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Purpose. Although optical coherence tomography (OCT) is essential for ophthalmologists, reading of findings requires expertise.
The purpose of this study is to test deep learning with image augmentation for automated detection of chorioretinal diseases.
Methods. A retina specialist diagnosed 1,200 OCT images. The diagnoses involved normal eyes (1 = 570) and those with wet age-
related macular degeneration (AMD) (n = 136), diabetic retinopathy (DR) (n = 104), epiretinal membranes (ERMs) (n = 90), and
another 19 diseases. Among them, 1,100 images were used for deep learning training, augmented to 59,400 by horizontal flipping,
rotation, and translation. The remaining 100 images were used to evaluate the trained convolutional neural network (CNN)
model. Results. Automated disease detection showed that the first candidate disease corresponded to the doctor’s decision in 83
(83%) images and the second candidate disease in seven (7%) images. The precision and recall of the CNN model were 0.85 and
0.97 for normal eyes, 1.00 and 0.77 for wet AMD, 0.78 and 1.00 for DR, and 0.75 and 0.75 for ERMs, respectively. Some of rare
diseases such as Vogt-Koyanagi-Harada disease were correctly detected by image augmentation in the CNN training. Conclusion.
Automated detection of macular diseases from OCT images might be feasible using the CNN model. Image augmentation might
be effective to compensate for a small image number for training.

1. Introduction

The major causes of legal blindness in developed countries
are age-related macular degeneration (AMD), diabetic ret-
inopathy (DR), and glaucoma [1]. In the 21st century, the
development of optical coherence tomography (OCT) was a
breakthrough in the ability to diagnose macular diseases and
assess the necessity and efficacy of treatments [2]. Intra-
vitreal injections of antivascular endothelial growth factor
agents and sub-Tenon’s or intravitreal injections of tri-
amcinolone acetonide could not have had as great an impact
on wet AMD and macular edema without the availability
of OCT [3-7]. Since OCT is noninvasive and measurable
even without pupillary dilation, it can be used as a screening
tool. Fundus photography currently is commonly used for

screening. If OCT is introduced as a screening test in addition
to fundus photography, the sensitivity to detect fundus dis-
eases will increase further. However, a retina specialist is
required for precise evaluation of the OCT findings.
Artificial intelligence has been applied recently to
practical engineering in face recognition systems, automated
voice guidance, self-driving cars, and computer chess en-
gines. Machine learning is a computational technology
programmed to recognize patterns from a large data set.
Deep learning is one of the machine learning techniques
with a multilayered convolutional neural network (CNN)
model to learn and detect image features [8]. Gulshan et al.
reported recently that a deep learning-trained algorithm
detected moderate to severe DR and referable diabetic
macular edema with high sensitivity and high specificity


mailto:yasukawa@med.nagoya-cu.ac.jp
http://orcid.org/0000-0001-9913-1905
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6319581

from fundus photographs in patients with diabetes mellitus
[9]. More recently, a deep learning has been applied to
automated segmentation of OCT images and automated
diagnosis of macular diseases [10]. Generally, the con-
struction of an intelligent CNN model requires tremendous
number of database images. One of the techniques to
overcome this problem is image augmentation by a variety of
image modifications such as rotation, shifting, and adjust-
ment of magnification, contrast, and brightness.

In the current study, we evaluated the feasibility of a
CNN model trained on the basis of deep learning with image
augmentation by horizontal flipping, rotation, and trans-
lation for automated detection of macular diseases from
OCT images.

2. Materials and Methods

This study was performed in accordance with the tenets of
the Declaration of Helsinki. The Ethical Review Board at
Nagoya City University Graduate School of Medical Sciences
approved the study protocol. The study was conducted by
use of an opt-out consent process and the synonymization of
patient information, based on the low risk and the potential
benefit for patients in this study.

2.1. Data Sets. OCT images obtained between 2010 and 2015
at Nagoya City University Hospital were obtained retro-
spectively. Patient information was synonymized and un-
connected to OCT images before transfer to the study
investigators. In the current study, a pair of horizontal and
sagittal fovea-centered sectional images obtained by Cirrus
HD-OCT, Model 4000 (Carl Zeiss Meditec AG, Jena,
Germany), was used. Images that were unclear because of
hazy media such as dense cataracts, fixation failures during
the image capture, and other reasons were excluded. Six
hundred eyes of 300 patients were chosen randomly. A total
of 1,200 OCT images of 600 eyes were collected. An expe-
rienced ophthalmologist (T. Y.) provided one diagnosis to a
pair of OCT images in a masked fashion. When there were
multiple diagnostic suggestions, the most pathological di-
agnosis was recorded.

2.2. Training of a CNN Model. To train a CNN model, 1,100 of
1,200 OCT images were chosen randomly. Caffe, an open-
source CNN framework, was used for deep learning (http://
caffe.berkeleyvision.org/). A CNN model is based on cifar10_
quick with three convolution and pooling layers and ac-
companied by a “dropout” layer. The original 1,100 images
were augmented with horizontal flipping, rotation, and
translation. Consequently, 59,400 images were used for deep
learning. The deep learning processes were performed on an
Amazon Web Service EC2 Instance with a graphics processing
unit (https://aws.amazon.com/ec2/). Finally, the accuracy of
the trained CNN model reached 0.85 after parameter tunings.

2.3. Evaluation of the Trained CNN Model. To assess the
ability of the trained CNN model to accurately detect
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macular diseases, the remaining 100 OCT images were
tested. The trained CNN model provided candidate diseases,
among which normal eyes were included, with each esti-
mated probability. The agreement between the doctor’s
diagnosis and candidate diseases proposed by the CNN
model was evaluated. The model’s precision and recall were
calculated to evaluate the automated detection of macular
diseases with five or more test images according to the
following formulas: precision = (true positive)/([true pos-
itive] + [false positive]); recall = (sensitivity), (true positive)/
([true positive] + [false negative]).

3. Results

3.1. Diagnosis of OCT Images by an Ophthalmologist. An
ophthalmologist provided diagnosis for 1,200 OCT images.
570 (47.5%) images were classified as normal. The remainder
were classified as follows: 136 (11.3%) as wet AMD, 104
(8.7%) as DR, 90 (7.5%) as epiretinal membranes (ERMs), 64
(5.3%) as early to intermediate AMD (drusen), 36 (3.0%) as
branch retinal vein occlusion (BRVO), 32 (2.7%) as macular
edema of unknown cause, 30 (2.5%) as posterior staphyloma,
28 (2.3%) as central serous chorioretinopathy (CSC), 20
(1.7%) as cystoid macular edema (CME) of unknown cause,
14 (1.2%) as macular telangiectasia type 1, 14 (1.2%) as vit-
reomacular traction syndrome, 10 (0.8%) as myopic choroidal
neovascularization (CNV), 10 (0.8%) as dry AMD (geo-
graphic atrophy), and 42 (3.5%) as others involving macular
holes, polypoidal choroidal vasculopathy (PCV), macular
degeneration, inferior staphyloma, chorioretinal atrophy,
Vogt-Koyanagi-Harada (VKH) disease, macular pseudo-
holes, central retinal vein occlusion, and unknown [11].

3.2. Agreement between Doctor’s Diagnoses and Suggestions by
the Trained CNN Model. For the training of a CNN model,
1,100 of 1,200 images were randomly selected and augmented
by rotation and shifting to 59,400 images. The agreement
between the candidate diseases suggested by the trained CNN
model and the doctor’s diagnoses was evaluated. Figure 1
shows the top five candidates in the order of probability; the
normal eyes also were included. The most likely suggestions
(first candidates) were correct in 83 (83.0%) of 100 images
tested (reliable probability range, 0.448-1.000) (Figure 2). The
second candidates were consistent with the doctor’s diagnoses
in seven (7.0%) images (moderate probability range, 0.147-
0.450). The third candidates were correct in four (4.0%)
images, two of which had a probability higher than 0.05. The
fourth or fifth suggestions were the same as the doctor’s
diagnoses in one eye each, which did not achieve a reliable
probability of 0.05 or higher. The remaining four images did
not receive the correct diagnoses, i.e., one image of wet AMD
had confusing findings, two images with minimal findings
(CME and geographic atrophy (dry AMD)), and one hori-
zontal image of inferior staphyloma.

3.3. Precision and Recall for Detection of Major Diseases.
To evaluate the accuracy of automated detection by a trained
CNN model, the precision and recall were calculated for
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Normal 0.999998
Posterior staphyloma 0.000001
Early AMD 0.000000

ME 0.000000

ERM 0.000000

ERM 1.000000
MacTel type 1 0.000000
CME 0.000000
Normal 0.000000
ERM 0.000000

VMTS 0.953393
ERM 0.017700
ME 0.013951
CME 0.013348
Early AMD 0.000465

VMTS 0.483193
Early AMD 0.391776
ME 0.079209

DR 0.020454
Dry AMD 0.007468

FiGUure 1: The automated top five disease suggestions and probabilities. The diagnosis is shown on each optical coherence tomography
image. (a) Normal. (b) ERM. (c) VMTS. (d) Early AMD. Al = artificial intelligence; AMD = age-related macular degeneration; ME = macular
edema; ERM = epiretinal membrane; MacTel = macular telangiectasia; VMTS = vitreomacular traction syndrome; DR = diabetic retinop-

athy; CME = cystoid macular edema.

images diagnosed as normal (n = 35), wet AMD (n = 13),
DR (n = 7), ERM (n = 12), and posterior staphyloma (n = 9)
(Figure 3). The other images with other diagnoses were not
assessed because of the small number of cases for each
diagnosis (n =4 or fewer). Both the precision and recall
values ranged from 0.75 to 1.00. The precision and recall
were 0.85 and 0.97 for normal images, 1.00 and 0.77 for wet
AMD, 0.78 and 1.00 for DR, and 0.75 and 0.75 for ERM,
respectively. The CNN model guessed that six abnormal
images were normal as the first suggestion; for five of those
images, the second or third suggestions agreed with the
doctor’s diagnoses, i.e., ERM (n=3), early AMD with
minimal elevation of the retinal pigment epithelium (RPE)
(n = 1), and macular edema with minimal changes (n = 1).

Two images of ERMs and one image of early AMD had a
probability of 0.05 or higher. The diagnosis of the other
image with no correct suggestions was dry AMD with local
geographic atrophy. The CNN model correctly detected all
seven images of DR, which suggested that the CNN model
could identify characteristic findings of DR such as
hyperreflective foci (Figures 4 and 5). However, the sug-
gestion of wet AMD was precise with no false positive case,
suggesting that irregular elevation of the RPE might be an
identifiable feature of wet AMD and that its minimal ele-
vation might lead to misidentification (Figures 5 and 6).
ERM achieved the moderate precision and recall. This might
be because some cases with a minimal change of ERM were
misjudged as normal and some cases with other minimal but
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FIGURE 2: Automated suggestions of the likely macular diseases by
deep learning. (a) Probabilities of the top five candidates. (b)
Percentage of suggestions with a probability of 0.05 or higher in
each order of candidates. (c) The order and probabilities of au-
tomated suggestions consistent with the doctor’s diagnoses.
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Figure 3: The precision and recall values of specific diagnoses.
AMD = age-related macular degeneration; DR = diabetic retinop-
athy; ERM = epiretinal membrane.

pathologic findings (e.g., cystoid change and irregularity of

RPE) as well as ERM were judged as other diseases.
Twenty-six images had multiple suggestions with a

probability of 0.05 or higher; these included images
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misidentified as normal or as ERMs (n = 6), normal or early
AMD (n = 3), posterior staphyloma or myopic CNV (n = 3),
posterior staphyloma or normal (n=2), DR or BRVO
(n=2), DR or CME (n = 2), wet AMD or PCV (n = 2), and
other pairs (n = 1 each).

4. Discussion

Deep learning, a technique of machine learning, is com-
prised of multiple processing layers for data abstraction with
preservation of features. In contrast to previous machine
learning techniques, deep learning can detect predictive
features without computing features specified by humans.
Instead, deep learning maximizes the predictive accuracy by
using weight adjustment of data called back propagation
[8-10]. In ophthalmology, automated evaluation of fundus
photographs to detect DR has been reported previously
[12-16], as has automated early detection of glaucoma based
on perimetry [17].

In the current study, automated detection of macular
diseases was performed by deep learning of OCT images that
provided reliable suggestions with high precision and high
recall. A CNN model trained on the basis of OCT images
identified a variety of macular diseases involving vitre-
omacular traction syndrome, ERM, BRVO, DR, CSC, wet
AMD, VKH disease, and posterior staphyloma. A CNN
model is likely to recognize both structural changes,
i.e., vitreous traction, macular holes, serous retinal de-
tachments, and RPE detachments and exudative changes,
i.e., hyperreflective foci and subretinal hemorrhages. OCT,
which can visualize retinal microstructures, is currently a
powerful essential tool to diagnose macular diseases and
evaluate treatment efficacy. The current results showed the
feasibility of applying OCT to screening examinations. For a
screening examination, the precision of the suggestion of a
normal eye might be critical, because low precision indicates
that pathological findings might be overlooked. Neverthe-
less, five of six images that were wrongly suggested to be
normal as the first candidate diagnosis had a correct disease
suggestion in the second and third candidates and the
remaining one image had a small area of geographic atrophy.
Therefore, although it is ideal to improve the precision of
normal images, another method to overcome this issue
might be to provide the top three candidates with the es-
timated probability. Automated detection of macular dis-
eases might accelerate the introduction of an OCT device
into the healthcare center, which might be highly relevant
from the standpoint of a health examination, nursing care,
public welfare services, and remote-area healthcare.

The correct suggestions were the first and second can-
didates in 83 and seven of 100 images, respectively
(Figure 2(c)). All 90 suggestions had a reliable probability
(P>0.05). The third candidate was correct in four images,
two of which were reliable (P>0.05). The images with
agreement between the doctor’s decisions and the fourth or
fifth candidates could not achieve a probability of P > 0.05 or
higher. Based on these results, the top three candidates with
a probability of P>0.05 or higher should be provided for
disease suggestions in clinical settings. Nevertheless, the
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FIGURE 4: The identification of branch retinal vein occlusion (BRVO) vs. diabetic retinopathy (DR). (a) A trained convolutional neural
network (CNN) identifies BRVO with a high probability possibly because of the presence of hemilateral macular edema (asterisk). (b)
Bilateral macular edema might confuse the CNN. (c) Hyperreflective foci (arrows) might be a feature of DR. CME = cystoid macular edema.
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FIGURE 5: The identification of diabetic retinopathy (DR) vs. wet age-related macular degeneration (AMD). (a) The hyperreflective foci
(arrows) might be a feature of DR, while (b, ¢) irregular elevation of the retinal pigment epithelium might be a characteristic finding of wet

AMD (arrowheads).

precision and recall should be improved further for oph-
thalmologists, especially retina specialists.

One of the major issues of this study is a small number of
images for training. Previous reports dealt with a large
number of database images to construct an accurate CNN
model [9, 10]. The reasons involve a variety of variations
of images such as individual variations of size and archi-
tecture, variations of pathologic findings (e.g., severity, lo-
cation, and distribution), and variations during image
capture (e.g., angle, location, magnification, blurring, and
defocusing). In this study, a relatively accurate CNN model
could be constructed by image augmentation by horizontal
flipping, rotation, and translation. Data augmentation
techniques involve horizontal and vertical flipping, rotation,
outward and inward scaling, translation, invert color,
Gaussian noise, the salt and pepper noise, random noise,
change of contrast, brightness, color, or shape, filtering,
partial masking (cutout and random erasing), trimming

(random cropping), exchange background, and so on [18].
In OCT images, individual variations were small despite of
age, sex, height, and race. Also, magnification and image
quality are relatively stable. Therefore, major variations of
OCT images might be derived from alteration of angle and
location during image capture, effectively compensated for
by rotation and translation of original images. Furthermore,
a larger number of augmentation images by rotation <5
degrees, which may be more possible practically, and a
smaller number of augmentation images by rotation <10
degrees were used in this study. In addition, because it was
unnecessary to distinguish between right and left eyes in the
present study, horizontal flipping was also used for image
augmentation. A characteristic feature could be learned even
with a small number of images sufficiently to facilitate
disease identification, such as VKH disease and posterior
staphyloma. On the other hand, variations of minimal
pathologic findings may need a larger number of samples for
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FiGure 6: The identification of central serous chorioretinopathy (CSC), polypoidal choroidal vasculopathy, wet age-related macular
degeneration (AMD), and Vogt-Koyanagi-Harada (VKH) disease. (a) A trained convolutional neural network correctly diagnoses a serous
retinal detachment without elevated retinal pigment epithelium (RPE) as CSC. (b) The additional findings of irregular elevation of the RPE
(arrowheads) increase the probability of wet AMD. (c) The choroidal thickening with homogeneous density (asterisk) might be a feature of

VKH disease. PCV = polypoidal choroidal vasculopathy.

training. In this study, some eyes with minimal findings such
as ERMs, RPE irregularity, and retinal and chorioretinal
atrophy were misidentified. A future study should determine
whether these minimal changes can be detected correctly if
more training images are used or other enhancing methods
like transfer learning are employed [19]. Also, it is another
critical issue that the CNN model cannot diagnose un-
common disorders that were not included in the original
database.

Other fundamental limitations of deep learning involve
the accuracy of diagnosis by retina specialists. Generally, a
diagnosis should be determined from the majority of
multiple doctors’ decisions made in a masked manner.
However, images with different decisions might have
minimal, confusing findings. Actually, Gulshan et al. re-
ported that US board-certified ophthalmologists can make
decisions comparable to a trained CNN model but had
considerable intergrader variability [9]. Therefore, the de-
cisions of multiple doctors might cause variations in the
decision making. A CNN model will be trained by back-
propagation, concomitantly providing multiple candidate
diseases with each estimated probability. Therefore, if the
sample size is large, intergrader variability will not affect the
training results crucially. Nevertheless, it is unclear whether
the majority rule might improve the efficiency of deep
learning especially in the case with small sample size for
training. Inversely, the suggestions of a trained CNN model
might provide unknown information, because the model
might use features that are unrecognized by humans. The
CNN model differentiated BRVO and DR accurately, sug-
gesting that the model might recognize distribution of
hyperreflective foci as an important feature of DR. More
recently, a heatmap is available to know which area of the
images is significant to provide diagnosis [19]. Thus, the
unexpected abilities of deep learning might provide new

insights regarding features of diseases, potentially leading
to improved diagnosis and better understanding of the
pathology.

5. Conclusions

A deep learning-based algorithm with image augmentation
identified macular diseases with high precision and recall
during the evaluation of OCT images. Further research
should be performed to improve the accuracy of the algo-
rithm and assess the feasibility of an artificial intelligence-
equipped OCT device for screening examinations and reg-
ular examinations in clinical settings.

Data Availability

The OCT images used for this study are restricted by the
Ethical Review Board at Nagoya City University Graduate
School of Medical Sciences in order to protect patient
privacy. Researchers can contact Tsutomu Yasukawa, MD,
PhD (yasukawa@med.nagoya-cu.ac.jp). The details of the
algorithm of deep learning are available from Yuji Ayatsuka.
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