (LEFT)We
ing cystosine's position (4) from the nearest adenine's position (3) and take the absolute
culate |4–8|=4 and so on. (RIGHT) Themissing nucleotides use themean of their column,
vide a summary statistic in a single number that is often a used as a feature in classification
3+3+1+2+6)/9=3. It is coincidental that integer valueswere found for themeans,

C G

1 Mean of Table = 3
2 Mean of Table = 3

of Column T= 3 6 Mean of Table = 3
of Column T= 3 Mean of Column C= 3 Mean of Table = 3
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appropriate type and first, second, third,…, nth closest. This value is al-
ways positive whether the amino acid in question is before or after the
cysteine.

RAMseqi; j ¼ C−AAi
j

��� ��� ð1Þ

In Eq. (1) shown above, RAM is the value of the residue adjacency
matrix, C is the index of the cysteine in question, and AA is the index
Fig. 3. Typical protein residue adjacency matrix sequential, computed from the protein APEX_H
bonding and glutathionylation. The sequence is…ETKCSEN…where cysteine 99 is centered. No
correct type the mean of the incomplete row is used for the remaining cells in the row. These m
sensitivity. Also of importance is that thematrix in this figure is transposed from the previousm
of the amino acid. Furthermore, i is the row or amino acid type and j is
the column or j'th nearest amino acid. For example j = 1 and i = 1
means the closest amino acid of the type alanine. When j = 2 and i =
20 it is the second nearest amino acid of the type valine and so on.
When there are not enough amino acids of the specified type to fill
the matrix, an ARIMA Model, Auto Regressive Integrated Moving Aver-
age, can then beutilized. ARIMA is a time series statistical technique that
can provide the missing data points. Using the forecast package from R
and selecting (p, d, q) according to the PACF and ACF plots gives us
UMAN1. Depicted is RAMseq based on cysteine 99, that is involved in reversible disulfide
te the values do not strictly increase, because when there is not enough amino acids of the
atrices are used to template match each other, where similar matrices have similar redox
atrix, either is correct as long as the classifier's input is consistent across all the datapoints.
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either a trend or a mean prediction. [34] Although means had a strong
positive performance capability, trends were not found to improve
scores. If two cysteines have a similar mean distance to every amino
acid of a certain type, then the two likely share similar reactivity. For in-
stance, the mean of every tryptophan's distance to cysteine was chosen
as an important feature by the random forest classification model for
determining reactivity. As an example, given the n shortest distances
of [6,12,NA,NA,NA,NA], the final RAMseq is taken as [6,12,9,9,9,9]. In
the rare case that no amino acids of a certain type are present in the pro-
tein, then themean value of thematrix fills the row. In a review ofmiss-
ing value replacementswe found “...Global Average Value for Numerical
Attributes This method is very simple: ..numerical values are replaced
with the average of all values of the corresponding attribute [37].”

2.3. BLAST Alignments

BLAST (Basic Local Alignment Search Tool) is a widely used and al-
lows one to query a database for a list of similar sequences to a target se-
quence. Many of the features that we use (including MODELLER, PSSM
and the PSS tables) require sequence alignments. All of our 3-D struc-
ture based features also implicitly rely on BLAST becauseMODELLER re-
quires BLAST alignments to make its predictions on the tertiary
structure of the target proteins. RAMseq was the only feature that we
usedwhich did not require a BLAST alignment towork. BLAST uses heu-
ristic methods to search large databases for sequence matches quickly.
Although it does not necessarily find the optimal alignments like the
Smith-Waterman [30] or Needleman-Wunsch algorithm. BLAST works
by first making a k-letter word list from the target sequence (for in-
stance, with k = 3 and a sequence of PLDAG, BLAST would make a
word list of PLD, LDA, and DAG). Next, possibly matching words are
scored for each entry by use of a substitution matrix (usually
BLOSUM62). Words that exceed a given threshold are designated as
“high-scoring words” and are used for the remaining searches. The da-
tabase is scanned for an exact match with one of the high-scoring
words. On a hit, a window of the neighbors of the exact hit is expanded
and scored (using the same substitution matrix from before) until the
score decreases (i.e. an unlikely substitution is caught). The score of
this window is recorded, and if found significant, is combined with
other so-called high scoring pairs into a longer alignment. The expected
score (the probability that an unrelated sequencewould obtain a higher
score by chance) is calculated for the alignment, and the alignments
with e-values above the threshold are returned. E-value is the likelihood
of a sequence being returned due to chance by BLAST.

2.4. PSSM

PSSMs (Position Specific Scoring Matrices), also known as Position
Weight Matrices, are a useful data structure that captures the amino
acid frequency profile of a specific window in a protein sequence.
They were first introduced by Gary Stormo and his colleagues in their
1982 paper to explore patterns in E-coli nucleotide sequences. We use
PSSMs as a feature in our machine learning algorithms in order to cap-
ture the amino acid compositions of sequences that are similar to our
target sequence.

A PSSM is calculated from alignments at a position by dividing the
observed substitutions of a specific amino acid by the expected number
of substitutions. A ratio higher than one indicates that the amino acid
substitution is favored. Ratios less than one indicate that that the
amino acid substitution is not favored [32]. For a window size of 2*k
+ 1 (k positions to the left of the target cysteine, k to the right, and
the target cysteine position itself) and the twenty major amino acids,
we get a matrix that is twenty rows long and 2*k + 1 columns wide
that can be vectorized for a total of 20*(2*k + 1) features. We chose 6
for k as found in the prior work [36]. Our PSSMs provided 260 entries
for the classifier. Blastp was used from the BLAST software suite with
an e-value of 0.005, and the out_pssm setting enabled.
PSSMs reveal evolutionary patterns in a local (position specific)
manner. Proteins are known to generally conserve their structure as
they mutate, so cysteine reactivity being conserved through small mu-
tations is a logical extension. PSSMs can assist machine learning algo-
rithms by adding implicit correlation between the training examples
of the same class via evolutionarily homologous conserved similarities
thus results from two species with a near common ancestor likely
share cysteine oxidations.

2.5. PSS - Predicted Secondary Structure

Segments of amino acids can arrange themselves into unique local 3-
D structures. These structures generally fall into three classes: alpha he-
lices, beta sheets, or coils. In the sameway that we can computationally
estimate 3-D structural information from our protein sequences,we can
also predict the secondary structures of the protein. We used the
PSIpred software [33] tomake these predictions. PSIpred use neural net-
works to make predictions. PSIpred requires an alignment outputted
from a BLAST. We use a window size of thirteen positions (the target
cysteine plus the six positions to the left and the six positions to the
right) for the PSS matrix. 6 was chosen due to prior works [36]. The
final matrix is then thirteen by three (the confidence score for the
three classes of secondary structures) which results in a thirty-nine-
dimensional feature source for the classifier once vectorized.

2.6. Modeller

We used the MODELLER software [18] through a Python API to esti-
mate the 3-D structure of a protein using a technique known as compar-
ative modeling. Comparative modeling predicts the 3-D structure of a
protein based on BLAST alignments to other proteins which have a
known structure. The comparative modeling algorithm consists of four
general steps: fold assignment, target-template alignment,model build-
ing, and model evaluation. MODELLER first obtains an alignment of a
target sequence and a database of template structures. It then automat-
ically calculates amodel containing all non‑hydrogen atoms and returns
a PDB file containing the estimated 3-D coordinates of the target pro-
tein. MODELLER outputs a .pdb file that contains x, y and z coordinates
for every atom in the protein. It also includes a description of each of
the atoms, for instance alpha carbons through delta carbons, the name
of the amino acid and the position of the amino acid. We calculated
the Euclidean distance of the sulfur atom of the cysteine in question to
each alpha carbon of the appropriate amino acid type up to the n closest.

In our work, we used MODELLER with the default settings. We de-
cided to take the ten closest protein structures as our template database
for MODELLER. Sometimes, the alignments that we chose to feed into
MODELLER had insufficient overlap, which caused the model building
to fail. To remediate this we omitted the offending template and re-
peated the process.

During our experiments with BALOSCTdb and OSCTdb we use the
solved crystal structures because these datasets had all of them avail-
able. RSC758 had 249 cysteines with solved crystal structures and relied
on MODELLER for the remaining 1267 cysteines. In order to determine
the influence of crystal structures, we ran an experiment by running
our classifiers using all features (including the ones derived from 3-D
data like SASA, RAMmod, and PROPKA) on first the proteinswith exper-
imentally solved crystal structures and then the proteinswith computa-
tionally estimated crystal structures. We measured the AUC of the ROC
curve and obtained 0.732 for the 1267MODELLER based datapoints and
0.769 for the datapoints with the 249 crystal solved cysteines. While
performance dropped it is still comparable to RSCP. RSCP did not use
any MODELLER based structural features. Also these results are very fa-
vorable compared to Table 4 ([7] features, a reproduction of RSCP) that
also did not have MODELLER provided structural data. This indicates
that structural features improve performance when they are available
and should be used. MODELLER allows the classifier to make an



Fig. 4. Process for obtaining the RAMmod matrix. We calculate the Euclidean distance in-
stead of the sequential distance for all alanines to the target cysteine. The 3 smallest dis-
tances are added to the RAMmod matrix under the alanine row. This process is repeated
for all the other 19 amino acids. Note the furthest sequential alanine is the nearest in eu-
clidean distance.

Table 4
Results obtained comparing RAM vs N6C.

Including the accompanying features SASA, pKa values, the PSSM and the PSS for
both RAM and N6C.

RAMseq + RAMmod + SASA + PROPKA + PSSM + PSS (With Most Effective
Accompanying Features)

Dataset MCC AUC ACC SN SP
RSC758 0.383 0.743 0.687 0.573 0.800
BALOSCTdb 0.574 0.851 0.773 0.621 0.925
OSCTdb 0.422 0.763 0.703 0.547 0.859

N6C + SASA + PROPKA + PSSM + PSS (The Accompanying Features We Found to
be Most Effective Paired with N6C)

Dataset MCC AUC ACC SN SP
RSC758 0.230 0.634 0.612 0.505 0.719
BALOSCTdb 0.539 0.828 0.754 0.590 0.919
OSCTdb 0.317 0.711 0.609 0.267 0.952

N6C + PSSM + PSS ([7] Model Features: a Reproduction of RSCP)
Dataset MCC AUC ACC SN SP

RSC758 0.272 0.669 0.627 0.450 0.805
BALOSCTdb 0.513 0.822 0.742 0.578 0.907
OSCTdb 0.345 0.733 0.683 0.646 0.721

95N.J. Mapes Jr. et al. / Computational and Structural Biotechnology Journal 17 (2019) 90–100
approximation rather than an imputed value of the mean distance or a
special value such as 0. An imputed valuewould be required for the clas-
sification when using available structural features when they are un-
available for any of the proteins studied. There is still much work to be
done to predict protein folding andMODELLER is one ofmany attempts,
it is a template based method and works reasonably well for many pro-
teins, however we use a hybrid approach that relies on MODELLER for
half of our features (SASA, PROPKA and RAMmod) and the other half
that do not (RAMseq, PSSM, PSS). As solutions to the protein folding
problem improve so will methods that use these predicted coordinate
files such as RAMmod, PROPKA and SASA.

2.7. RAMmod - Residue Adjacency Matrix from MODELLER Data

RAMmod is the second original feature that we used in our work.
RAMseq differs from RAMmod in the distance only. Rather than using
simple positional differences like RAMseq, RAMmod uses the Euclidean
distance of the target cysteine sulfur group to each of the neighboring
residue's alpha carbon obtained from the protein's 3-D structure.
RAMmod in Eq. (2) is the value of the residue adjacency matrix. Cx, Cy
and Cz are the x, y, and z positions of the cysteine sulfur atom, and AAx,
AAy, and AAz are the x, y, and z positions of the amino acid alpha carbon.
i represents the ith amino acid (out of 20) and j represents the jth closest
amino acid to the cysteine. Both i and j in subscripted to RAMmod are the
row and column of the matrix. See Fig. 4 for an example.

RAMmodi; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cx−AAxij

� �2
þ Cy−AAyij
� �2

þ Cz−AAzij
� �2

r
ð2Þ

Like RAMseq, if there are not n amino acids in thewhole sequence of
a specific type, then the mean of the euclidean distances for the avail-
able amino acids of the specified type is used to fill in the remainder
of the row. For example, let us suppose that there are 3 tryptophan
amino acids in a protein and RAMmod n is equal to 6. The euclidean dis-
tance of the analyzed cysteine to the closest tryptophan is 3.1 Å, the sec-
ond closest is 5.2 and the third 7.4, then the fourth, fifth and sixth row
would be (3.1 + 5.2 + 7.4) / 3 = 5.2. This assumes the residue adja-
cency matrix is setup where columns specify the amino acid type and
rows specify the first, second, third, …, nth closest of the specified
amino acid type. If no amino acids of a specific type exist, then that
row is filled with the mean distance of every other amino acid type. If
Modeller fails to produce a pdb, then the mean of all the crystal dis-
tances is used. Also, like RAMseq, the data for cysteine and tryptophan
distances score as the most prominent features.
2.8. PROPKA - Protein pKa Data

Wedetermined the pKa values of our target cysteine sulfur atoms by
using the PROtein PKA software, PROPKA [1,2,8]. To determine pKa we
use Eq. (3).

pKa ¼ pKModel þ ΔpKa ð3Þ

pKModel is set at 9.00 while??pKa was determined from hydrogen
bonds, desolvation, and charge interactions. PROPKA requires 3-D coor-
dinates, which we provide from MODELLER. The pKa values typically
vary from0.00 to 14.00, butwe assign a special value of 99.99 to indicate
a suspected disulfide bond. The pKawas determined to be an important
feature for determining the reactivity of cysteine. It was the third-best
discriminator in COPA's decision tree. A pKa value greater than nine
strongly indicates the reactivity of cysteine. PROPKA determines
which cysteines are suspected disulfide bonds. Because PROPKA
operates on the proximity of atoms to one another we believe that
when the sulfur atoms are closer than a threshold it provides the special
value of 99.9. The mean without the suspected bonds was 11.2. Using
99.9, 11.2 and 0 as the value for the suspected disulfide bond our
AUC's were 0.743,0.742 and 0.743. This experiment was on the
RSC758 dataset.

2.9. SASA Data

The solvent-accessible surface area (SASA) is the surface area (mea-
sured in square angstroms) of amolecule that is available to a given sol-
vent. We used FreeSASA [4] with the Naccess [5] settings in order to
determine the SASA of our target proteins. FreeSASA requires 3-D coor-
dinates which, again, we gather through MODELLER. The SASA value of
a protein is helpful for determining the reactivity of a target cysteine.
Proteins with similar SASA scores are likely to have similar redox sensi-
tivity. SASA was the second most crucial discriminator in COPA's deci-
sion trees. Values N1.3 Å squared tend to indicate a reactive cysteine.

2.10. Normalizing the Data

Before providing the features to the machine learning algorithms,
we experimented with applying both Z-score normalization (Eq. (4))
and min-max normalization (Eq. (5)) to our data. We normalized on
the sets of each feature array at each row. Features with a dimensional-
ity of one (like SASA) were not normalized. Z-score normalization was
found to be more effective than min-max normalization. Normalizing
the entire feature matrix or rather the entire row or the entire column



Fig. 6. Matthew's Correlation Coefficient and area under the receiver operating
characteristic curve. No other features are included.

Fig. 5. Matthew's Correlation Coefficient and Area Under the Receiver Operating
Characteristic Curve Comparison for RAM vs N6C each with their accompanying
features. The reason for the full feature set is because a fair comparison of normal usage
can be made.
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was ultimately found to be less effective. Standard column normaliza-
tion was required for the SVM classifier to function properly. Random
forest did not need any normalization. In Eqs. 4 and 5, Zi is a normalized
feature of a data point, featurei refers to a specific feature of a data point
and featuresd, featuremean, featuremin and featuremax being the standard
deviation, mean, min and max respectively of the feature type for that
datapoint. PSSM or RAM is an example of a feature type. Feature types
are normalized independently of other features for each data point.

Zi ¼ featurei−featuremean

featuresd
ð4Þ

Zi ¼
featurei−featuremin

featuremax−featuremin
ð5Þ

2.11. Classification and Metrics of Performance

We experimented with classification using a random forest algo-
rithm, an SVM, and KNN. Random forest was ultimately found to be
the most effective. We validated this using 10 fold cross validation
with ROC curves in Fig. 10 of Section 3.5. Random forests are resistant
to overfittingdue to bootstrapping and a limit on the number of features
considered at each split. Pruning the trees (by setting the max_depth
parameter) in the random forest can help to prevent overfitting. Ran-
dom forests can also rank features by their importance. A collection of
binary decision trees each evaluate the reactivity of our target cysteine.
The average of the trees is then evaluated to provide a confidence score.
The confidence scores are used to create a receiver operating character-
istic curve, ROC. This curve plots the sensitivity against the false positive
rate (1 - specificity). The area under this curve, AUC, is a single number
that describes the ability of the classifier to separate the data into two
classes (in our case, cysteines that undergo oxidation and those that
do not). A confusion matrix is then made to determine the Matthew's
Correlation Coefficient using Eq. (6). The source code for this calculation
is found in the availability link under RSC758.py or any of the other
dataset's py files. For a calculation of maximumMCC threshold, an iter-
ation through the threshold values is done until the highest MCC is
found.

MCC ¼ TP� TN−FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp ð6Þ

3. Results and Discussion

Wenowpresent the evidencewhich show the ability of RAMseq and
RAMmod to determine the oxidation susceptibility of cysteines more
accurately than previous methods. In the sections below, we use RAM
to refer to the combined feature matrix of RAMseq and RAMmod,
which are the original features of this work.

3.1. RAM Vs. N6C

The feature N6C is like RAMseq except n= 6 and only cysteines are
considered. N6C provided the highest discriminative ability of redox
susceptible cysteines before this work. Fig. 5 shows the MCC and AUC
of the two sources of features. We replicated the work of [7] and
made a comparison to RAM. There was a 22% mean improvement for
all three datasets over [7] Model Features compared to RAM with a p-
value of 0.015. Furthermore, there was a 27% improvement over N6C
with both having the accompanying features we used compared to
our results, the p-value was not significant at the alpha level of 0.05
but was 0.055. See Fig. 5 and Table 4 for the detailed results.
3.2. RAM Vs. PSSM

PSSM is a frequently used method in proteomics and genetics. Be-
cause RAM has been shown below to outperform PSSM, there is a
great deal of promise for using RAM in broader applications.We provide
the radar chart in Fig. 8 for comparing the comparison of RAMseq to
PSSM. PSSM performed higher on only one dataset (BALOSCTdb)
while RAMseq performed better on the other two datasets (RSC758
and OSCTdb). See Fig. 6 and Table 5 for the detailed results.

PSSM is a broadly used feature set that has been in existence for
N30 years. RAM alone was 70% higher in terms of MCC compared to
PSSM alone. This difference was significant with a p-value of 0.040.
3.3. Prior Works

In the following section, we make comparisons between RAM, RSCP
and COPA. RSCP's primary contributionwas the ability to use sequential
featureswithout the need of solved 3-D structural data. RSCP, therefore,
is more broadly applicable than algorithms like COPA, which requires a
PDB to predict cysteine redox susceptibility. However, COPA's accuracy
was higher than RSCP's accuracy. RAM is a hybrid approach that accepts
structural features but can use MODELLER predictions when only se-
quential data is provided. See Fig. 7 and Table 6 for the detailed results
of the experiments.

RAM had higher MCC and AUC than RSCP and COPA. The average
MCC improvement across the three datasets for a RAM vs RSCP compar-
ison was 14%with a p-value of 0.064. This is not significant at the alpha
level of 0.05 but it suggests that RAM is a better source of features than



Table 5
Results obtained comparing RAM vs PSSM.

The comparison of PSSM to RAM without any other features

RAMseq + RAMmod

Dataset MCC AUC ACC SN SP
RSC758 0.378 0.743 0.676 0.496 0.856
BALOSCTdb 0.501 0.785 0.748 0.683 0.814
OSCTdb 0.378 0.709 0.674 0.472 0.875

PSSM
Dataset MCC AUC ACC SN SP

RSC758 0.181 0.612 0.586 0.745 0.426
BALOSCTdb 0.428 0.774 0.711 0.627 0.795
OSCTdb 0.130 0.564 0.567 0.752 0.383

Table 6
Comparison of RAM to prior works COPA and RSCP.

Comparing RAM to prior works

RAM

Dataset MCC AUC ACC SN SP
RSC758 0.383 0.743 0.687 0.573 0.800
BALOSCTdb 0.574 0.851 0.773 0.621 0.925
OSCTdb 0.422 0.763 0.703 0.547 0.859

RSCP
Dataset MCC AUC ACC SN SP

RSC758 0.362 0.727 0.679 0.602 0.756
BALOSCTdb 0.522 0.821 0.761 0.770 0.752
OSCTdb 0.322 NA 0.629 0.789 0.561

COPA
Dataset MCC AUC ACC SN SP

RSC758 NA NA NA NA NA
BALOSCTdb 0.572 0.823 0.786 0.776 0.795
OSCTdb NA NA NA NA NA
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prior works. Because COPA has performance metrics for only one
dataset, no statistical analysis is possible, but RAM outperforms on
MCC and AUC metrics of success.

3.4. Prior Features Vs. RAM

RAMseq and RAMmod are distinguishable like all prior features. In
Fig. 8 RAMseq+ RAMmod sit on the outside for the dataset BALOSCTdb
indicating their combined performance is optimal to either alone. How-
ever for RSC758 the features RAMseq and RAMmod taken together is
equivalent to RAMseq taken alone. Finally for OSCTdb, RAMmodoutper-
forms the two taken together. It is possible to use one or both of the fea-
tures for classification. See Figs. 8 and 9 for the results.

3.5. Choosing an Optimal N for RAMseq and the Results of Using 6,6 for
RSC758

A comparison between the different values of n was performed and
results reported in Table 8. The n of 6 was found to be effective in prior
research [36] It is a coincidence that RAMseq and RAMmod were fairly
close to the number 6 for PSS and PSSM as seen in Table 2. We used 6
as a general number that can be expected to perform well on any new
dataset based on the results. Table 7 shows the effect of using an n of
6 for both RAMseq and RAMmod.

We defaulted to a value of n = 6 but found RAMseq n = 12 and
RAMmod n = 18 gave us the highest metrics of success for the
RSC758 dataset. Optimizing the values of n for RAMseq and RAMmod
increased the AUC by 4.5% and MCC by 16.8%. However, optimizing
the value of n may lead to overfitting the data.

We performed ten fold cross validation and obtained n values that
were optimal for RAMseq and RAMmod, reported is the AUC for each
RAMseq n on the three datasets. Table 2 shows the optimal values for
Fig. 7. A comparison of RAM with all supplementary features against the other two
methods (RSCP and COPA) on our 3 datasets (RSC758, BALOSTCdb, and OSTCdb). RAM
has the highest MCC of all methods on all datasets.
RAMseq as 12, 6, 5 andRAMmod as 18, 7, 6 for each of the three datasets
across all the metrics of success.
3.6. Choosing an Optimal Matthew's Correlation Coefficient and Classifier

Adjusting the classification threshold of the confidence scores (the
value at which we decide to classify a data point as the other label) for
our classifiers ensures the optimal performance of our final tool. In
this section, we show how varying the classification threshold affects
the model performance. Fig. 10 (LEFT) plots the MCC as a function of a
threshold. The optimal value occurs at the peak of the curve. Fig. 10
(RIGHT) shows the receiver operating characteristic curve for 5 differ-
ent classifiers on RSC758.

A comparison between the classifiers RF, SVM, KNN and more was
done in Fig. 10. The ROC curve for random forest was the furthest left
and topmost. This indicates that for the binary classification problem
any confidence threshold separating the classes provides a bettermetric
of success (sensitivity and specificity). As the classifier threshold is de-
creased (to the right and top of the curve), the classifier becomes
more sensitive (labeling oxidizing cysteines as oxidizing) while
Fig. 8. Note that the radar chart shows that RAM sits on the outer edges of the chart
compared to other features. This indicates that the features have higher performance on
every dataset compared to all features in prior works. The results in this figure are for
each feature used alone.



Fig. 9. (LEFT) Shown above is the probability density function approximated using the statistical software R. The density function in the stats package was used with default parameters.
Note the vertical lines for SASAand PROPKA these are one-dimensional features; therefore the correlation pdf is a vertical line. Theprobability of a correlation existing in a range is foundby
taking the integral between themin andmax of any two points.With this inmind, the plot indicates that RAMmod andRAMseq have a significant probability of a correlationwith the class
label, albeit negative. This suggests that the goodness of the features can be observed using non-classification tools such as ordinary least squares (OLS). It is important to note that each
curve has an area below it equal to one. (RIGHT) By transforming the PDF to a CDF using Rwe can see the probability of a feature's correlation being equal or less than a particular value.We
make this transform so that we can run a statistical test, the Two Sample Kolmogorov-Smirnov test or simply KS test. Our p-value is b2.2e-16 comparing RANDOM to RAMseq and RAN-
DOM to RAMmod.

Table 7
Results from adjusting the n parameter on both RAMseq and RAMmod.

RAMseq + RAMmod + SASA + PROPKA + PSSM + PSS

Dataset and n MCC AUC ACC SN SP
RSC758 6,6 0.314 0.711 0.646 0.460 0.831
RSC758 12,18 0.367 0.743 0.679 0.569 0.789
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sacrificing specificity (labeling non-oxidizing cysteines as non-
oxidizing) and vice versa.
4. Conclusion

Our results clearly show the benefit of applying our original features,
RAMseq and RAMmod, to machine learning approaches for cysteine re-
activity predictions. By every metric on which we scored, a feature sys-
tem includingRAMoutperformed a systemusingN6C. N6Cwas the best
feature to date. Our work achieved state-of-the-art accuracies, yet only
required the primary amino acid sequence of the target proteins and in-
tegrated structural features when available.
Table 8
AUC by Varying RAMseq n for an Optimal RAMmod n.

AUC as a function of RAMseq n with RAMmod n fixed at its optimal value

N 4 5 6 7 8 9
RSC758
AUC 0.729 0.737 0.736 0.737 0.734 0.740

BALOSCTdb
AUC 0.854 0.856 0.851 0.851 0.849 0.855

OSCTdb
AUC 0.760 0.763 0.729 0.717 0.701 0.693
With regards to model evaluation and reproducibility of the results.
The model evaluation is illustrated in Fig. 2. It is standard ten fold cross
validation, with the exception of OSCTdb that was a trained with
RSC758 and evaluated with OSCTdb (this is the same method in RSCP
and we can make a fair comparison by training and testing likewise).
The reproducibility of the calculations ofMCC are in Eq. (6) andwas cal-
culated using the python package sklearn, AUCwas calculated similarly.
The source code for the calculations can be found under the availability
link. The results have been reproduced on a separate Windows com-
puter by installing Anaconda, using Git to download the data and files
and running the RSC758.py, BALOSCTdb.py and OSCTdb.py in a Spyder
IDE (part of Anaconda). For the AUC and MCC calculations all that is
needed for sklearn is the binary class label (oxidized/reduced or 1/0)
and the classifier predicted probability that varies between 0 and 1.
Linux and Macintosh follows an identical workflow.

RAM is readily comparable to a PSSM. Because of the prevalence of
PSSM's in current literature, a similar feature such as RAM could be use-
ful in improving the accuracies of a great deal of proteomic and genetic
machine learning techniques. PSSMdoeswell conducting local searches
but will frequently fail on distant conserved regions due to its small
window size. RAM can handle these distant conserved regions quite
well. RAM is also useful for a broad class of problems, notably post-
10 11 12 13 14 15

0.739 0.744 0.743 0.740 0.741 0.741

0.841 0.839 0.844 0.845 0.842 0.839

0.680 0.686 0.673 0.669 0.675 0.673



Fig. 10. Matthew's Correlation Coefficient as a function of threshold and ROC Curve for Classifiers. (LEFT) We chose the optimal threshold for MCC after varying classifier, classifier
parameters and feature parameters for optimal AUC. (RIGHT) By analyzing five different classification schemes, including OLS and a random baseline we can visualize the differences
in sensitivity and specificity of each of these algorithms. Notably, random forest is the best performer as shown by its higher and shifted leftward appearance. A perfect curve would
follow the left and top side.
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translational modifications because there are residues of interest that
need to be classified and neighboring residues in these problems. RAM
can be modified to work with DNA. For DNA, the matrix is 4*n, and
has the rows A, T, C and G. Future work where RAM data is used for
DNA may complement PSSM for genetic problems as has been shown
in this work for cysteine reactivity.

Biologically either of these two new sources of features measure ho-
mology of proteins. An interesting experiment showed us that themost
conserved amino acids were the best features of RAM (see supplemen-
tary material). In other words how far the most conserved amino acids
such as tryptophans and cysteines (these two amino acids aremost con-
served based on BLOSUM62 substitution matrix diagonal) are from the
cysteine in question allowed us to choose the most homologous cyste-
ines. For example, if a mouse protein retains several tryptophans from
its common ancestorwith humans then the oxidation state of a cysteine
at a similar distances is likely to be shared. For instance the protein insu-
lin in mice and humans shares many of the same cysteine oxidations at
the 3 disulfide bridges (Cysteines 31–96, 43–109 and 95–100 Uniprot
P01308 and P01326) and several of the amino acids' distances to
those cysteines are shared, thus RAM would identify this conservation
and therefore the oxidized cysteines. Of interest is that experiments rel-
evant tomice can bemapped to humans by using RAMor from one spe-
cies to another when they have conserved amino acids from a common
ancestor.
Availability

Data and Replicable Results are provided at https://github.com/
johnmapesjr/RAM
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