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Published epidemiological studies of traumatic brain injury (TBI) of all severities

consistently report higher incidence in men. Recent increases in the participation of

women in sports and active military service as well as increasing awareness of the very

large number of women who sustain but do not report TBI as a result of intimate partner

violence (IPV) suggest that the number of women with TBI is significantly larger than

previously believed. Women are also grossly under-represented in clinical and natural

history studies of TBI, most of which include relatively small numbers of women, ignore

the role of sex- and age-related gonadal hormone levels, and report conflicting results.

The emerging picture from recent studies powered to detect effects of biological sex

as well as age (as a surrogate of hormonal status) suggest young (i.e., premenopausal)

women are more likely to die from TBI relative to men of the same age group, but this

is reversed in the 6th and 7th decades of life, coinciding with postmenopausal status in

women. New data from concussion studies in youngmale and female athletes extend this

finding to mild TBI, since female athletes who sustained mild TBI are significantly more

likely to report more symptoms than males. Studies including information on gonadal

hormone status at the time of injury are still too scarce and small to draw reliable

conclusions, so there is an urgent need to include biological sex and gonadal hormone

status in the design and analysis of future studies of TBI.
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INTRODUCTION

Traumatic brain injury is a major cause of death and disability, especially among young people,
and a major public health problem throughout the world. Epidemiological studies of TBI,
mostly relying on emergency department and hospitalization records, consistently report higher
incidence in men (1–4), sometimes explained by the higher propensity of men to be involved
in physical altercations, military service and contact sports. However, this contention may need
to be revised in view of recent publications suggesting that millions of women are exposed
to TBI or repeated concussions caused by intimate partner violence (IPV), which are often
unreported and undetected (5, 6). Similarly, in most observational and clinical studies of TBI,
women represent ∼30% or less of subjects (Tables 1, 2). Consequently, the natural history,
outcome and pathophysiology of TBI in women in general, and IPV victims in particular, have
received little systematic investigation to date. Investigation of TBI and concussion outcome in
women is also complicated by the fact that during their life time, women undergo massive and
abrupt changes in gonadal hormone secretion at puberty and menopause, and are exposed to
fluctuating levels of the same hormone across the menstrual cycle during their reproductive years.
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Biegon TBI in Men and Women

Female and male gonadal hormones are known to exert many
diverse effects on brain structure and function [reviewed in (39)]
which are likely to modulate the brain response to trauma in
multiple ways and may, in principle, offer sex-specific treatment
targets. This is an important and timely question since with the
increasing involvement of women in the military (40) and in
sports, including contact sports such as Rugby (41); the number
of women at risk for sustaining TBI or concussion is on the
rise, while treatment algorithms are still based on the results of
clinical studies with an overwhelming majority of men (70% or
above), none of which resulted in an FDA approved treatment
for the neurological sequelae of TBI; despite promising results
from animal studies (Table 1). A comprehensive literature review
of sex differences in human TBI and animal models has been
published recently (42), with 73 papers demonstrating better
TBI outcome in men relative to women, 41 papers which show
the opposite (women better than men), 28 papers reporting no
difference and 14 papers reporting mixed results. Obviously,
these results are not conducive to understanding female-specific
risks and attributes of TBI. The reasons for the discrepancy
between human and animal studies have been addressed by us
and others and are outside the scope of this minireview (42, 43).

Another emerging issue related to effects of biological sex on
outcome of TBI is the recent recognition of the devastating long-
term sequelae of repeated concussive TBIs (44), most notably
chronic traumatic encephalopathy, a condition discovered and
initially studied exclusively in male athletes (45).

Here we offer a concise critical review of emerging data
on the effect of biological sex and hormonal status on TBI
incidence and outcome, highlighting some possible mechanisms

TABLE 1 | Key clinical trials in TBI.

References %women Outcome Analysis

by Sex

Young et al. (7) 21 3-month GOS No

Marshall et al. (8) 24 6-month GOS No

Marmarou et al. (9) 29 3-month GOS No

Morris et al. (10) 23 6-month GOS No

Clifton et al. (11) NR 6- month GOS NR

Maas et al. (12) 18.6 6-month GOS No

McCarthy et al. (13) 26 3-24 month GOS No

Giacino et al. (14) 27 4-6 week DRS No

Zafonte et a. (15) 25 3 months GOS No

Skolnick et al. (16) 21 6-month GOS No

Wright et al. (17) 26 6-month GOS-E Yes (M >

F)*

Nichol et al. (18) 16 6-month GOS-E No

CRASH-3 collaborators (19) 19 4-week mortality No

Rowell et al. (20) 26 6-month GOS-E No

GOS, Glasgow outcome scale; DRS, disability rating scale; GOS-E, Glasgow coma scale,

extended. NR, not reported. M, men; F, women. M > F better outcome in men. *Trend,

p = 0.07.

Only phase III trials including > 300 subjects are included.

None of these studies was analyzed for a sex x age interaction.

and identifying significant knowledge gaps which need to be filled
in order to improve outcome of TBI.

TBI INCIDENCE AND PREVALENCE IN
MEN AND WOMEN

Traumatic brain injury is a major public health concern and
prominent cause of death and disability. Worldwide, in 2016,
there were ∼27 million new cases of TBI with an age-adjusted
incidence rate of 369 per 100,000—representing a 3.6% increase
from 1990. In the same year, prevalence was 55.5 million
individuals, representing an 8.4% increase from 1990 (46). In the
US, TBI statistics published by the Centers for Disease Control
and Prevention (1–3, 47) show that the combined rates for TBI-
related emergency department (ED) visits, hospitalizations, and
deaths in the United States have been on the rise and totaled 823.7
per 100,000 US population in 2010. Furthermore, an estimated
cumulative 5.3 million individuals are living with a TBI-related
disability in the United States. This represents a prevalence of
∼2% of the U.S. population (47).

Epidemiological studies consistently report higher incidence
in men, such that the odds of sustaining a TBI are 2.22 times
higher in men than in women (4). The reported TBI prevalence
in the general population is 16.7% among males and 8.5% among
females. Overall, males account for ∼59% of all reported TBI-
related medical visits in the United States (48). This robust and
consistent sex difference is sometimes explained by the higher
propensity of men to be involved in physical altercations, military
service, and contact sports (4). Sex differences in TBI incidence
are modulated by age, and recent reports show that among the
elderly (over 65), overall TBI incidence (49) and rates of ED visits
for mild TBI were higher for women than for men (50). Similarly,
rates of sports related injuries in young women seem to be equal
or higher to those of men [e.g., (51–54), Table 3].

Importantly, studies relying on reported injuries and ED
visits likely paint a distorted picture of the actual incidence of
TBI, since they do not include TBIs suffered by female victims
of intimate partner violence (IPV). IPV is a highly gendered
behavior, such that the majority of perpetrators are men and
the majority of victims are women, and TBIs suffered in this
context are often unreported (79, 80). The Centers for Disease
Control and Prevention (81) report that 32 million women in
the United States have experienced IPV during their lifetime.
Moreover, the National Intimate Partner and Sexual Violence
Survey states that nearly one in four women in the United States
have experienced severe physical violence (being hit, kicked,
choked, beaten, burned, stabbed, or shot) during their lifetime
by an intimate partner (82). Many of these violent attacks are
likely to result in traumatic or anoxic brain injury, since it is
common for abusers to target the victim’s face, neck, and head
(83, 84), with the prevalence of IPV-related TBI estimated as 60
to 90% (79, 85). A recent study found that more than 80% of
IPV victims referred from homeless or domestic violence shelters
sustainedmultiple TBIs, 84% had clinically significant symptoms,
yet only 21% sought medical attention at the time of injury (85).
This very low rate reflects the fact that many battered women
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TABLE 2 | Representative observational studies of moderate and severe TBI biomarkers and outcomes.

References N (%F) Primary outcome Analysis by

Sex Sex X Age

Farin et al. (21) 957 (23) ICP, Edema Yes (M > F) Yes (F < 50 worst)

King et al. (22) 159 (23) 12-month GOS Yes (M = F) No

Davis et al. (23) 13,247 (24) In-Hospital mortality Yes (M = F) Yes (> 50F > M)

Corrigan et al. (24) 3,444 (28) RTW Yes (M > F) Yes (> 55 F > M)

Berry et al. (25) 72,294 (30.8) Mortality Yes (F > M) Yes (> 45 F > M)

Ottochian et al. (26) 1,807 (22) Mortality Yes (M > F) Yes (> 55M > F)

Yeung et al. (27) (2979) 29 Mortality, edema Yes (M = F, mortality NA*

M > F, edema)

Lavoie et al. (28) 175 (25) Depression (PHQ-9) Yes (M = F) No

Walker et al. (29) 10,125 (27) 1-5 year GOS Yes (M = F) No

Puffer et al. (30) 1,169 (26) GOS-E trajectory No No

Wilkins et al. (31) 304 (19) 6-24 month GOS-E No No

Stromberg et al. (32) 7,867 (25) RTW Yes (M = F) No

Deng et al. (33) 264 (22) ICP, edema, surgery Yes (M = F, edema) No

(F > M, surgery)

Gruen et al. (34) 164 (25) 30 day mortality No No

Mellett et al. (35) 429 (22) Mortality, GOS, NRS, DRS No No

Okonkwo et al. (36) 1,359 (32) GFAP, GOS-E No No

Xu et al. (37) 1,206 (32) CRP, GOS-E No No

Kerezoudis et al. (38) 2,508 (35) Mortality No NA**

ICP, intracranial pressure; GOS, Glasgow outcome scale; RTW, return to work; GOS-E, Glasgow coma scale, extended; NRS, Neurobehavioral rating scale; DRS, disability rating scale,

GFAP, Glial Fibrillary acidic protein; CRP, c-reactive protein.

NA, not applicable, *Study only included young women **All participants were elderly.

may never go to the Emergency Department or get treated by
health care providers (86–89) resulting in underreporting and
poor detection. Given the numbers of women over the age of 15
experiencing IPV, there could be more than 31,000,000 women
who have received a traumatic brain injury (90) in the US
today- a number which should radically change our perception
of TBI demographics.

BIOLOGICAL SEX AND TBI OUTCOME

TBI outcome is highly variable: Moderate and severe injuries
may result in death, persistent vegetative state, severe disability,
moderate disability, or good recovery, which form the basis for
the most commonly used TBI outcome scales—initially the 5 step
Glasgow outcome scale, (GOS), more recently replaced by the 8
step extended GOS (GOS-E). Mild TBI and concussion, which
actually account for the majority (∼75%) of TBI cases (2), rarely
result in death or severe disability but are often associated with
long term changes in cognition and behavior (91, 92), which can
be assessed by scales such as the Rivermeade post-concussion
questionnaire [RPQ, (22, 93)]. Early studies which established
risk factors for poor outcome in TBI, such as advancing age (94)
did not report analyses by sex.

The influence of biological sex on the outcome of TBI has been
the subject of several analyses with contradictory results, possibly
due to the relatively small number of women and girls in clinical
studies, lack of information on hormonal status and the wide

disparity in outcome measures used for the comparison, which
included such disparate measures as return to work, bacteremia
and mortality [(42); Tables 1, 2]. Thus, studies comparing men
and women without paying attention to hormonal status or age
report no differences in outcome, better outcome in women or
better outcome inmen (27, 95–99). Probably for the same reason,
the recognition of various risk factors for poor TBI outcome,
including advanced age, is biased toward men, and this has not
changes since age as a risk factor for poor TBI outcome was
first reported by Teasdale et al. (94). Consequently the treatment
guidelines for head injury [e.g., (100, 101)] are heavily influenced
by findings in male patients. Differences between the sexes in
the frequencies of risk factors and their effect on early and late
outcome as measured by TBI-specific outcome scales (i.e., GOS
and GOSE) have not been systematically investigated to date.
Similarly, research on mild TBI and concussion, which actually
account for the majority (∼75%) of TBI cases (2) in the general
population is also plagued by small studies, disparate outcome
measures and paucity of women (see Table 3). Understandably,
mild TBI/concussion is more highly prevalent among athletes
and the military (102, 103). While studies focusing on contact
sports in which women are not represented (91, 104, 105) do not
contribute to the question at hand, there is a recent explosion
of publications on sex differences in incidence and outcome of
sports related concussions in sports in which women do engage
(Table 3). These studies include a higher proportion of women
relative to clinical and observational studies moderate—severe
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TABLE 3 | Representative studies of mild TBI and sports concussion incidence and outcomes.

References N (%F) Primary outcome Analysis by

Sex Sex and Age

Colvin et al. (55) 234 (60.3) PCS, IMPACT Yes (M > F) NA

Preiss et al. (56) 260 (34) PCS Yes (M > F) Yes (MinorF > adultF)

Bazarian et al. (57) 1425 (45.1) RPQ, PCS Yes (M > F) Yes (F < 55 worst)

Covassin et al. (58) 296 (31.4) IMPACT, PCS Yes (M > F) NA

Styrke et al. (59) 163 (31.8) RPQ 3 years Yes (M > F) No

McMahon et al. (60) 375 (29.9) GOS-E, BSI-18, RPQ No No

BluMfeld et al. (61) 1500 (40) Incidence, Symptoms, duration Yes (M > F) No

Ma et al. (62) 108 (100) Incidence NA NA

Albanese et al. (63) 53 (50.8) PCS, ASI-3, DTS, NSI Yes (M > F) No

Brickell et al. (64) 172 (50) NSI, PCL-C Yes (M > F) NA

Chandran et al. (65) 580 (51) Incidence, duration Yes (M > F) NA

Harrold et al. (66) 426 (58) SCAT3 and K-D Yes (M > F) No

MacDonald et al. (67) 94 (7) 5 year GOS-E No No

Mollayeva et al. (68) 94 (38) Pain Yes (M = F) No

Roos et al. (51) 3825 (59) Incidence Yes (M > F) No

Rosene et al. (52) 415 (30) Incidence Yes (M = F) No

Bahraini et al. (69) 4012 (5.4) NSI Yes (M > F) NA

Lippa et al. (70) 158 (50) NSI, PTSD, AIS. Yes (M > F) NA

Terry et al. (71) 1265 (42) Symptom duration Yes (M > F) No

Varriano et al. (72) 436 (42.6) PCS rate Yes (M > F) Yes (Young > old)

Nelson et al. (73) 1154 (34.4) GOS-E 3, BSI-18, RPQ No No

Yue et al. (74) 100 (29) GOS-E Yes (M > F) NA

Combs et al. (75) 494 (44.7) Graded symptom checklist Yes (M > F) NA

Kennedy et al. (76) 184 (10.3) Depression Yes (M > F) NA

Putukian et al. (77) 1922 (33.8) Incidence, duration Yes (M > F) NA

Spano et al. (78) 778 (11.4) Incidence, Symptoms, duration Yes (M > F) No

PCS, post-concussion syndrome; IMPACT, Immediate Post-concussion Assessment and Cognitive Testing; RPQ, Rivermeade Post-concussion Questionnaire; BSI-18, Brief Symptom

Inventory 18; AsI-3, Anxiety Sensitivity Index-3; DTS, Distress tolerance scale; NSI, Neurobehavioral Symptom Index; PCL-C, PTSD checklist, civilian version; SCAT-3, Sport Concussion

Assessment Tool 3; K-D, King-Devick scale; GSC, Graded symptom checklist.

NA, not applicable, all participants were young.

TBI (Tables 1, 2) and despite the wide range of sports included,
from water polo through rugby to Jio-Jistsu, and the very
large variation in outcome measures (Table 3), there appears
to be a near consensus that women are more likely to receive
concussions in sports and have a worse outcome. However, these
studies cannot be generalized to the population at large since
they typically include only young healthy subjects engaging in
sports (Table 3).

Biological Sex, Age and TBI-Related
Mortality
The picture is somewhat less confusing if we focus our attention
on relatively large (N ≥ 1000 total) studies reporting “hard,”
completely objective outcome measures such as mortality and
persistent vegetative state which segregate outcome by both age
and sex. An early example is the community study published by
Klauber et al. (95), which reported no effect of sex on mortality.
However, upon perusal of the breakdown of mortality data by
sex as well as age (in decades), The results show that between
puberty and old age, there is no significant effect of age on

mortality in women, while mortality in men shows a strong and
highly significant association with increasing age, as would be
expected from prior studies (94). This sex x age interaction on
the outcome of TBI results in a reversal of a sex difference in
TBI mortality, which occurs around age 50, thereby negating
an overall effect of sex on outcome. Thus, between the ages of
fifteen and fifty, men have a (small) mortality advantage over
women in the same age groups, but this is reversed after age
fifty, when men are significantly more likely to die relative to
younger men or women in all age groups. This pattern emerged
in the absence of sex differences in injury severity (95). Assuming
age is a reasonable surrogate for hormonal status in the absence
of actual data, age 15 and over may be considered to be post
pubertal and women over 50 may be considered to be mostly
post-menopausal. This age cutoff is commonly used to separate
mostly pre- and mostly postmenopausal female patients because
the majority of women reach menopause during the decade
between 45 and 55 years of age (106, 107), whereas in men a
continuous decline in testosterone levels is associated with ages
>50 years (108).
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In a subsequent study involving 25,300 emergency head-
related admissions, it was found that women were more likely
to die from all head injuries (OR = 1.3) with an even higher
likelihood of death from violent head injuries (OR = 2.38). The
authors also note that women 15 or older stayed in the hospital
longer than men (109).

Davis et al. (23) published a study of a total of 13,437
patients (n = 3,178 females and 10,259 males) with moderate-
to-severe TBI (head AIS > or = 3) from a county trauma
registry. While overall mortality was similar in men and women,
a separate analysis performed for premenopausal (< 50 years) vs.
postmenopausal (> or = 50 years) patients, after stratification
by decade of life, revealed no statistically significant difference in
mortality of pre-menopausal females vs. males, though outcome
was significantly better in postmenopausal females vs. males (OR
0.63, 95% CI) with similar rates of hypotension (Systolic blood
pressure < 90mm Hg), head Abbreviated Injury Score (AIS),
and Injury Severity Score (ISS). Stratification by decade of life
revealed the gender survival differential inflection point to occur
between ages 40-49 (OR 1.06, 95% CI 0.66-1.71, p = 0.798) and
ages 50-59 (OR 0.38, 95% CI 0.20-0.74, p = 0.005). The authors
then conclude that endogenous female sex hormone production
is not neuroprotective in human TBI. These results also dovetail
with those of studies performed more recently (25, 27). Berry
et al. (25) examined records of 72,294 moderate and severe
injury patients from the National Trauma Database (2000–2005)
and found that peri- and postmenopausal women (Age more
than 45) demonstrated improved survival relative to men, but
premenopausal women did not. The exception to this trend is
the (relatively modestly sized) study by Ottochian et al. (26);
which included 1,800 subjects (22% women) and reported a
survival advantage for men over 55 relative to women over 55.
The study by Yeung et al. (27), which included women under 45,
reported no survival advantage in “hormonally active” women as
compared to men in the same age range. Consequently, authors
of both papers concur that estrogen does not appear to confer
neuroprotection in women after TBI.

Sex Differences in Mild TBI/Concussion
Outcome
Sex differences in concussion incidence and outcome were
reviewed by Dick (110) who concluded that the literature
supports higher incidence and worse outcome in women. A later
review (111) opined the literature reviewed did not support this
conclusion. Table 3 features representative subsequent studies,
a few of which stratified data by sex as well as age. Thus, in
a 2010 study, Bazarian et al. (57) examined mTBI outcome in
1425 mTBI patients (45.1% female) presenting to an academic
emergency department. Men were significantly less likely to be
in a higher Post concussive symptoms (PCS) score category
relative to women (OR = 0.62), and this association was more
prominent during child-bearing years (between puberty and
menopause) for females. The authors conclude that female sex
is associated with significantly higher odds of poor outcome
after mTBI, as measured by PCS score, after control for
appropriate confounders. This conclusion resonates with the

results of a 2009 study (56) reporting no sex difference in
post-concussion symptoms among minors (presumably mostly
pre-pubertal subjects) with worse outcome in adult women
(Table 3). This study did not include women older than 50.
This is common in many of the more recently published
studies on concussion in men and women performed in athletes
engaged in a variety of sports and in military personnel, and
therefore including a relatively young population (Table 3). With
this caveat in mind, there appears to be a near-consensus
that across different sports, women are more likely than men
to suffer sports-related concussions, report more symptoms,
have a slower recovery and overall more negative outcome.
The latter observations were also reported in an exquisitely
designed study focusing on female service members (64),
whereby women (N = 86) reported more symptoms despite
having been matched with the male comparison group (N =

86) for TBI severity, mechanism of injury, bodily injury severity,
days post-injury, age, number of deployments, theater where
wounded, branch of service, and rank. A pilot publication
on 100 subjects with mTBI (29% women) from the TRACK
TBI study examined PTSD as an outcome and concluded that
sex may interact with age for PTSD symptomatology, with
females 30–39 y at highest risk (74). The authors conclude
that prevention and rehabilitation/counseling strategies after
mTBI should likely be tailored for age and sex. Rather
disappointingly, larger studies published using TRACK-TBI data,
while including a similar percentage of women, did not use sex
as a grouping variable in the analysis of outcomes [(60, 73),
Table 3].

Neurodegenerative Disease Following
Single or Repeated TBI in Men and Women
Traumatic brain injury is believed to be an important risk
factor for neurodegenerative diseases, such as Alzheimer’s
disease (AD) and chronic traumatic encephalopathy (CTE)
(112, 113). Despite the fact that AD incidence and prevalence
is significantly higher in women relative to men, and
significant sex differences in the disease trajectory and
response to treatment (114–116), there is no information
on whether the AD risk associated with TBI is modulated by
biological sex.

Chronic traumatic encephalopathy (CTE), a dementia-like
syndrome which manifests at younger ages than AD, appears to
be linked to repeated exposure to Mild TBIs/concussions rather
than a single TBI and is associated with an anatomically distinct
pattern of tau deposition in the absence of significant amyloid
deposits (105, 117). This condition was initially characterized and
subsequently studied exclusively in male athletes and military
personnel (44, 45, 118–120). Consequently, there are no reports
on TBI-related CTE in women since the modern definition
of this entity. Tantalizingly, the only description of CTE-
like brain pathology in a woman is a case study published
by Roberts et al. (121) titled “Dementia in a punch-drunk
wife,” describing a woman who died following prolonged and
severe IPV.
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POSSIBLE MECHANISMS UNDERLYING
SEX DIFFERENCES IN TBI OUTCOME

The mechanisms underlying the relatively poor outcome of
young women with TBI and concussion are not known,
though several suggestions have been made based on small
studies in mild TBI. Thus, Albanese et al. (63) propose that
higher anxiety sensitivity mediates gender differences in post
concussive symptoms, and another study cites higher preinjury
migraine rates in women as a reason for longer time to return
to school and sports among concussed female athletes (71).
Attempts to use a similar approach regarding depression yielded
conflicting results (28, 76). Yue et al. (74), summarizing results
from the TRACK-TBI pilot, make the general observation
that the sex differences they observe “may be attributable to
cortical maturation, biological response, social modifiers, and/or
differential self-report” although suspected sex differences in
the latter variable have not been consistent when examined in
the athlete population (122, 123). In addition, Alsalaheen et
al. (124) and Grafton et al. (125) invokes different strategies
to stabilize the head in response to impulsive loads as a
possible explanation for sex differences in concussion injury
risk. Recent studies also suggest sex differences in biomechanics
of concussion in sports (126). However, these studies usually
report higher impacts in males and it is hard to see how
these findings can explain the consistent findings of worse
outcome in women.

Effects of Gonadal Steroid Levels
Both female and male gonadal hormones are known to exert
multiple diverse effects on brain structure and function; which
can be roughly divided into irreversible (organizational) effects
during brain development and reversible (activational) effects
after puberty [reviewed in (39)]. Numerous, though not all,
animal studies suggested that female sex hormones improve
brain injury outcome [Reviewed in (42, 127)]. These animal
studies led to a series of clinical trials of progesterone in human
TBI, however the pivotal phase III trials failed to provide
any evidence of improvement in outcome [(16), Table 1]. This
was the only human study in which gonadal steroid levels
were manipulated through hormone administration in men
and women. Interestingly, the studies were not designed to
examine outcome by sex. In a study of the relationship between
endogenous progesterone levels and menstrual cycle phase in
women (128), the authors found that women injured during
the luteal phase of their menstrual cycle, when progesterone
concentration is high, had significantly lower General Health
Ratings and higher RPQ somatic scores one month after injury
than women injured during the follicular phase of their cycle,
suggesting that high ambient levels of female gonadal steroids
have a negative rather than a positive effect on mTBI outcome.
In a similar vein, estradiol was identified as a “potent mortality
marker,” with strong relationships between increased serum E2
levels and elevated mortality risk after severe TBI reported by
Wagner et al. (129). NB, the study populations was mostly male
and results were not analyzed be sex.

Sex Differences in Brain Volume
Total intracranial volume has been shown to be an independent
predictor of the effect of TBI on intelligence, in accordance
with the cognitive reserve theory (130). In a similar vein, Ystad
et al. (131) reported a highly significant correlation between
hippocampal volume and performance of a verbal memory
(CVLT) task, and Umile et al. (132) confirmed the vulnerability
of the medial temporal lobe to mild TBI, which correlated with
neuropsychological deficits. A recent study of cognitive outcome
in TBI demonstrated a significant declines (relative to individual
premorbid intelligence) in abstract reasoning as measured by
Raven’s progressive matrices–R (RPM-R) in moderate-severe
as well as mild TBI (133). In this study, there was a highly
significant correlation between the volume of the insula and
deficits in RPM-R performance. These studies did not report
data from women.

Sex differences in intracranial volume, brain size and
regional size, are found from birth and are thought to reflect
organizational effects of gonadal steroids which occur during
fetal brain development. On average, men have a larger brain size
than women as denoted by a higher intracranial volume (ICV)
and total brain volume (∼8–15% larger volumes in men), higher
tissue/region-specific volume (134), a greater amount of neurons,
increased global cortical thickness and larger total cortical surface
area relative to women (135–137). In a more recent article which
compared 58 young women and 44 young men, Martinez et al.
showed ICV and total brain volume were highly significantly
smaller in women relative to men (t = 8.22, p < 0.00005 and t =
7.61, p < 0.00005, respectively). Importantly, the size of the sex
difference in regional brain volumes diminishes with advancing
age (138).

A similar sex X age interaction was observed in several
regional studies: In an early study focusing on the corpus
callosum (139), the cross sectional area of the corpus callosum
and splenium was measured off a midsagittal MRI image from
subjects with Alzhemier’s disease (AD), age matched elderly
controls, and young controls. Analysis of the healthy control
data by sex and age shows reduction in callosal area with age
in men which is not observed in women, resulting in a reversal
of the sex difference seen in young controls (men > women)
when the comparison is performed in elderly subjects (Women
> men). In another study focusing on hippocampal volume,
analysis of the healthy control population in the ADNI data
base (115) showed that hippocampal volume (mean(STD) 7175
(886) mm3 N = 187 women vs. 7539 (935) mm3, N = 192
men) is slightly (5%) but significantly (p < 0.0001) higher
in elderly men relative to women, while the sex difference in
intracranial volume was 12.7% [mean 1423 cc in women and
1604 in men, (115)]. These results dovetail with long-standing
evidence of earlier and steeper age-related declines in brain
regional volumes in men relative to women (140–142) which
has also been confirmed for the hippocampus. For example, in a
study of hippocampal volume in early adulthood [39 men and 41
women, age 18–42 years, (143)], a significant negative correlation
with age for both left and right hippocampus was found in men
(r = −0.47 and−0.44, respectively) but not in women (r = 0.01
and 0.02, respectively). The volume decline in men appeared to
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be linear, starting at the beginning of the third life decade and
∼1.5% per annum.

Investigations of moderate and severe TBI have demonstrated
significant brain atrophy over the first year after injury in many
brain regions, even those that are remote from direct injury,
including the cingulate gyrus and the hippocampus (144–148).
As in most other studies of TBI, the number of women included
in these rather small studies did not support analysis of a sex x age
interaction. To elaborate, the Schonberger (147) study included
74 men and 24 women, mostly under 50, and the Zhou study
(148) examined 27 men and only 5 women.

Taken together, the sex x age interaction on TBI outcome and
brain volumes described above supports the notion that women,
possibly due to their smaller total and regional brain size (smaller
brain reserve), have a worse outcome of moderate-severe as well
as mild TBI/concussion compared to men; but this difference
may be diminished or even reversed with advancing age since
brain reserve is diminished at a steeper rate in men relative
to women.

Sex and Age Differences in Brain Swelling
The well-documented effects of female gonadal hormones on
fluid balance (149–151) and the high frequency of idiopathic
intracranial hypertension in premenopausal female patients (152,
153) supports the likelihood of differences between the sexes
in frequencies of brain swelling and intracranial hypertension
following TBI, specifically in presumably premenopausal women
(< 50 years of age). Brain swelling (edema) and the resultant
increase in intracranial pressure are known risk factors for poor
outcome in humans as well as in animalmodels of TBI (154–159).
If TBI-related swelling and ICP time-dose are indeed influenced
by sex and hormonal status, i.e., higher in young women than in
post-menopausal women, this could be another contribution to
the sex x age interaction on outcome described above.

The Tirilizad study was one of the first clinical studies in
TBI to include outcome, CT and intracranial pressure data
indicative of brain swelling in a study population large and
diverse enough to enable statistically powered comparisons
of brain swelling between young and >50 male and female
patients with moderate/severe head injury (8, 21). Overall, female
patients had a significantly greater frequency of brain swelling
visualized on CT than male patients−35% compared with
24% (p = 0.0008). This increased frequency was characteristic
of premenopausal women (< 51 years of age), who had a
38% rate of swelling compared with 24% among their male
counterparts (p = 0.002), which did not change with age (21).
The frequency in postmenopausal female patients (> 50 years
of age) was comparable to the frequency in men. Subsequent
analysis showed that the increased frequency of brain swelling
in female patients was not due to higher injury severity or other
confounders including advanced age, presence of subarachnoid
hemorrhage (SAH), or systemic hypotension. Further analysis of
the relationship between intracranial hypertension (defined as an
ICP >20mmHg during >25% of the time it was monitored) and
sex demonstrated a significantly greater frequency of intracranial
hypertension among female compared with male patients (39%
compared with 31%; p < 0.03). The sex-related difference in

frequency was even more dramatic in the population < 50 years
(40% compared with 30%; p <0.02). The increased frequency
of intracranial hypertension in women and girls was not due to
increased injury severity. As was the case with brain edema, the
difference in rates of intracranial hypertension between the sexes
was most significant among the less severely injured patients
(GCS scores of 7 or 8 [33% compared with 20%; p < 0.02]) (21).

The findings from the Tirilizad study were corroborated in
a more recent international study of TBI, showing that brain
edema was associated with female sex (P= 0.02), and the odds of
brain edema in females were greater than for males in a cohort of
young subjects recruited in Hong Kong (27). The second cohort
included in this study, recruited in Australia, demonstrated a
smaller sex difference in the same direction which did not reach
statistical significance. This study recruited subjects in the age
range 12–45 so that only premenopausal females were included.

SUMMARY AND CONCLUSIONS

Research conducted in the last couple of decades has significantly
improved our understanding of the impact of biological sex on
TBI incidence and outcome. However, some glaring still exist
due to the slow and incomplete acceptance of the imperative to
include women in TBI studies and report results stratified by sex,
which need to be proactively addressed in the future.

Key Findings
• There is increasing recognition of the high prevalence of TBI

among the tens of millions of women who live with domestic
violence and fail to report- or seek medical attention for-
their injuries.

• Recent studies of TBI outcome which include adequate
numbers of women challenge the long held view (based on
animal studies) that reproductive-age women, by virtue of
high levels of estrogen and progesterone, are likely to have a
better TBI outcome relative to men.

• Accumulating evidence shows that reproductively competent
women (after puberty and before menopause) are at higher
risk for poor outcome, while postmenopausal women fare
better thanmen of similar age (>50 years old), whose outcome
worsen with age.

Knowledge Gaps
• While recent findings suggest an important contribution of

gonadal hormone levels to clinical outcome of TBI of all
severities, these variables are not assessed or measured in the
overwhelming majority of TBI studies.

• The safety and efficacy of old and new TBI interventions in
women across the life span is unknown

• The importance of risk factors for poor outcome of TBI,
established in mostly-male populations, is largely unknown
in women

Next Steps
• Female subjects with TBI need to be proactively sought out and

recruited from domestic violence shelters and agencies.

Frontiers in Neurology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 576366

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Biegon TBI in Men and Women

• Results of clinical and research studies on TBI need to be
stratified by sex and gonadal hormone status.

• Female TBI victims need to be queried about their hormonal
status, i.e., Pre- or post-pubertal, pre- or post-menopausal
and if reproductively competent, estimated stage of menstrual
cycle (last menstrual period).

• Both men and women can benefit from actual acute
and repeated measurement of sex steroid levels, including

androgens, estrogens, progesterone, in order to understand
possible sex-specific impact of TBI on reproductive health and
possibly provide new sex-sensitive guidelines and sex-specific
hormone-based treatment targets.
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