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Abstract

The ε4 allele of the gene Apolipoprotein E is the major genetic risk factor for

Alzheimer's Disease. APOE ε4 has been associated with changes in brain structure in

cognitively impaired and unimpaired subjects, including atrophy of the hippocampus,

which is one of the brain structures that is early affected by AD. In this work we ana-

lyzed the impact of APOE ε4 gene dose and its association with age, on hippocampal

shape assessed with multivariate surface analysis, in a ε4-enriched cohort of n = 479

cognitively healthy individuals. Furthermore, we sought to replicate our findings on

an independent dataset of n = 969 individuals covering the entire AD spectrum. We

segmented the hippocampus of the subjects with a multi-atlas-based approach,

obtaining high-dimensional meshes that can be analyzed in a multivariate way. We

analyzed the effects of different factors including APOE, sex, and age (in both

cohorts) as well as clinical diagnosis on the local 3D hippocampal surface changes.

We found specific regions on the hippocampal surface where the effect is modulated

by significant APOE ε4 linear and quadratic interactions with age. We compared

between APOE and diagnosis effects from both cohorts, finding similarities between

APOE ε4 and AD effects on specific regions, and suggesting that age may modulate

the effect of APOE ε4 and AD in a similar way.

Abbreviations: AD, Alzheimer's Disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; ALFA, ALzheimer and FAmilies; CN, cognitively normal; DX, diagnosis; HE, heterozygotes; HO,

homozygotes; MCI, mild cognitive impairment; NC, noncarriers.
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1 | INTRODUCTION

Alzheimer's Disease (AD) is a neurodegenerative disorder character-

ized by progressive decline in multiple cognitive domains and severe

brain atrophy. AD affects millions of elderly people worldwide

(Alzheimer's Association, 2018) and despite major research efforts to

halt or reverse the degenerative process, it has no cure. The major

genetic risk factor for AD is the Apolipoprotein E (APOE) ε4 allele

(Saunders et al., 1993). The main function of APOE in the brain is cho-

lesterol transport (Saunders et al., 1993), and it modulates various

pathways related to AD pathogenesis, including Aβ clearance and neu-

roinflammation (Zhao, Liu, Qiao, & Bu, 2018). APOE has three differ-

ent alleles in humans (ε2, ε3, and ε4), with the latter (APOE ε4) being

linked to increased risk of AD and to an earlier disease onset in a gene

dose-dependent manner (Liu, Kanekiyo, Xu, & Guojun, 2013). The

investigation of brain imaging phenotypes related to APOE ε4 in cog-

nitively intact individuals provides the opportunity to reveal early

pathological changes.

The impact of APOE-ε4 allele load in preclinical subjects can

be studied using different neuroimaging biomarkers (Chételat &

Fouquet, 2013). For example, decreased cerebral metabolism as

well as increased Aβ deposition have been observed in cognitively

unimpaired individuals in association with the number of ε4 alleles

(Reiman et al., 2005, 2009). Concerning the impact on brain mor-

phology Fouquet, Besson, Gonneaud, La Joie, and Chételat (2014)

found in their meta-analysis that the results are “rather discrep-

ant”, suggesting that the effect of the allele load on brain morphol-

ogy is subtle, and difficult to detect. Yet, capitalizing on a

cognitively healthy at-risk cohort with a high number or ε4-

homozygous individuals, a recent study found similar gene-dose

effects in gray matter volumes of cognitively healthy participants

(Cacciaglia et al., 2018).

The hippocampus is one of the earliest structures undergoing

neurodegeneration in the initial stages of the Alzheimer's contin-

uum (Pievani et al., 2011), and it has been used for diagnosis and

early prediction of AD (Sanroma et al., 2017). Longitudinal studies

confirmed that hippocampal atrophy can appear in asymptomatic

subjects at risk of familial AD (Fox et al., 1996). It was also shown

that APOE ε4 allele load is associated with the hippocampus mor-

phology, even in cognitively healthy subjects. A difference in the

volume of the right hippocampus was found between APOE ε4 car-

riers and noncarriers (O'Dwyer et al., 2012). This difference in vol-

ume was also detected by Lind et al. (2006), who found it more

profound in younger carriers (<65), and by Tondelli et al. (2012),

who reported right hippocampus changes to be predictive of

AD. However, other studies claim that the left hippocampus is more

predictive and presents the most significant effects (Csernansky

et al., 2005). Shi et al. (2014) proposed a multivariate shape analysis

of the hippocampus, studying the genetic influence of APOE in

patients at different stages of AD. They found differences between car-

riers and noncarriers in the left hippocampus for cognitively normal

(CN) and mild cognitive impaired (MCI) patients, and for demented

patients. In a more recent work, Dong et al. (2019) used the same

method as in Shi et al. (2014) on a cohort of cognitively unimpaired sub-

jects. Results found a more pronounced effect on the left hippocampus.

Other studies found no remarkable volumetric differences between car-

riers and noncarriers (Hostage, Choudhury, Doraiswamy, & Petrella,

2013; Protas et al., 2013), whereas more recent ones found differences

in hippocampal subfields, but only for early onset AD (Parker et al.,

2019). The seemingly contradictory results of those studies show that

the effect of APOE ε4 load on healthy brains is still not clear. This could

be due to several reasons: the use of different methodologies, the low

signal of the effect, which makes it difficult to detect it, or the modula-

tion of the effect by other factors, which could make such effect non-

homogeneous across subjects.

Some studies suggest an interaction between age and APOE ε4

allele load effect (Tuminello & Han, 2011), arguing that APOE effect

on the brain could depend on the age of the subject. Mueller and Wei-

ner (2009) found significant differences in hippocampal volumes

between carriers and noncarriers, and effects of age in different sub-

fields (CA3 and DG) of the hippocampus. In a previous work (Mueller,

Schuff, Raptentsetsang, Elman, & Weiner, 2008), they had found an

effect of APOE ε4 in healthy older subjects, but not in younger. Kate

et al. (2016) found an interaction with gray matter volume values, and

Highlights

• The effect of APOE ε4 and other factors on hippocampal

morphology in cognitively impaired and healthy subjects,

and its interaction with age was analyzed.

• Additive, dominant, recessive, and AD odds risk models

for APOE were used.

• Significant interactions between APOE and age on cogni-

tively healthy subjects on hippocampal surface were

found.

• Similarities between APOE effects on cognitively healthy

subjects and the disease effect were found. Strong simi-

larities between interaction effect of APOE and age on

cognitively healthy subjects and interaction effect

between diagnosis and age were also captured.
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Cacciaglia et al. (2018) showed significant interactions between APOE

homozygotes and age on the volume of the right hippocampus, as well

as in other brain structures.

Previously described interactions are based on volumetric data,

so more subtle morphology changes unrelated to volume difference

might be missed. Shape analysis complements volumetric analysis and

can identify and locate subtle regional abnormalities on brain struc-

tures, even if there are no changes in volume. Many different

approaches have been proposed to capture and study morphological

shape changes on brain structures (Nitzken et al., 2014; Shen, Cong, &

Inlow, 2017; Zhang & Golland, 2016). Surface-based shape represen-

tation on using spherical harmonics as a parametric descriptor

(SPHARM) (Styner et al., 2006) is a common approach for subcortical

regions, including the hippocampus (Shen, Ford, Makedon, & Saykin,

2003; Shi et al., 2007; Styner, Lieberman, Pantazis, & Gerig, 2004;

Zhao et al., 2008), with recent works that also incorporate subfield

information to the analysis (Cong et al., 2015; Inlow et al., 2016).

Another approach is to use hippocampal radial distance (Thompson

et al., 2004), relating surface points to a medial curve of each object

(Apostolova et al., 2010; Bouix, Jens, Pruessner, & Siddiqi, 2005;

Chung, Worsley, Nacewicz, Dalton, & Davidson, 2010; Costafreda

et al., 2011; Morra et al., 2009). Deformation-based representations,

where descriptors of the shape are defined by the deformation

obtained by registering the image to a desired template (Joshi, Xie,

Kurtek, Srivastava, & Laga, 2016; Kim, Valdes-Hernandez, Royle, &

Park, 2015), are also frequently used. A popular framework for this

approach is the large deformation diffeomorphic metric mapping (Beg,

Miller, Trouvé, & Younes, 2005; Miller, Trouvé, & Younes, 2006),

which uses diffeomorphic transformations to parametrize the differ-

ent shapes and map the template to each subject. Several methods

based on this framework have been proposed and applied in subcorti-

cal brain structures (Durrleman et al., 2014; Li, Gong, & Tang, 2017;

Miller et al., 2015; Singh et al., 2014; Vaillant, Qiu, Glaunès, &

Miller, 2007; Younes, Albert, & Miller, 2014), including the hippocam-

pus (Cury et al., 2018; Qiu et al., 2009; Tang et al., 2016). Other differ-

ent methods have been proposed, such as Bayesian-based analysis

(Gori et al., 2017; Gutiérrez, Gutiérrez-Peña, & Mena, 2019), or spec-

tral matching (Shakeri et al., 2016). Some studies also incorporate lon-

gitudinal shape change onto the analysis, to capture and analyze

shape trajectories along time (Bône, Colliot, & Durrleman, 2018; Cury

et al., 2019; Miller et al., 2015). Recently, software tools allowing for

easy shape processing and analysis have been made available, such as

ShapeWorks (Cates, Elhabian, & Whitaker, 2017), implementing a

particle-based model without parametrizations, or Deformetrica

(Bône, Louis, Martin, & Durrleman, 2018), using the large deformation

diffeomorphic metric framework for various functionalities. Compari-

son and validation of such tools and methods show that some perfor-

mance inconsistencies still remain (Gao, Riklin-Raviv, & Bouix, 2014;

Goparaju et al., 2018; Madan & Elizabeth, 2017), and research on the

field is still expanding.

Our objective is to study effects and interactions of APOE allele

load on the hippocampal morphology of cognitively unimpaired

subjects at risk of AD. To that end, we analyze linear and nonlinear

interactions between APOE ε4 allele load and age on the geometric

differences on the surfaces of normalized shapes. We present our

results on two cohorts: (a) The ALFA cohort (Molinuevo et al., 2016),

composed of cognitively healthy participants enriched with individuals

at higher genetic risk for AD, and (b) the ADNI cohort (Mueller

et al., 2005), containing a mixture of healthy and cognitively impaired

subjects with different degrees of AD pathology. The reason of ana-

lyzing this second population is twofold. First, to study whether the

APOE ε4 effect in the first cohort has some ressemblance or affinity

to the AD effect in the second cohort; that is, we want to explore if

the effect of different APOE allele load is related to the effect pro-

duced by the disease on hippocampal shape. And second, to evaluate

whether APOE ε4 allele load has a similar effect in both cohorts. We

segment the hippocampus and use a diffeomorphic registration

approach to generate the corresponding meshes. We use multivariate

statistical shape analysis to detect subtle surface changes that could

be undetectable when analyzing structural volume or gray matter density.

We analyze the effects of multiple factors on hippocampal morphology,

namely, APOE, age, sex, and diagnosis (when applicable), study linear and

nonlinear interactions between age, APOE and diagnosis, and we quanti-

fied the similarity between different effects on the two populations. The

proposed shape analysis method allows visualizing both the magnitude

and the direction of the effect on the whole surface of the hippocampus,

thus providing new insight about the corrected effect of APOE ε4 (and

other factors) on hippocampal morphology.

2 | METHODS

In this section, we detail the pipeline of our method to extract the hip-

pocampal meshes from the imaging data and the experimental design.

All code to reproduce the pipeline and experiments described here

can be found in the repository of the project.1

2.1 | Subjects

We analyzed two cohorts:

1. ALzheimer and FAmilies (ALFA) study (Molinuevo et al., 2016), a

genetically enriched dataset of cognitively healthy subjects with

high proportion of ε4. These are pooled between noncarriers (NC),

heterozygotes (HE), carrying one copy of the allele, and homozy-

gotes (HO), carrying two copies. This cohort is ideal to study early

pathophysiological effects of AD and the possible effects of APOE

ε4 in the preclinical phase of the disease. Five hundred and eigh-

teen subjects from the cohort were used for this study. Magnetic

resonance imaging (MRI) was conducted with a 3T General Electric

scanner (GE Discovery MR750 W). Structural 3D high-resolution

T1-weighted images were collected using a fast spoiled gradient-

echo sequence implementing the following parameters: voxel
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size = 1 mm3 isotropic, repetition time = 6.16 ms, echo time =

2.33 ms, inversion time = 450 ms, matrix size = 256 × 256 × 174,

and flip angle = 12�.

2. Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller

et al., 2005). ADNI is one of the largest longitudinal public dataset on

AD, containing not only MRI but also other imaging modalities and

genetic information, among others. One thousand and sixteen sub-

jects from the main study of ADNI were used for this work, in order

to detect affinities between the effect of AD onto hippocampus

shape and the effect of APOE allele load in cognitively healthy sub-

jects from the ALFA dataset, and to assess the effect of APOE in

patients at different stages of the disease. Structural 3D high-

resolution T1-weighted MRI scans were available for every subject.

ADNI is a multisite study, so there are differences in MRI acquisition

between scans. For this reason, in all ADNI tests, we included site as a

covariate to correct for possible site differences (Section 2.3). Further

information on image acquisition for the ADNI scans used in this

work can be found in Jack et al. (2010).

2.2 | Pipeline

Our data processing pipeline consists of four stages: hippocampus

segmentation on the MRI, image registration to a common template,

mesh generation, and shape normalization. Figure 1 shows the full

pipeline.

1. Hippocampus segmentation: We used a multi-atlas segmentation

approach with joint label fusion and corrective learning (Wang &

Yushkevich, 2013) to segment the hippocampi. We chose this

algorithm, implemented in the ANTs library (Avants, Epstein,

Grossman, & Gee, 2008), because of its top performance in various

segmentation challenges (Wang & Yushkevich, 2013) and good

performance when compared to other segmentation methods (Dill,

Franco, & Pinho, 2015). As atlas, we used 15 segmented MRI scans

from the ADNI database. The hippocampus segmentations of the

atlases, provided by ADNI, were computed using a semi-automatic

hippocampal volumetry method (Hsu et al., 2002). The 15 atlas

were selected so that they spanned a wide hippocampal shape var-

iability (Sanroma, Wu, Gao, & Shen, 2014).

2. Image registration: We nonrigidly registered each subject's image

and its corresponding segmentation to a template image (MNI152)

and its corresponding ground truth hippocampus segmentation

using the symmetric diffeomorphic normalization approach

(Avants et al., 2008) implemented in ANTs library. We used two

channels, equally weighted, to jointly register the subject image to

the template image and the hippocampus segmentation of the sub-

ject to the template segmentation. This allowed us to obtain a

more precise registration between each image and the template,

while ensuring that the corresponding segmentations match well.

The registration generates a deformation field for each subject.

3. Mesh deformation: We used the segmentation from the template

image to build a template mesh, using the marching cubes

algorithm (Lorensen & Cline, 1987), giving more vertex density to

regions with higher curvature. The deformation fields obtained

from the previous registration stage were used to warp the tem-

plate mesh to each subject space. This procedure ensures that the

generated meshes have vertex and triangle correspondences,

which directly facilitates the downstream statistical analysis.

4. Shape normalization: After obtaining all the individual meshes,

we processed them to remove undesired variation. Since we are

interested in shape changes, we aligned the meshes using Pro-

crustes analysis (Gower, 1975) to compensate rotational and

translational variations not already removed in the registration

stage. Unlike the normal Procrustes analysis, scaling was not per-

formed so as to preserve the size information. Even if some

meshes present large atrophied and/or missing regions, with the

point-to-point correspondence obtained in the previous step,

they are directly comparable and hence their associated defor-

mations can be captured.

We also conducted both an automatic and a manual quality con-

trol to detect segmentation and mesh extraction errors. First, we com-

puted the volumes of each mesh, discarding the meshes that were

outliers. Then, we did a manual check of all the obtained meshes and

discarded those that had obvious visual errors. In total, we removed

39 scans from the original ALFA dataset and 47 scans from ADNI,

resulting in 479 and 969 total scans, respectively. Table 1 shows the

demographic characteristics for both cohorts.

2.3 | Statistical analysis

Using the mean mesh (after Procrustes) as a reference mesh, we

defined yi = (yi0, yi1, yi2) � 3 as the vector of the residuals between

the i-th vertex coordinates of the subject mesh and the reference

mesh. The choice of reference is irrelevant for the analysis, since the

bias term in the regression below ensures that the origin corresponds

to the population mean for each vertex.

The model at each vertex i for each dimension j is a multiple

regression model with interaction terms, of the form:

yij = αj +
X

k�φ
βkjck + εj for j =0,1,2,

where α is the intercept, βkj is the coefficient for covariate or interac-

tion ck, φ is the set of indices of covariates and their interactions, and

ε is the error term. Left and right hippocampus were analyzed

separately.

APOE ε4 status was included as a covariate. We considered an

additive model as well as dominant and recessive models. For the

additive model, the allele variable indicated the number of copies of

the ε4 allele (e.g., 0, 1, or 2). For the dominant and recessive models,

we used binary (aka dummy) variables. In the dominant model, the

variable coded the presence or absence of the ε4 allele (e.g., 0 indicat-

ing zero copies of the risk allele and 1 indicating one or two copies). In
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F IGURE 1 Outline of the processing pipeline
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the recessive model, the variable coded the presence or absence of

two copies of the ε4 allele (e.g., 0 corresponding to zero or one copies

of the risk allele).

The previous models assume that the AD risk on APOE ε4 is lin-

ear with the number of alleles, and they do not account for the

potential reduced risk of APOE ε2, which has been well documented

(Genin et al., 2011; Liu et al., 2013). For this reason, we also used a

model that includes the associated AD risk for each allele pair. AD

risk was included from (Reiman et al., 2020), which defined AD risk

for the different APOE allele pairs on a cohort of over 5,000 neu-

ropathologically characterized AD and control participants. We

encoded the odds ratio (OR) of AD risk of each allele pair compared

to ε3ε3, and applied a logarithm to linearize the risk values and nor-

malize the residuals. Table 2 shows the distribution of allele pairs

over both datasets.

We also included, as covariates, age, sex, and years of education. In

the experiments that included ADNI subjects, we also included diagno-

sis (DX) and site, a variable that accounts for the different sites where

images were captured. Age was centered at its respective mean to limit

the effects of multicollinearity when evaluating the quadratic effects.

For the statistical analysis, we combined the univariate T statistics

over all coordinates on a single statistic, by finding the maximum over

all possible linear combinations. This maximum is the Hotelling's T sta-

tistic (Hotelling, 1931). This final T-statistic was then used to test for

significance of the effects. As the number of vertices was large, we

corrected for multiple comparisons to remove false positives and

obtained significant clusters of vertices over the hippocampal surface.

We applied family-wise error correction with random field theory to

account for spatial correlation (Hayasaka, Phan, Liberzon, Worsley, &

Nichols, 2004). We selected only significant clusters with a number of

vertices larger than a given threshold to further remove false posi-

tives. We set that threshold to 20.

2.4 | Experimental design

We defined three different settings for our experiments, depending

on the data used. Alignment of the meshes prior to analysis, as

described in Section 2.2, was done independently for each of the set-

tings. For each setting, we analyzed a model with no interaction terms

(we refer to this model as the base model), and several models with

the specified interaction terms. Each model was evaluated using the

different APOE encodings previously mentioned:

• Case I: the analysis was performed on the ALFA cohort. We added

to the base model the interactions terms between age (linear and

squared) and APOE.

TABLE 1 Demographics characteristics for the cohorts used in the article

APOE ε4 Noncarriers Heterozygotes Homozygotes Total Statistics

ALFA

Number 234 187 58 479 —

Age 57.88 ± 7.55 58.55 ± 7.41 53.93 ± 6.14 57.66 ± 7.46 F = 5.69, p = .017

Education 13.62 ± 3.66 13.81 ± 3.48 13.59 ± 3.35 13.69 ± 3.55 F = 0.03, p = .852

Male/female 88/146 87/100 23/35 198/281 χ2 = 3.48, p = .170

MMSE 28.96 ± 1.14 29.14 ± 1.00 29.1 ± 1.06 29.05 ± 1.08 F = 1.78, p = .183

Diagnosis CN MCI AD Total Statistics

ADNI

Number 281 475 213 969 —

Noncarriers 203 231 70 504 —

Heterozygotes 71 189 100 360 —

Homozygotes 7 55 43 105 —

Age 75.25 ± 5.31 74.13 ± 7.52 74.91 ± 7.49 74.62 ± 6.95 F = 0.56, p = .456

Education 16.15 ± 2.78 15.76 ± 2.65 14.84 ± 3.14 15.67 ± 2.99 F = 22.97, p > .001

Male/female 144/137 298/177 109/104 551/418 χ2 = 13.11, p = .001

MMSE 29.05 ± 1.07 27.2 ± 1.82 23.29 ± 2.06 26.88 ± 2.67 F = 1,230, p < .001

Notes: Age and education presented as average and standard deviation, in years.

Abbreviations: AD, Alzheimer's disease; CN, cognitively normal; MCI, mild cognitive impairment; MMSE, mini-mental state examination.

TABLE 2 APOE Allele pair counts for the cohorts used in this
article

Noncarriers HE HO

Totalε 2ε2 ε 2ε3 ε 3ε3 ε 2ε4 ε 3ε4 ε4ε4

ADNI 3 67 434 22 338 105 969

ALFA 7 97 130 38 149 58 479

Total 10 164 564 60 487 163 1,448

Abbreviations: HE, heterozygotes; HO, homozygotes.
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• Case II: the analysis was performed on the ADNI cohort. We added

to the base model the diagnosis information and interaction terms

between age (linear and squared) and APOE, age and diagnosis,

and diagnosis and APOE.

• Case III: the analysis was performed on the healthy subjects of the

ADNI cohort. Despite the low amount of samples and small pro-

portion of homozygotes, we wanted to test for interactions

between age (linear and squared) and APOE to see if the effect of

the interactions could be compared to the effect obtained in the

ALFA experiments.

We also considered a fourth setting, which jointly analyzed both

cohorts, considering ALFA subjects to be a new site and having CN as

diagnosis. We repeated all the previous tests for this joint dataset.

However, results were not included in the main text as no significant

regions were observed; they can be found on Tables S1 (base model)

and S2 (interaction model between APOE and age). All the models

and experiments were implemented in MATLAB using the SurfStat

toolbox (Worsley et al., 2009).

2.5 | Visualization and effect comparison

For better visualization of the effect of each factor and interaction

over the hippocampal surface, we defined a 3D vector for each vertex

i and effect k � φ: bki = βk0,βk1,βk2ð Þ: Note that this vector does not

represent deformations, but rather the effect of the indicated factor

on that vertex (i.e., point of the surface). We defined the color of the

effect depending on whether it is a contraction (dark violet, negative

values) or expansion (light yellow, positive values) displacement, with

respect to the normal of the template surface at that mesh point, and

the strength of the effect. Note that, given this criteria, some artifacts

could appear in the coloration depending on whether the effect is

close to being orthogonal to the normal. In the representation shown

in the figures, arrow length and size indicate a stronger effect. The

arrows are distributed equally over the vertices for an easier

visualization.

To quantitatively compare and quantify the similarity between

the results of two different effect maps, we used cosine similarity. For

two vector effects b1 and b2 located on the same vertex i, but coming

from different experiments:

S b1,b2ð Þ= b1 �b2
b1b2

:

This metric was selected for effect comparison because it allows

us to highlight and quantify the similarity of the effect direction over

the surface. We do not want to compare the strength of the effect,

which, given the differences between cohorts, could greatly vary and

be misleading. The cosine similarity was rescaled to lie between 0 (i.-

e., vectors have opposite direction) and 1 (i.e., vectors have the same

direction), with 0.5 indicating orthogonality between the two vectors.

To test the statistical significance of the similarity, we performed

a randomization test, which corrects for multiple comparison. We first

created a distribution of similarities for a large number K of pairs of

random vectors k = (k0, k1, k2), with k�N 0,1ð Þ3. We set K = 100,000.

Then, we assessed, for each similarity value, its percentile over the

distribution, obtaining the corresponding p-value. Finally, we selected

clusters of vertices with p< .05, removing those with less than 20 ver-

tices to further reduce false positives. In this way, we can detect rele-

vant local areas where there is a strong similarity.

We compared similarity of effects obtained between ALFA

and ADNI base models, ALFA interaction and ADNI base models,

and ALFA and ADNI interaction models. We also wanted to asses

if detected APOE effects and interactions in ALFA were similar to

those in ADNI. For this reason, we compared the similarity

between ALFA and healthy patients in ADNI, base and interaction

models, and ALFA and ALFA plus ADNI, base and interaction

models.

3 | RESULTS

3.1 | ALFA dataset

Table 3 summarizes the main results for all the experiments done

on the ALFA cohort. Results are shown for the base model, a

model with a linear interaction term between APOE and age, and

another with a linear and squared interaction. The “Results” col-

umn shows the general statistical results, whereas the “Cluster

analysis” column shows information about the detected clusters on

the hippocampal surface after correction. More than one line for a

single test shows that more than one significant cluster was

detected for that test.

For the base model, Table 3 (upper part) summarizes the effect of

each covariate (age, sex, years of education and APOE) over the mesh,

for the base model without interactions, and its detected significant

clusters. No significant clusters were found for any of the APOE con-

trasts. Figure 2 shows the effect of selected covariates over the hip-

pocampus mesh. We can observe strong effects for age, with large

association with surface expansion at zones on the head and tail of

the hippocampus, and contraction in the body, and sex, with a general

contraction effect that is largely associated to intra-craneal volume

(as we did not correct for it in the preprocessing to not remove rele-

vant information). For the linear interaction model, Table 3 (middle

part) summarizes the effects in the model with a linear interaction

between APOE and age, focusing on additive, dominant, and APOE

OR effects, and the differences between homozygotes and noncar-

riers. Corresponding significant clusters are also included. For the

effects of the APOE and age interaction between HO and NC groups,

a significant cluster associated to a linear expansion effect was

detected in the head of both hippocampus. Figures S3 and S4 show

the effects of the APOE and age interaction, between HO and NC

groups and the magnitude of the vector of the corrected response
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variable y in that region, compared to age, for each of the three APOE

allele groups, respectively.

For the squared interaction model, Table 3 (lower part) shows the

effects of the squared interaction between APOE OR and age, as well

as the effects of the additive, dominant and AD risk interaction terms

with age and squared age, and the information about the surviving

clusters in the interaction models. Figure 3 shows three different

clusters where a significant expansion can be found on two differ-

ent clusters, two on the head of the hippocampus, and a smaller

one on the hippocampal tail. The first two clusters also appear on

an additive interaction model (Supporting Information S5). A simi-

lar region appears when comparing HE vs NC. Figure 3 also shows

TABLE 3 Results obtained on the ALFA cohort for base, linear interaction, and squared interaction models

Test

Results Cluster analysis

Hipp Avg. T Max. T N Ppeak Pcluster

Base model Age R 1.34 9.64 2,121 <.001 <.001

L 1.24 8.41 1898 <.001 <.001

Sex R 2.23 12.17 2,605 <.001 <.001

L 2.28 13.15 2,438 <.001 <.001

Years ed. R 0.58 2.75 — — —

L 0.61 3.04 — — —

APOE (additive) R 0.55 2.4 — — —

L 0.63 3.1 — — —

APOE (dominant) R 0.56 2.38 — — —

L 0.64 3.12 — — —

APOE (recessive) R 0.61 2.61 — — —

L 0.63 2.89 — — —

APOE (log(OR)) R 0.58 2.62 — — —

L 0.61 2.96 — — —

Linear int. model APOE (add)×age R 0.68 4.02 50 .093 .012

L 0.68 4.12 172 .068 .006

APOE (Dom)×age R 0.69 4.09 48 .079 .016

L 0.67 3.88 135 .141 .015

APOE (HO > NC)×age R 0.72 4.16 50 .06 .02

L 0.68 4.30 150 .038 .005

APOE (log(OR))×age R 0.69 3.67 — — —

L 0.67 4.08 — — —

Squared int. model APOE (add)×age R 0.85 4.57 260 .015 .001

L 0.7 3.17 — — —

APOE (add)×age2 R 0.78 4.67 270 .01 <.001

L 0.65 3.14 — — —

APOE (HE > NC)×age R 0.92 4.23 313 .045 .004

L 0.78 3.19 — — —

APOE (HE > NC)×age2 R 0.82 4.31 333 .037 .002

L 0.7 3.18 — — —

APOE (log(OR))×age2 R 0.81 4.69 86 .009 .003

44 .012 .004

L 0.66 3.24 — — —

Notes: General test results and information about significant clusters that survived correction are included. Results are divided by model (base, linear inter-

action or squared interaction). Hipp indicates left (L) or right (R) hippocampus. Max. and Avg. T are the maximum and average Hotelling's T statistic over all

vertices, respectively. XX > YY indicates the comparison used for that specific test. For the cluster analysis after correction, N is the number of vertices of

the significant cluster. Ppeak and Pcluster are the random field corrected p-values for the peak point and the whole cluster, respectively. Only clusters with

N > 20 and Pcluster < .05 are included.

Abbreviations: Add, additive; Dom, dominant; OR, Odds ratio of AD risk; Rec: recessive.
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the magnitude of the vector of the corrected effect with respect

to the three peak clusters of the detected region, compared to age,

for each of the alelle pairs, observing similar interactions depending on

the ε4 allele load, with large uncertainty for the ε2ε2 subjects.

3.2 | ADNI dataset

For the ADNI cohort, after preprocessing (Section 2.2) and discarding

subjects with segmentation errors, we ended up with 969 patients.

Table S6 shows the ID of all ADNI subjects used in the study.

Table 4 summarizes the main results for all the experiments, using

the models described in Section 2.4. “Base model” section shows the

effects for age, sex, site, years of education, APOE and DX. Figure 4

shows the effects of selected factors on the surface of both hippo-

campi. Similar to what happened in ALFA, age and sex present a gen-

eral contraction over all the surface. DX and APOE also show a

general contraction effect. No significant clusters were found on the

effect of acquisition site. “Interactions” section of Table 4 shows

results of models with and squared interactions between APOE and

age, and between DX and age. For the interaction model between age

and diagnosis, no significant clusters were detected. Full results for

the interaction model between age and diagnosis and diagnosis and

APOE are included in Tables S7 and S8.

On comparison between healthy patients, ADNI includes 256 cog-

nitively healthy patients, with a relatively low proportion of ε4-

homozygotes (6 patients, less than 5%). For this reason, it is difficult

to extract meaningful conclusions from the experiments. We tested

for main effects and interactions between APOE and age to detect

any similarities to the results obtained in ALFA, considering that the

obtained results will not have enough statistical power to draw mean-

ingful conclusions. Supporting Information S9 shows the effect on the

surface of the hippocampus for APOE and interaction between age

and APOE.

4 | SIMILARITY BETWEEN EFFECTS

We quantitatively assessed the similarity between different effects

obtained in our tests. Table 5 shows the results for the different

selected comparisons. Comparisons 1 to 4 are designed to study simi-

larities between APOE effects and DX effects, whereas comparisons

5 to 8 are aimed to study similar APOE effects across different

cohorts. The most relevant comparisons, due to their relevancy or

strong effect detected are highlighted in gray and shown in more

detail in Figure S10, including the effect maps for both compared

effects, the full similarity map, and the significant clusters discovered

after the randomization testing (Section 2.5).

shows a comparison between effects of the square additive inter-

action between age and APOE in ALFA, and the effect of the negative

squared interaction between age and diagnosis in ADNI, and the

corresponding discovered clusters, observing strong similarities in sev-

eral regions of the hippocampus for both comparisons. For further

results on the similarity tests, Table S11 shows similarities between

same effects on different cohorts and Supporting Information S12

and S13 contains the full results for all conducted tests, for the APOE

ε4 load models and AD OR model, respectively.

5 | DISCUSSION

In this article, we investigated the effect of APOE ε4 allele load on the

surface of the hippocampus. We used multiple linear regression to sin-

gle out the effect of covariates over the hippocampal surface and ana-

lyzed linear and nonlinear interactions between APOE ε4 allele load

and age on the hippocampal surface, while taking into account the

reduced risk associated with the ε2 allele. We worked with a cohort

of cognitively unimpaired subjects with high genetic risk (ALFA). We

additionally applied our processing pipeline to a different dataset with

subjects at different stages of the disease (ADNI), to study if the inter-

actions and the APOE effect detected in ALFA can be related to the

L R

Age

Sex 

(Female)

APOE

(Additive)

-5.0 -2.0 0 2.0 5.0

Hotelling's T

APOE

log(OR)

F IGURE 2 Directional effect on the surface of the hippocampus
for (from top to bottom) age, sex and APOE: Additive and log(OR)
(odds ratio). ALFA cohort with the base model. Positive values

(colored in light yellow) indicates expansion. Negative values (colored
in dark violet) indicates contraction. Arrow length and size indicate a
stronger effect
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effect of the disease in individuals along the disease continuum. We

show some areas of the hippocampus where APOE ε4 effect is com-

parable to the effect of the disease, suggesting that those regions

could be affected in a similar way by APOE before disease onset. To

our knowledge, this is the first study that explores interactions

between APOE ε4 and age on hippocampal surface using an homozy-

gote enriched dataset of healthy subjects, and compares the result to

a dataset of subjects at various stages of the disease.

When adding a linear interaction term to our model for the

ALFA dataset between additive APOE effect and age, we detected

significant effects (Table 3, linear interaction model) in the CA1 of

both hemispheres (Figures S3 and S4).2 It is worth noting that this

effect, while appearing using a dominant model, is not significant

when encoding the AD odds risk model. When adding a squared

interaction to the model, APOE OR interactions with age and age

squared presented strong effects in the CA1, parasubiculum, and

GC-DG, and on a zone between CA3, CA1, and HATA of the right

hippocampus (Figure 3). When observing the interaction in those

zones, we see that they are grouped with respect to APOE ε4 allele

load (Figure 3, bottom), although the interaction with ε2ε2 has large

uncertainty due to the low number of samples (Table 2). Those

results were also observed when using a simpler additive model,

although the smallest cluster is not detected (Figure S5). Those areas

were also detected when comparing HE to NC. However, dominant

and recessive models did not detect significant clusters on those

areas.

Findings agree with previous studies on the effect of APOE on

hippocampus volume (Cacciaglia et al., 2018; Mueller & Weiner,

2009; Pievani et al., 2011), where strong interactions between APOE

ε4 alelle load and hippocampal volume on cognitively unimpaired sub-

jects were detected. Going beyond those results, we have been able

to suggest specific areas where that interaction is stronger, suggesting

APOE

ε2/ ε2
ε2/ ε3
ε3/ ε3
ε2/ ε4
ε3/ ε4
ε4/ ε4

1 1 1

3

P Vertex

P Cluster

0.05 0

2

-5.0 -2.0 0 2.0 5.0

Hotelling's T

1 Cluster 2Cluster 1 Cluster 3

F IGURE 3 Quadratic interaction between APOE OR for AD and age on the right hippocampus after adjusting for other covariates, for all
possible allele pairs. Positive values (colored in light yellow) indicates expansion. Negative values (colored in dark violet) indicates contraction.
Arrow length and size indicate a stronger effect. For the interaction plots, Y(adj) is the magnitude of the adjusted y variable on the detected
cluster. Shaded gray areas indicate 90% confidence intervals
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that the way in which age affects hippocampal morphology depends

strongly on the APOE allele, something that has also been detected

by other researchers (Shi et al., 2014). Such effects can be interpreted

as if the interaction between APOE and age is different between hip-

pocampi: there is a linear interaction in both hippocampus, and in the

right hippocampus, APOE and age present significant interactions that

has less impact at a higher age. Regarding the protective effect of ε2,

we could not observe a significant effect on our experiments, given

the similarity of the interaction with pairs with and without ε2 and the

uncertainty due to the low amount of ε2ε2 samples (Figure 3,

bottom).

Without introducing interactions in ALFA, APOE does not seem to

capture large variations in shape, and indeed, no clusters survived cor-

rection (Table 3), in any of the tested APOE models. Subtle differences

between APOE groups cannot be easily detected on surface-based

studies of the hippocampus, something also observed in other studies

with a different cohort of patients (Dong et al., 2019), where such dif-

ferences were subtle, even before correction. Age presented large

TABLE 4 Results obtained on the
ADNI cohort for base, linear interaction,
and squared interaction models Test

Results Cluster analysis

Hipp Avg. T Max. T N Ppeak Pcluster

Base model Age R 1.76 13.45 2,379 <.001 <.001

L 1.75 14.3 2,185 <.001 <.001

Sex R 2.19 12.85 2,488 <.001 <.001

L 2.17 13.73 2,375 <.001 <.001

Site R 0.64 3.60 — — —

L 0.65 3.24 — — —

Years ed. R 0.80 4.33 109 .029 .003

L 0.73 4.06 — — —

APOE (add) R 0.9 5.1 234 .001 <.001

144 .013 .003

L 1.02 6.38 529 <.001 <.001

304 <.001 <.001

APOE (log(OR)) R 0.92 5.06 476 .002 <.001

L 1.04 6.34 1,223 <.001 <.001

DX (AD>MCI > CN) R 1.65 10.10 2,383 <.001 <.001

L 1.65 11.59 2,289 <.001 <.001

Interactions APOE (add)×age R 0.58 3.02 — — —

L 0.68 3.54 — — —

APOE (Dom) × age R 0.6 2.87 — — —

L 0.72 3.54 — — —

APOE (add) × age2 R 0.55 3.06 — — —

L 0.64 3.42 — — —

APOE (Dom) × age2 R 0.56 2.91 — — —

L 0.65 3.51 — — —

APOE (log(OR))) × age2 R 0.54 2.74 — — —

L 0.6 3.29 — — —

APOE (log(OR)))2 × DX R 0.65 3.17 — — —

L 0.7 3.94 — — —

(AD > MCI) × age2 R 0.71 3.38 — — —

L 0.75 3.84 — — —

Notes: General test results and information about significant clusters that survived correction are

included. Results are divided by model (base, linear interaction or squared interaction). Hipp indicates left

(L) or right (R) hippocampus. Max. and Avg. T are the maximum and average Hotelling's T statistic over all

vertices, respectively. XX > YY indicates the comparison used for that specific test. For the cluster analy-

sis after correction, N is the number of vertices of the significant cluster. Ppeak and Pcluster are the random

field corrected p-values for the peak point and the whole cluster, respectively. Only clusters with N > 20

and Pcluster < .05 are included.

Abbreviations: Add, additive; Dom, dominant; DX, diagnosis; OR, Odds risk; Rec: recessive.
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effects over the whole surface, being most of them significant after cor-

rection, as shown in Table 3 and Figure 2, an expected result given that

age is a known factor affecting hippocampus shape and volume (Lind

et al., 2006), and the association between sex and intracraneal volume.

Our tests in the ADNI dataset show that the pipeline and the

analysis methods are able to capture changes and deformations that

agree with current knowledge of the effect that AD has on the hippo-

campus (Table 4). We observed that age, sex, years of education, and

site present significant differences after correction in large regions of

bilateral hippocampi. Differences between AD stages were also

strong, showing a general contraction over all the surface of the hip-

pocampus (Figure 4), showing the atrophy caused by the disease.

APOE effect also presented a general atrophy effect over all the sur-

face, similar to the AD effect. This similarity can be explained by the

unequal distribution of patients for each diagnosis (Table 1), with

demented patients having higher APOE based risk. We did not find

any significant interactions between APOE ε4 and age in ADNI

(Table 4). We did find an interaction between APOE ε4 and DX on the

left hippocampus between AD and MCI groups (Table 4), but no other

significant results with any other contrasts (Table S8), which suggests

that APOE ε4 impacts the three tested stages of AD in a similar way,

with a small interaction between MCI and AD. We also tested for

interaction between APOE OR and AD diagnosis to see if a protective

effect of ε2 could appear, but no significant interaction were found.

Apart from the already mentioned findings on age and APOE

interaction on ALFA dataset, we have not detected large differences

between our different model encodings of the allele information.

Recessive and dominant models did not reveal further zones or inter-

actions that were not already detected by the other models, and addi-

tive models (Figure S5) and AD OR models (Figure 3) were the most

informative models. Effects maps and results were also very similar

between models (Table 3 and Figure 2). This indicates that the effect

of APOE ε4 allele load could be modeled more appropriately in a lin-

ear (additive) way, or encoding empirical knowledge of the risk to the

model (Reiman et al., 2020).

We studied the similarities between APOE ε4 effects and DX

effects over ALFA and ADNI cohorts. Results between the same

effects (e.g., age vs. age, sex vs. sex) on different cohorts (shown in

Table S10) show high similarities, showing that results are comparable

between cohorts. Table 5 (comparisons 1–4) show that, for baseline

effects, there are some areas on the tail and presubiculum of the hip-

pocampus where a high similarity can be found, with significant clus-

ters detected in the right hippocampus. This could indicate that, even

if in our previous tests those regions did not have a strong enough

statistical power, APOE ε4 could affect those regions before the onset

of the disease, and leave them more vulnerable to the atrophy caused

by AD, which is consistent with existing literature on this relationship

(Wolk & Dickerson, 2010). However, as previously mentioned, AD

and APOE ε4 effects on ADNI (observed in Figure 4) have a general

atrophy effect over all the surface, so the found significant areas could

simply be regions where APOE produces a contraction effect. We

found a large similarity in the interaction effect between squared age

and APOE in the ALFA dataset and the inverse interaction effect

between squared age and diagnosis in ADNI, with several large signifi-

cant clusters. This result suggests that age modulates the effect of

both APOE and DX over a specific local area on the hippocampal sur-

face in a similar way, being a direct effect for APOE and an inverse

effect for DX. Figure 5 shows a larger version of both effect maps,

where the similarities between effects can be better appreciated. Sim-

ilarity is specially high on the right hippocampus, where the interac-

tion between APOE and age in CN subjects is significant (Figure 3).

Comparing the similarities obtained using the APOE odds risk model,

-5.0 -2.0 0 2.0 5.0

Hotelling's T

L R

Sex

Age

DX 

(AD>MCI>CN)

Site

APOE

(Additive)

Years of 

education

F IGURE 4 Directional effect on the surface of the hippocampus
for (from top to bottom) age, sex, site, years of education, APOE and
DX. ADNI cohort with the base model. Positive values (colored in light
yellow) indicates expansion. Negative values (colored in dark violet)
indicates contraction. Arrow length and size indicate a stronger effect
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they are very similar to the ones obtained using additive/dominant

models, in line with previous observations (Tables 12 and 13).

We tested our methods on a subset of the ADNI dataset, to be

able to directly compare two different cohorts of cognitively healthy

patients, and we also did additional analysis by combining both cohorts.

Table 5 (comparisons 5 to 8) shows the obtained results. We compared

between APOE effects, between APOE and DX effects, and between

interactions. Similar areas were found, but the detected significant

TABLE 5 Similarity results between effects

Comparison Effect 1 Effect 2 Hipp Sim N P

1 ALFA base—ADNI base APOE (add) Age R 0.55 55 .028

L 0.51 72 .028

APOE (add) Years ed. R 0.61 109 .028

L 0.56 234 .031

APOE (add) APOE (add) R 0.66 290 .026

L 0.61 173 .036

APOE (add) DX R 0.62 268 .021

L 0.58 213 .022

APOE (log(OR)) APOE (log(OR)) R 0.56 79 .022

L 0.58 221 .014

2 ALFA (linear int.)—ADNI base Age × APOE (add) DX R 0.60 239 .025

L 0.49 96 .020

Age × APOE (add) APOE (add) R 0.57 212 .023

L 0.54 92 .022

Age × APOE (Dom) APOE (Dom) R 0.59 233 .024

L 0.51 109 .021

3 ALFA (sq int.)—ADNI base Age2 × APOE (add) DX R 0.50 154 .021

L 0.62 273 .019

Age2 × APOE (log(OR)) DX R 0.60 131 .022

L 0.63 275 .019

Age2 × APOE (add) APOE (add) R 0.50 187 .023

L 0.58 240 .019

Age2 × APOE (Dom) APOE (Dom) R 0.50 199 .019

L 0.53 213 .019

4 ALFA (sq int.)—ADNI (sq int.) Age2 × APOE (add) ‑Age2 × DX R 0.87 686 .022

L 0.81 274 .028

Age2 × APOE (log(OR)) ‑APOE (log(OR)) ×DX R 0.68 218 .02

L 0.66 270 .02

5 ALFA base—ADNI NC base APOE (add) APOE (add) R 0.70 169 .026

L 0.61 201 .023

6 ALFA (sq int.)—ADNI NC(sq int.) Age2 × APOE (Dom) Age2 × APOE (Dom) R 0.53 190 .033

7 ALFA base—ALL base L 0.44 35 .021

APOE (add) DX R 0.63 260 .021

L 0.58 206 .024

APOE (Dom) APOE (Dom) R 0.57 155 .030

L 0.62 135 .036

8 ALFA (sq int)—ALL (sq int) Age2 × APOE (Dom) Age2 × APOE (Dom) R 0.34 — —

L 0.36 20 .019

Notes: Hipp indicates left (L) or right (R) hippocampus. Sim is the mean similarity for all vertices. XX > YY indicates the comparison used for that specific

test. N is the number of vertices of the significant cluster. P is the mean p-value of the significant cluster. Only the largest detected cluster of each test is

included in the table. Only clusters with N > 20 and Pcluster < .05 are included. Rows highlighted are shown in more detail in Figure S10.

Abbreviations: Add, additive; Dom, dominant; DX, diagnosis.
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clusters are small and nonconclusive. For the combination of cohorts,

no significant results were found (Tables S1 and S2 and Figures S14

and S15). This lack of significant results could suggest that the interac-

tion effect detected in ALFA is strongly influenced by the ε4 homozy-

gotes, of which the ADNI cohort has a lower proportion.

We conjecture three (nonexclusive) reasons for the results obtained

in those comparisons. First, the site variable for the combined cohort

(we added a new category for ALFA subjects) capturedmuchmore varia-

tion than in previous tests with only ADNI patients, where differences

were not significant. This variation shows that differences in image

acquisition and protocols between sites greatly influence the obtained

MRI and hence the obtained hippocampusmesh. Second, the age dispar-

ity between datasets (Figure S16). ADNI individuals are older than ALFA

ones, due to differences in study recruitment and aim (ALFA focuses on

cognitively healthy subjects, with no signs of the disease, whereas ADNI

focuses on subjects that are already in the AD continuum). This differ-

ence in the age distribution could also explain why detected interactions

in ALFA are not present in ADNI, should such interactions only happen

(or be more apparent) at an earlier age. Finally, there could exist other

population differences that are not being accounted for.

Our study presents various limitations. First, even if our analysis

allows for testing any effect on the surface of the hippocampus, we

focused on APOE ε4 allele load and interactions with age. We could add

to our analysis other risk factors, such as relevant genotypic factors, cog-

nitive scores, or lifestyle and cardiovascular factors. One key advantage

of ADNI over ALFA at this stage is the availability of biomarker status on

cerebrospinal fluid. Aβ levels in ADNI could be used to disentangle

whether differences observed in ALFA might be due to abnormal amy-

loid levels or interactions with such levels. However, previous reports

have determined that the impact of amyloid accumulation on morpho-

logical changes in the brain of cognitively unimpaired individuals is low, a

well as any interactive effects of APOE ε4 (Lim et al., 2017; Liu

et al., 2015). For multimodal analysis, methods such as multiple kernel

learning, which has been used on other types of medical data for disease

characterization, could be used (Martí-Juan, Sanroma, & Piella, 2019;

Sanchez-Martinez et al., 2017). Another interesting line of work is to

directly study the deformations and effects that happen at the different

hippocampus subfields, similar to (Zhao et al., 2019). Second, our analysis

was limited to the hippocampus region, but we could extend them to

other parts of the brain that present differences in healthy subjects, such

as the ventricles. Third, given the large effect of the site in our analysis,

segmentation should be improved to ensure robust comparisons

between datasets. Moreover, we only used cross-sectional data. Exten-

ding our analysis to a longitudinal cohort may allow us to test the shape

changes over time, which could also be affected by APOE ε4.

6 | CONCLUSIONS

In this article, we have studied differences in hippocampal surface

shape on a cohort of genetically enriched cognitively healthy subjects.

We have shown a linear and quadratic interaction between APOE ε4

allele load and age on two different surface regions of the right hippo-

campus. We have also applied the same method on a different cohort

of subjects (including both cognitively impaired and unimpaired sub-

jects), and detecting remarkable similarities between the APOE inter-

action with age in asymptomatics and the effect of the disease in a

second cohort. Results suggest that for late/middle-aged cognitively

unimpaired subjects, APOE ε4 exerts an effect on the hippocampal

surface comparable to that observed in clinical stages of AD but to a

lower extent. In addition, these effects interacted with age, showing a

remarkable similarity across the two studied cohorts.

RL

4. Age 2 x APOE 

(Add) vs -Age 2 x 

DX

1. APOE (Add) 

vs DX

Effect 1

Effect 2

Clusters

RL

F IGURE 5 Effects of the
squared additive interaction
between age and APOE in ALFA
dataset (above) and the effects of
the negative squared interaction
between diagnosis and age in
ADNI (below). Both hippocampus
are represented
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