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Abstract

A classic approach to estimate individual theta-to-alpha transition frequency

(TF) requires two electroencephalographic (EEG) recordings, one acquired in a resting

state condition and one showing alpha desynchronisation due, for example, to task

execution. This translates into long recording sessions that may be cumbersome in

studies involving patients. Moreover, an incomplete desynchronisation of the alpha

rhythm may compromise TF estimates. Here we present transfreq, a publicly available

Python library that allows TF computation from resting state data by clustering the

spectral profiles associated to the EEG channels based on their content in alpha and

theta bands. A detailed overview of transfreq core algorithm and software architec-

ture is provided. Its effectiveness and robustness across different experimental

setups are demonstrated on a publicly available EEG data set and on in-house record-

ings, including scenarios where the classic approach fails to estimate TF. We con-

clude with a proof of concept of the predictive power of transfreq TF as a clinical

marker. Specifically, we present a scenario where transfreq TF shows a stronger cor-

relation with the mini mental state examination score than other widely used EEG

features, including individual alpha peak and median/mean frequency. The documen-

tation of transfreq and the codes for reproducing the analysis of the article with the

open-source data set are available online at https://elisabettavallarino.github.io/

transfreq/. Motivated by the results showed in this article, we believe our method

will provide a robust tool for discovering markers of neurodegenerative diseases.
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1 | INTRODUCTION

The analysis of resting state EEG power spectra is a reliable and cheap

tool for studying both normal aging (Babiloni et al., 2006; Soininen

et al., 1982) and neurodegenerative brain diseases (Klassen

et al., 2011; Malek et al., 2017; Moretti et al., 2004). For example,

there is evidence that the EEG power in the alpha band and in the

slow-wave frequency bands (e.g., theta and delta) shows a direct and

an inverse correlation with cognitive performances, respectively. This

result has been exploited to support the discrimination of patients

affected by the most common neurodegenerative brain diseases from

healthy controls (Jaramillo-Jimenez et al., 2021; Klimesch, 1999;

Özbek et al., 2021). However, such harmonic behaviours often pre-

sent significant individual differences (Donoghue et al., 2020) and,

moreover, alpha and theta bands, whose power expresses opposite

pathophysiological meanings, are contiguous. Therefore, at the indi-

vidual level the risk is consistent that part of the alpha power band is

included in the range of the theta power (i.e., 4–8 Hz), thus implying a

wrong interpretation of its (patho)physiological meaning. Establishing

the theta-to-alpha transition frequency (TF) at an individual level is

therefore of paramount importance in order to avoid misinterpreta-

tion of quantitative EEG (qEEG) data. The availability of a computa-

tional tool for the determination of TF represents a crucial

prerequisite for a meaningful usability of frequency-band power anal-

ysis for both research and clinical purposes.

A classic definition of TF was described by Klimesch and col-

leagues more than 20 years ago (Klimesch, 1999). Their approach,

henceforth referred as Klimesch's method, relies on the fact that

event-related desynchronisation induces a decrease of the alpha

power and an increase of the theta power of the event-related power

spectrum, with respect to the power spectrum measured during rest-

ing state (Klimesch et al., 1997). It immediately follows that theta-to-

alpha TF can be determined by comparison between the task-related

and the resting state power spectra. However, two main drawbacks

affect this method limiting its actual use in clinical settings: (i) it needs

the acquisition of two data sets, that is, a resting state and an event-

related time series, and (ii) the task utilised for event-related recording

must induce changes in the power spectrum significant enough to

allow the identification of variations in the alpha and theta power. To

overcome such limitations, a more practical and commonly employed

definition of TF consists in finding the lowest value of the (resting

state) EEG power spectra between the δ and α peak (Babiloni

et al., 2016; Moretti et al., 2004; Moretti et al., 2007). However, due

to the noisy nature of EEG time-series, such definition may often

result ambiguous as multiple local minima may exist (Poza

et al., 2007). Other methods for defining TF have been introduced,

based, for example, on the distance from the individual alpha peak

(Lansbergen et al., 2011), demonstrating the lack of consensus on a

robust method for computing TF, which may also partially explain the

limited number of studies exploiting this feature.

The present study aims at fulfilling this lack by introducing trans-

freq, a publicly available Python package implementing a novel algo-

rithm for the automated computation of TF from theta to alpha band

that works even when just one resting state EEG recording is available

for each subject. This computational approach relies on the determi-

nation of appropriate features associated to the power spectrum mea-

sured at each channel, and on the application of an unsupervised

algorithm that automatically identifies two clusters of EEG sensors

associated to the alpha and theta bands, respectively. In transfreq we

implemented four different strategies characterised by different

sensor-level features and different clustering algorithms (Saxena

et al., 2017). The workflow of these approaches is illustrated in the

case of a test-bed example and validated on both an open-source data

set and time series recorded during an experiment performed in our

lab. To quantitatively evaluate the results of transfreq, we considered

only the EEG recordings where Klimesch's method estimated a feasi-

ble value of TF and we used such a value as ground truth: for most of

the analysed data the value of TF returned by transfreq was less than

1 Hz from TF estimated by Klimesch's method. Additionally, we show

some typical scenarios in which Klimesch's method fails in capturing

the correct TF while transfreq still returns plausible estimates.

A detailed documentation of transfreq and the codes for reprodu-

cing the analysis of the article with the open-source data set are avail-

able online at https://elisabettavallarino.github.io/transfreq/.

2 | METHODS AND MATERIALS

2.1 | Klimesch's method

A classic approach to compute theta-to-alpha TF is that proposed by Kli-

mesch and colleagues (Klimesch, 1999) and schematically depicted in

Figure 1(a). In detail, Kilmesch's method requires two EEG recordings as

input, one acquired during a resting state condition and one acquired

while the subject is performing a task. For both recordings and for each of

the N EEG sensors, the power spectrum (Bendat & Piersol, 2011; Vallarino

et al., 2020) of the corresponding time series is computed and normalised

by dividing by the norm over all frequencies, that is, we computed

ePtaski fð Þ¼ Ptaski fð ÞP
f
Ptaski fð Þ and ePresti fð Þ¼ Presti fð ÞP

f
Presti fð Þ , ð1Þ

where Ptaski fð Þ and Presti fð Þ are the power spectra at frequency f of the

signal recorded by the ith sensor during the task and the resting state

conditions, respectively. Then, the mean over all the EEG channels of

the normalised power spectra in (1) is computed to obtain two spec-

tral profiles, namely

Stask fð Þ¼ 1
N

XN
i¼1

ePtaski fð Þ and Srest fð Þ¼ 1
N

XN
i¼1

ePresti fð Þ : ð2Þ

Klimesch's method relies on the fact that Srest usually presents a

peak in the alpha band while, due to task-related alpha desynchronisa-

tion, Stask presents a lower intensity in the alpha band and a higher
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intensity in the theta band with respect to Srest (Klimesch, 1996;

Klimesch et al., 1998; Schacter, 1977). TF is thus defined as the high-

est frequency before the individual alpha peak (IAP) at which Stask and

Srest intersect. Here, the IAP is defined as the frequency in the range

(Jaramillo-Jimenez et al., 2021; Poza et al., 2007) Hz at which Srest

peaks (Babiloni et al., 2004).

2.2 | Minimum method

In many practical scenarios, it is often the case that only data recorded

at rest are available and thus Klimesch's method cannot be applied. In

this case, a commonly applied method, henceforth referred to as mini-

mum method, consists in defining TF as the frequency lower then IAP

where the averaged normalized power spectra Srest has a minimum

(Moretti et al., 2004). Here Srest and IAP are computed as described in

the previous section.

2.3 | Transfreq algorithm

In this article we introduce transfreq, a method to automatically com-

pute TF from theta to alpha band when only resting state EEG data

are available. Transfreq relies on a rationale similar to that of Kli-

mesch's method. Namely, TF is defined as the intersection between

two spectral profiles differing in their content within the alpha and

theta bands. However, with respect to Klimesch's method, such pro-

files are computed by exploiting the fact that alpha and theta activities

are not uniformly expressed across the different EEG channels. In fact,

some channels present high alpha activity (typically, channels above

the occipital lobe), whereas others show lower alpha and higher theta

activities (typically, channels corresponding to temporal and frontal

brain areas) (Klimesch, 1996; Nunez et al., 2001). Consequently, two

groups of channels can be identified: the first group includes channels

characterized by a preponderant alpha activity (this group plays a role

analogous to the one of EEG data measured at rest in Klimesch's

method); the second group includes channels showing preponderant

theta activity and limited alpha activity (this second group plays a role

analogous to the one of the task-evoked EEG recordings in Klimesch's

method).

The transfreq pipeline is schematically illustrated by Figure 1(b)

and Algorithm 1. In detail, for each EEG channel the normalised power

spectrum is computed as in Equation (1), that is,

ePi fð Þ¼ Pi fð ÞP
f
Pi fð Þ , 8i� 1,…,Nf g: ð3Þ

F IGURE 1 Comparison between
the pipelines of Kilmesch's method
(a) and of transfreq (b)
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TF is determined through the following iterative procedure.

i. Set an initial value for the alpha and theta frequency-bands.

Specifically, the alpha frequency-band is identified as a 2 Hz

range centred on the IAP, which is defined as the frequency

where the power spectrum averaged over all sensors peaks;

the theta frequency-band is set equal to (Jaramillo-Jimenez

et al., 2021; Klassen et al., 2011) Hz, or to [IAP � 3, IAP � 1]

Hz if the previous interval overlaps with the alpha

frequency-band.

ii. Compute, for each channel, the alpha and theta coefficients by

averaging the normalised power spectrum ePi over the corre-

sponding frequency band.

iii. Apply a clustering algorithm to identify two groups of channels

based on the alpha and theta coefficients. The channels in the

first group, denoted as Gθ, will be characterised by low alpha and

high theta activities, while the channels in the second group, Gα,

will be characterised by high alpha and low theta activities. Two

spectral profiles are thus obtained through a weighted average of

the power spectra over the two groups, that is,

Sθ fð Þ¼ 1P
i � Gθ

wθ
i

X
i � Gθ

wθ
i
ePi fð Þ andSα fð Þ¼ 1P

i � Gα

wα
i

X
i � Gα

wα
i
ePi fð Þ, ð4Þ

where wθ
i and wα

i are the theta and alpha coefficients for channel

i, respectively.

iv. Define a first estimate of TF as the highest frequency before the

IAP at which Sθ and Sα intersect.

v. Use the value of TF computed in (iv) to define new, more accu-

rate, alpha and theta frequency bands, set equal to [max{IAP�1,

TF}, IAP + 1] and [TF�3, TF�1], respectively. Such a choice

guarantees the intervals to be fully characterised by alpha and

theta activation. Indeed, we chose narrower bands with respect

to the classic 4 Hz ranges defined in the literature (Bazanova &

Vernon, 2014; Klimesch, 1999) and we impose at least a 1 Hz

separation between the intervals.

Steps (ii)–(v) are iterated until a desired level of accuracy is

reached, quantified as the difference between two consecutive esti-

mates of TF. The desired level of accuracy is set equal to the highest

value between 0.1 Hz and the frequency resolution Δf. The rationale

behind this choice is that 0.1 Hz is an acceptable error when comput-

ing TF. However, if the frequency resolution is lower

(i.e., Δf > 0.1 Hz), setting the desired level of accuracy to 0.1 Hz would

be the same as setting it to 0, which is a too strong requirement;

therefore in such cases the level of accuracy is set equal to the fre-

quency resolution.

We point out that the effectiveness of transfreq depends on the

clustering procedure used to define the two groups of channels Gθ

and Gα. In transfreq we have implemented four different algorithms,

described in the next subsections.

2.3.1 | Clustering method 1: 1D thresholding

The first clustering method implemented in transfreq is based on the

ratio between the alpha and theta coefficients computed for each

channel. In fact, channels with a low value of such alpha-to-theta ratio

are characterised by low alpha and high theta activities, whereas

channels with a high value are characterised by high alpha and low

theta activities. The first group of channels, Gθ, is thus defined by the

four channels showing the lowest values of the alpha-to-theta ratio,

while the second group, Gα, is defined by the four channels showing

the highest values of the same ratio. A visual representation of this

approach on a representative data set can be seen in Figure 2(a). In

transfreq, the number of channels in each group has been set equal to

4 after computing and visually inspecting the results for different

values of such a parameter. In fact, the overall behaviour of the algo-

rithm was similar across the different tested values.

2.3.2 | Clustering method 2: 1D mean-shift

One drawback of the previous approach is the need to heuristically

set the number of channels within the two groups, Gα and Gθ. To

overcome such a limitation, we implemented a second clustering

approach where the Mean Shift algorithm (Comaniciu &

Meer, 2002) is used to cluster the EEG sensors with respect to the

ratio between the alpha and theta coefficients computed, for each

channel, as described in the previous sub-section. To this end we

used the MeanShift function available within the Python package

Scikit Learn (Pedregosa et al., 2011) that also automatically

determines the number of clusters. Gθ is then defined equal to the

cluster containing the channel with the lowest value of the alpha-

to-theta ratio, while Gα is set equal to the cluster containing the

channel with the highest value of the same ratio. A visual repre-

sentation of this approach on a representative data set can be seen

in Figure 2(b).

Algorithm transfreq core algorithm

Input: Resting state EEG data recorded by N sensors

Compute and normalise sensors' power spectra as in (3)

Initialise theta and alpha frequency bands

ε≔ jTFnew�TFold j¼þ∞

while ε ≥ toll do

Compute alpha and theta coefficients, wα
i , w

θ
i , i¼1,…,N

Define channel groups, Gθ and Gα, through a clustering

method

Update TF

Update ε

Update theta and alpha frequency bands

5098 VALLARINO ET AL.



2.3.3 | Clustering method 3: 2D k-means

Both approaches described in the previous sub-sections rely on

1-dimensional clustering techniques that use the ratio between the

alpha and theta coefficients as feature. In the third approach imple-

mented in transfreq we exploited the k-means algorithm (Lloyd, 1982)

to cluster the EEG sensors by using the alpha and theta coefficients as

two distinct features. To this end, we used the KMeans function

within the Python package Scikit Learn (Pedregosa et al., 2011). The

number of clusters to generate is set equal to 2. Then Gα is defined as

the cluster whose centroid shows the highest value of the alpha coef-

ficient, while the other cluster defines Gθ. As illustrated in Figure 3(a),

channels belonging to Gα (orange dots) typically present a higher alpha

coefficient and a lower theta coefficient than the other ones

(blue dots).

2.3.4 | Clustering method 4: 2D adjusted k-means

The fourth clustering approach implemented in transfreq takes as

input the two sensors groups, Gα and Gθ, computed using the k-means

algorithm as described in the previous sub-section. However, the two

groups are now adjusted so that only sensors showing the highest

intercluster difference in terms of the alpha and theta coefficient

values are retained. To this end, as illustrated in Figure 3(b), we

removed from Gα and Gθ all points laying between the two lines that

(a)

(b)

F IGURE 2 Performance illustration of the 1D clustering approaches thresholding (a) and mean-shift (b). Both panels show the value of the

ratio between alpha and theta coefficients as function of the EEG sensors. Channels that belong to Gθ and Gα are represented as blue and orange
dots, respectively. In transfreq, the remaining channels (green dots) are excluded from the subsequent analysis

(b)(a)F IGURE 3 Performance
illustration of the 2D clustering
approaches k-means (a) and adjusted
k-means (b). Both panels show the
value of the theta coefficients on the
y-axis and that of the alpha
coefficients on the x-axis. Channels
that belong to Gθ and Gα are
represented as blue and orange dots,
respectively. In transfreq, the remaining
channels (green dots) are excluded
from the subsequent analysis
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pass through the centroids and are perpendicular to the segment con-

necting the two centroids.

2.4 | Software architecture

The approach described in the previous section is implemented in the

publicly available Python library transfreq (https://elisabettavallarino.

github.io/transfreq/). As shown in Table 1, transfreq comprises two

modules: a set of three operative functions, that allow the estimation

of TF either with Klimesch's method or with our approach, and a set

of six functions to visualise the results.

2.4.1 | Module 1: Operative functions

All the operative functions require in input the power spectra of the

recorded EEG data. These power spectra have to be provided as

matrices of size N � F, where N is the number of EEG sensors and F is

the number of frequencies in which the power spectra are evaluated.

The function compute_transfreq implements the iterative procedure

described in Algorithm 1. Customised estimation of the transition fre-

quency may be obtained through the function compute_transfreq_manual

by providing two predefined groups of channels Gα and Gθ. In this

case, TF is computed by looking at the intersections between the

corresponding spectral profiles Sα and Sθ. Both functions return a ded-

icated dictionary, called tfbox in Table 1, that contains: (i) the results

of the clustering procedure, together with the alpha and theta

coefficients, wα
i and wθ

i , associated to each one of the sensors; (ii) the

name of the employed algorithm; (iii) the estimated value of TF.

In order to provide an exhaustive toolbox for computing the

theta-to-alpha TF we also implemented a function for the computa-

tion of TF with Klimesch's method and a function for the computa-

tion of TF with the minimum method. Such functions are named

compute_transfreq_Klimesch and compute_transfreq_minimum, respec-

tively, and only return the estimated value of TF.

2.4.2 | Module 2: Visualisation functions

As shown in Table 1, transfreq offers the users two functions to visual-

ise features of the data provided in input, namely the normalised EEG

power spectrum (function plot_psds) and the corresponding alpha and

theta coefficients (function plot_coefficients).

Three other functions allow the user to visualise the results from

each step of our approach, that is, (i) the alpha and theta coefficients

grouped according to the results of the clustering procedure (function

plot_clusters); (ii) the corresponding channels group Gα and Gθ located

on top of topographical maps (function plot_channels); (iii) the final esti-

mated value of TF on top of the spectral profiles Sα and Sθ (function

plot_transfreq). The function plot_channels makes use of the Python

package visbrain (Combrisson et al., 2019), and, in particular, we modi-

fied its function TopoObj to optimise it to our visualisation purpose.

Eventually, the functions plot_transfreq_klimesch and plot_trans-

freq_minimum are dedicated to plot the value of TF estimated using

the Klimesch's method and the minimum method, respectively.

TABLE 1 Functions implemented within transfreq

Module 1: Operative functions

Name Description Input

compute_transfreq Computation of TF rest PS

compute_transfreq_manual Computation of TF (customised clusters) rest PS; Gα; Gθ

compute_transfreq_klimesch Computation of TF (Klimesch's method) rest PS; task PS

compute_transfreq_minimum Computation of TF (minimum method) rest PS

Module 2: Visualisation functions

Name Description Input

plot_psds Normalised PS power spectrum rest/task PS

plot_coefficients α and θ coefficients or their ratio rest/task PS

plot_clusters Computed clusters tfbox

plot_channels Gα and Gθ on scalp tfbox; channel locations

plot_transfreq TF on top of Sα and Sθ rest PS; tfbox

plot_transfreq_klimesch TF on top of Srest and Stask rest and task PS; TF value

plot_transfreq_minimum TF on top of Srest rest PS; TF value

Note: The table provides the name of each function (first column), a short description of their purpose (second column), and the required input variables

(third column). Here, rest PS and task PS stand for resting state and task-related EEG power spectrum, respectively; tfbox is a dedicated dictionary output

of the operative functions. For some of the functions, an additional set of optional arguments may be passed by the user, such as predefined alpha and

theta frequency-band, or the clustering approach to be used for defining Gα and Gθ. The full list of these additional parameters may be found in the

package documentation.
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2.5 | Data

We validated transfreq by using two EEG data sets. The first one is an

open-source data set, while the second one is an in-house data set we

recorded in our lab. We used two different data sets to test the

robustness of transfreq across data recorded in different experimental

conditions.

2.5.1 | Open-source data set

This data set contains EEG data available at OpenNeuro (Christopher

et al., 2021) at the accession number ds003490 (data set DOI doi:10.

18112/openneuro.ds003490.v1.1.0). Data comprise both resting

state and stimulus auditory oddball EEG recordings, sampled at

500 Hz, from 25 Parkinson's patients and 25 matched controls. For

Parkinson's patients two sessions are available, while for healthy con-

trols one session is available. More information about this data set can

be found in the paper by Cavanagh and colleagues (Cavanagh

et al., 2018). For each subject and for each session we selected

2 minutes of recording under stimulation, and 1 minute resting state

eyes-closed recording measured through 59 EEG channels whose

locations are depicted in Figure S1A, Supporting Information.

2.5.2 | In-house data set

This data set included 80 traces acquired in our centre during a previ-

ous multicenter study, namely the Innovative Medicines Initiative

PharmaCog project: a European Alzheimer's Disease Neuroimaging

Initiative (ADNI) study (Galluzzi et al., 2016). This study aimed at

investigating multiple markers in a population with amnesic mild cog-

nitive impairment (MCI), by following subjects for 3 years or until con-

version to dementia. EEG was repeatedly acquired every 6 months;

thus the 80 traces refer to 16 subjects undergoing EEG from one to

7 times. The 16 subjects (8 males, 8 females, age range 55–82 years,

mean: 70 ± 6 years; mini-mental state examination [MMSE] score

range at first evaluation: 23–30, mean: 26.5 ± 2.13) included 11 sub-

jects who converted to Alzheimer dementia disease during the follow-

up, 2 who convert to frontotemporal dementia, and 3 who remained

in an MCI stage or even reverted to a normal condition.

For the analysis we selected two and a half minutes of resting

state eyes-closed recording and two and a half minutes of resting

state eyes-opened recording, where data showed a desynchronisation

of the alpha rhythm (G�omez-Ramírez et al., 2017). Both data were

recorded with a sampling frequency of 512 Hz by a 19-channel EEG

cap schematically represented in in Figure S1B.

2.6 | Data analysis

The recorded time series from both data sets were first preprocessed

using the MNE-Python analysis package (Gramfort et al., 2013). For

each subject and for each condition, the EEG recording was filtered

between 2 and 50 Hz, while bad segments were manually removed

and bad channels were interpolated. Then, data were re-referenced

using average reference (Offner, 1950) and independent component

analysis (ICA) (Jutten & Herault, 1991) was applied for artefact and

noise removal. Remaining bad segments were automatically rejected

by using the autoreject Python package (Jas et al., 2017). Finally, the

preprocessed EEG recordings were visually inspected by experts and

discarded when they did not present a visible alpha peak (first exclu-

sion phase). In this way, in the open-source data set we excluded the

first session of four subjects and both sessions of one subject. In the

in-house data set all sessions involving four subjects were excluded

from the analysis.

Power spectra were computed in the 2–30 Hz range with the

multitapers method (Thomson, 1982). With such a method the fre-

quency resolution of the power spectra depends on the time reso-

lution and duration of the EEG recordings. In order to apply

Klimesch's method, the spectral profiles under the two conditions

(rest and task) need to have the same frequency resolution. To this

end the length of both recordings was set equal to the length of

the shortest one. Average duration of the EEG recordings from the

open source data set was 58 s, while average duration of the EEG

recordings from the in-house data set was 134 s. Afterwards, TF

was computed using both Klimesch's method and transfreq. Finally,

the results obtained with Klimesch's method were visually

inspected by experts and excluded when the method did not pro-

vide reliable results (second exclusion phase). Exclusion criteria

comprised cases in which the two spectral profiles did not intersect

as well as cases in which the two spectral profiles overlapped. This

process led to the exclusion of 19 EEG recordings from the open-

source data set and 14 EEG recordings from the in-house data set.

Therefore, the analysis to validate transfreq was performed on a

total of 50 EEG recordings from the open-source data set and

45 from the in-house data set.

In the in-house data set each EEG recording was associated

with the result of the MMSE performed at time of the recording.

To investigate the potential benefit of using TF estimated by trans-

freq as a clinical marker, we considered only the subjects who con-

verted to Alzheimer dementia (7 subjects involved in a total of

21 sessions) and we tested for the presence of a significant correla-

tion between the estimated TF and (i) the individual alpha peak and

(ii) the corresponding MMSE score. As a comparison, the same

correlation analysis was carried on by considering TF estimated by

Klimesch's and minimum method, as well as other widely used

individual qEEG features, namely mean frequency (MEF) and

median frequency (MDF) (Accornero et al., 2014; Benz

et al., 2014; Chotas et al., 1979; Coben et al., 1983; Tonner &

Bein, 2006), defined as

MEF¼

P
f
fSrest fð Þ

P
f
Srest fð Þ and MDF¼ argmin

f

X
f 0 < f

Srest f
0ð Þ�1

2

X
f

Srest fð Þ
������

������
8<
:

9=
; ,

ð5Þ
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Srest(f ) being the averaged normalised power spectrum as in

Equation (2).

3 | RESULTS

3.1 | Transfreq performances on an illustrative
example

We first tested the performances of transfreq when applied to an illus-

trative example picked up from the open-source data set. Figures 4

and 5 show the results provided by the tool when the four different

clustering algorithms were applied. For all algorithms, the resulting Gα

mainly contained channels that lie over the occipital lobe and showed

a higher alpha activity than the channels in Gθ.

When 1D thresholding is used as clustering method, both Gα and

Gθ contain a predefined number of sensors (4 in this case). Instead,

the other methods automatically estimate the size of Gθ and Gα, and

thus the two groups may contain a different number of channels.

While with the clustering method 2D k-means Gα and Gθ span all

the EEG channels, the 2D adjusted k-means starts from the two

groups defined by using k-means and selects only the channels show-

ing a high inter-cluster difference. Specifically, as illustrated in

Figure 5, the channels in Gα (Gθ) showed both a high alpha (theta)

activity and a low theta (alpha) activity.

Depending on the selected clustering approach, transfreq may

return different estimates for TF, as illustrated in Figure 6. With this

subject, the value of TF estimated by Klimesch's method was 7.29 Hz,

while transfreq returned 7.38 Hz with 1D thresholding, 7.39 Hz with

1D mean-shift, 7.22 Hz with 2D k-means, and 7.19 Hz with 2D

adjusted k-means. Finally, the minimum method estimates a value of

TF equal to 6.22 Hz.

3.2 | Validation on the open-source data set

As illustrated in Figure 7(a), for most subjects in the open-source data

set the difference ΔTF between TF value estimated by transfreq and

by Klimesch's method was in absolute value below 1 Hz. Specifically,

jΔTFj was lower than 1 Hz for 82% of the subjects when 1D thresh-

olding was employed for clustering, 76% in the case of 1D mean-shift,

82% for 2D k-means, and 88% for 2D adjusted k-means. Instead,

when the minimum method was used the averaged value of jΔTFj was

around 1.67, and only for 40% of the subject was below 1 Hz

(Figure 7(b)). Figure 7(a) also shows that transfreq mainly estimated a

lower value of TF than Klimesch's method.

(a)

(b)

F IGURE 4 Location on the scalp of
channels in Gθ (left column) and Gα (right
column) for one representative subject
from the open-source data set. Sensors
have been clustered by using 1D
thresholding (upper row) or 1D mean-shift
(lower row). In each panel, red dots
represent the selected channels and, in
the background, the topographical map

shows the value of the ratio between
alpha and theta coefficients. For the
sensors in Gθ, the size of the dots is
proportional to the corresponding theta
coefficient, wθ

i , while for those in Gα the
size is proportional to the alpha
coefficient, wα

i
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Since the lowest values of jΔTFj were obtained by clustering the

EEG channels by means of the 2D adjusted k-means method, this is

suggested as the default approach within transfreq.

3.3 | Improvements of transfreq over Klimesch's
method

Klimesch's method relies on an event-related reduction of the alpha

activity that may not occur in practical scenarios due, for example, to

an incorrect execution of the task. Indeed, as shown in Figure 8, for

some of the subjects in the considered data sets the spectral profiles

Stask and Srest overlapped and thus Klimesch's method failed in

computing TF.

On the other hand, some subjects may show an event-related

modulation of the alpha frequency (Haegens et al., 2014). As repre-

sented in Figure 9, in this case the shift of the alpha peak in Stask pre-

vented the use of Klimesch's method because the two spectral

profiles Stask and Srest did not intersect in the range [0, 10] Hz.

Transfreq overcomes such limitations of Klimesch's method, since

it utilises just resting state recordings, and relies on the selection of

specific channels that actually present the desired features,

i.e. channels with a low (high) alpha and a high (low) theta activity for

Gθ (Gα). Indeed, as shown in the right panel of Figures 8 and 9 for the

2D adjusted k-means and in the Figures S2 and S3 for the remaining

clustering approaches, in both previously described scenarios transfreq

estimated a reliable value for TF. More in general, a visual inspection

of the results revealed that Klimesch's method provided an untrust-

worthy value of TF for 27% of the EEG sessions of the open-source

data set, while with transfreq only 6% of the results were unreliable.

These percentages have been computed by considering all the EEG

recordings available after the first exclusion phase described in sec-

tion 2.6 and by counting the recordings fulfilling the criteria for the

second exclusion phase. In other words, a TF estimates was consid-

ered as untrustworthy if Srest and Stask, in Klimesch's method, or Sθ

and Sα, in transfreq, overlapped or did not intersect in a reasonable fre-

quency range.

3.4 | Validation on the in-house data set

Figure 10(a) shows that the results obtained by applying transfreq on

the in-house data set are similar to those obtained on the open-source

one. Specifically, transfreq generally returned higher estimates of TF

with respect to Klimesch's method. However, the absolute value of

the difference between the values estimated with the two methods

was below 1 Hz for 67% of the subject when 1D thresholding was

applied, 58% with 1D mean-shift, 73% with 2D k-means, and 62%

with 2D adjusted k-means. As can be seen from Figure 10(b), the

value of the difference between TF estimated with Klimesch's and the

minimum method is on average around 1.87, and only for 27% of the

subject is below 1 Hz (Figure 7(b)).

(a)

(b)

F IGURE 5 Location on the scalp of
channels in Gθ (left column) and Gα (right
column) for one representative subject from
the open-source data set. Sensors have
been clustered by using 2D k-means (upper
row) or 2D adjusted k-means (lower row).
As in Figure 4, the red dots depict the
selected channels. In the two panels on the
left side, referring to Gθ, the size of the

sensors and the background topographical
maps represent the theta coefficient, wθ

i .
Instead, the two panels on the right side,
referring to Gα, show the alpha
coefficients wα

i
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(b)(a)

(d)(c)

(f)(e)

F IGURE 6 TFs estimated with
Klimesch's method and with transfreq
by means of the four clustering
methods for one representative
subject from the open-source data
set. In each panel: The blue line
depicts the spectral profile with low
alpha and high theta activation,
namely Stask in Klimesch's method

and Sθ in transfreq; the orange line
shows the spectral profile with high
alpha and low theta activation,
namely Srest in Klimesch's method
and Sα in transfreq; the red vertical
line indicates the estimated
value of TF

(b)(a) F IGURE 7 (a) Difference between
TFs estimated with Klimesch's method
(TFKlimesch) and with transfreq (TFtransfreq)
over the open-source data set. Each
boxplot depicts the results obtained when
a different clustering approach is used to
define the channels group Gθ and Gα,
namely: 1D thresholding (method 1D T);
1D mean-shift (method 1D MS); 2D k-
means (method 2D KM); and 2D adjusted
k-means (method 2D aKM). (b) Difference
between TFs estimated with Klimesch's
method (TFKlimesch) and with minimum
method (TFminimum) over the open-source
data set
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3.5 | Proportional bias in estimating TF

We performed a Bland–Altman analysis (Bland & Altman, 1986) to

assess proportional bias in the estimates of TF. Figure 11 shows the

analysis for the open-source (panel a) and the in-house (panel b) data

sets, computed on TF values provided by transfreq with adjusted k-

means. With the open source data set no proportional bias was pre-

sent; to confirm this, we computed a regression line and the p-value

(null hypothesis: slope equal to zero). Differently, the results with the

in-house data set showed a statistically significant (p < .001) propor-

tional bias. Specifically, Figure 11(b) shows that transfreq tends to

overestimate TF at higher frequencies (>8 Hz).

3.6 | Computational cost

To investigate whether the computational cost of transfreq increases

when a 2D clustering approach is used instead of a 1D method, for

(b)(a)

F IGURE 9 Example where Klimesch's method cannot be applied because event-related, Stask, and resting state, Srest, spectral profiles do not
intersect in a reasonable frequency range. (a) Results obtained with Klimesch's method. An event-related shift of the alpha–peak towards higher
frequency can be seen in Stask. (b) Results obtained with transfreq by using 2D adjusted k-means to compute the spectral profiles Sθ and Sα

(b)(a)

F IGURE 10 (a) Difference between
TFs estimated with Klimesch's method
(TFKlimesch) and with transfreq (TFtransfreq)
over the in-house data set. As in Figure 7
each boxplot depicts the results obtained
when a different clustering approach is
used to define Gθ and Gα, namely: 1D
thresholding (method 1D T); 1D mean-
shift (method 1D MS); 2D k-means
(method 2D KM); and 2D adjusted k-
means (method 2D aKM). (b) Difference
between TFs estimated with Klimesch's
method (TFKlimesch) and with minimum
method (TFminimum) over the in-house
data set

(b)(a)

F IGURE 8 Example where
Klimesch's method provides unreliable
estimate of TF because event-related,
Stask, and resting state, Srest, spectral
profiles overlap. (a) Results obtained
with Klimesch's method. (b) Results
obtained with transfreq by using 2D
adjusted k-means to compute the
spectral profiles Sθ and Sα
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each implemented method, we computed the overall elapsed time

required by transfreq to estimate TF from all the data in the two data

sets. As can be seen from Table 2, 1D thresholding, being the simplest

algorithm, takes only few tenths of seconds. When 2D k-means and

2D adjusted k-means are used the computational cost slightly

increases, however in both data sets transfreq took less than 5 s to

run. A further analysis not shown here demonstrated that the lower

computational cost required by the 2D adjusted k-means approach is

due to the fact that a lower number of iterations were required for

transfreq to converge. 1D mean-shift was the most time consuming

method reflecting the fact that this is the only method that also esti-

mates the number of clusters used to group the sensors. The differ-

ences among the two data sets may be explained by the different

number of recording sessions they contain and by the different num-

ber of employed EEG sensors.

As a final remark, it is worth mentioning that all methods are fast

to run, especially in comparison with the time required by other steps

of the analysis, including the preprocessing of EEG time series and the

power spectrum computation.

3.7 | Predictive power of transfreq TF

As can be seen from Figure 12, the values of TF estimated with trans-

freq equipped with the 2D adjusted k-means clustering approach

showed a stronger correlation with the IAP (Sperman's correlation

coefficient ρ = 0.799, p < 10�4) than the values estimated with

Klimesch's method (ρ = 0.633, p < .01). When the minimum method is

employed, the values of TF do not show a statistically significant cor-

relation with the IAP (ρ = 0.266, p = .243) due to the presence of few

outliers having an high value of IAP but a low value of TF. Among

MEF and MDF, only the latter shows some correlation with the IAP

(ρ = 0.523, p < .05).

These results translate in a stronger predictive power of TF

when transfreq is used instead of the other classic approaches.

Indeed, as shown in Figure 13, the values of TF positively correlate

with the MMSE score (ρ = 0.668, p < .001), while the correlation is

weaker when Klimesch's approach is used (ρ = 0.42, p = .058) and

becomes negative with the minimum methods (ρ = �0.372,

p = .097). More interestingly, transfreq TF also outperformed some

widespread individual spectral features, namely the IAP, the MEF

and the MDF, the last two showing a negative or a close-to-zero cor-

relation. The poor performances of MEF and MDF arise from two

adversely effects impacting the values of these features, namely the

slowing of the IAP which induces a decrease of the values of MEF

and MDF for increasing MMSE scores, and the lowering of the

α-power which instead induces higher MEF and MDF values for

increasing MMSE score.

A further analysis shown in Figures S4 and S5 revealed that

among the clustering approaches implemented in transfreq, all

methods showed a statistically significant correlation with both IAP

(ρ > 0.75, p < 10�4) and MMSE score (ρ > 0.5, p < .05). More specifi-

cally, the best and the worst performances were obtained with the 2D

adjusted k-means and the 1D mean-shift approaches, respectively.

(b)(a)

F IGURE 11 Bland–Altman plot between Klimesch's method and transfreq with 2D adjusted k-means for the open-source (a) and the in-
house (b) data sets. Grey plain and dotted lines show mean bias and corresponding 95% confidence limits, respectively. Proportional bias
regression lines are depicted as blue lines, and the corresponding equations are embedded in the lower-left corner of each panel together with
the coefficient of determination (R2) and the p-value (p) computed testing the null hypothesis that the slope is equal to zero

TABLE 2 Computational cost for all clustering methods proposed within transfreq and for both the open-source and in-house data sets, by
adding over all recording sessions

1D thresholding 1D mean-shift 2D k-means 2D adjusted k-means

Open-source data set 0.72 27.38 4.02 3.16

In-house data set 0.82 7.54 3.38 2.19

Note: Time is expressed in seconds.
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4 | DISCUSSION

A classic approach to compute the theta-to-alpha TF is that proposed

by Klimesch and colleagues (Klimesch, 1999), which requires the

power spectrum of two EEG time series, one recorded while the sub-

ject is resting and one while the subject is performing a task. How-

ever, in studies involving, for example, patients affected by

neurodegenerative diseases, the subject may experiment difficulties in

performing the required task and thus the corresponding event-

related recording may imply difficult interpretation. On the contrary

and similarly to the minimum method (Babiloni et al., 2016; Moretti

et al., 2004; Moretti et al., 2007), another classic approach often used

in clinical setting, transfreq uses only resting state data, which reduces

the information at disposal but increases the scenario in which trans-

freq can be applied.

By comparing with the results obtained with Klimesch's method

on two independent data sets, we demonstrated that transfreq returns

reliable estimates of TF. Indeed, with the best combination of input

parameters, the absolute value of the difference between the value of

TF estimated with transfreq and with Klimesch's method was below

1 Hz for 88% of the analysed data in the open-source data set, and

for 73% for our in-house data set (throughout this article Klimesch's

method was assumed as ground truth). For the minimum method this

percentages reduced to 40 and 27%, respectively. The differences in

the performance between the two data sets may be partially due to

the noisier nature of the in-house data set and to the different

number of EEG sensors in the two experiments. Indeed, in the

open-source data set 59 EEG sensors were used, while data of the

in-house data set were recorded by means of a 19-channel EEG

cap. Moreover, a visual inspection of the estimated values of TF

showed that the cases in which the spectral profiles, Sθ and Sα,

obtained with transfreq intersected ambiguously were considerably

less than the cases in which the hypothesis of Klimesch's method

on Stask and Srest failed.

Among the four approaches implemented in transfreq to accom-

plish the clustering step, 2D adjusted k-means showed the best per-

formances in the open-source data set while in the in-house data set

2D k-means algorithm performed the best. This is probably due to the

fact that these algorithms realise a more accurate selection of the sen-

sors within the two groups Gθ and Gα. Additionally, 1D thresholding

always outperformed 1D mean-shift, and it almost matched the

results of 2D adjusted k-means in the in-house data. Regarding the

computational cost, as can be expected, 1D mean-shift resulted to be

the fastest approach, requiring less than 1 s for analysing both the

data sets. Instead, 2D k-means and 2D adjusted k-means required

between 2 and 4 s depending on the data set, but have the advantage

to be fully automated while 1D mean-shift requires the user to set the

number of sensors in the two groups Gθ and Gα.

(b)(a)

(d)(c)

(e)

F IGURE 12 Correlation analysis
between the individual alpha peak
(IAP) and various qEEG features,
namely mean frequency (a) median
frequency (b) and TF estimated with
the different methods, that is,
Klimesch's approach (c), the minimum
method (d), and transfreq with 2D
adjusted k-means (e). For this analysis

only the subjects who converted to
Alzheimer in the in-house data set
have been considered. In each panel,
the regression line equations are
embedded in the top-right corner
together with the spearman
correlation coefficient (ρ) and its p-
value (p). The results obtained when
the other clustering procedures are
used within transfreq can be found in
Figure S4
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Motivated by these results, we suggest to used 2D adjusted

k-means as the default method within transfreq, however we rec-

ommend running also the 2D k-mean and check for consistency

between the two approaches when analysing data from a low-

density EEG cap.

All four approaches tend to overestimate the value of TF with

respect to Klimesch's method, that in turn usually provides higher esti-

mates of TF than the minimum approach. Specifically, the Band-

Altman analysis for the in-house data set show that this behaviour

seems to be more pronounced for higher values of TF (>8 Hz). This

difference between transfreq and Klimesch's method is probably

related to the fact that only resting state data are used in transfreq; as

a consequence also channels in Gθ may present a fingerprint of the

alpha activity.

While individual qEEG features such as IAP, median and mean

frequency have been extensively and successfully used as clinical

markers of different neurodegenerative diseases (Benz et al., 2014;

Coben et al., 1983; Dierks et al., 1991; Kwak, 2006; Petit et al., 2004),

so far very few studies have used TF in clinical scenarios (Babiloni

et al., 2006; Babiloni et al., 2016; Moretti et al., 2004; Saad

et al., 2018). Additionally, most of these studies use the minimum

method whose estimates of TF are usually larger than those of trans-

freq. Therefore, such studies cannot be fully exploited to support the

clinical validity of the proposed method and specific experiments need

to be designed in order to validate the predictive power of tranfreq,

especially in those scenarios where it provides different estimates

than Klimesch's method. In this work we performed a first experi-

ment in this direction, and we showed that in a group of subjects

who converted to Alzheimer dementia, the values of TF estimated

with transfreq showed a stronger correlation with the MMSE score

than those estimated with both Klimesch's and minimum method;

transfreq TF also outperformed IAP, mean and median frequency.

Future effort will be devoted to confirming this result in a wider class

of experiments.

The two data sets considered in this article are EEG data. Future

studies may be devoted to investigate a possible extension to

MEG data.
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(b)(a)

(d)(c)

(f)(e)

F IGURE 13 Correlation analysis
between the mini-mental state
examination (MMSE) score and various
qEEG features, namely mean frequency
(a) median frequency (b), TF estimated
with the different methods,
i.e., Klimesch's approach (c), the
minimum method (d), and transfreq
with 2D adjusted k-means (e), and the

individual alpha peak (IAP). As in
Figure 12, for this analysis only the
subjects who converted to Alzheimer in
the in-house data set have been
considered. In each panel, the
regression line equations are
embedded in the top-right corner
together with the Spearman correlation
coefficient (ρ) and its p-value (p). The
results obtained when the other
clustering procedures are used within
transfreq can be found in Figure S5
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