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Abstract

Children in malaria endemic areas acquire immunity to severe malaria faster than to mild malaria. Only a minority of children
suffers from severe malaria and it is not known what determines this. The aim of this study was to establish how P.
falciparum infections during the first years of life affect the risk of severe malaria. A matched case-control study was nested
within a large birth cohort set up to study the immunoepidemiology of pneumococci on the Kenyan coast. Infection
patterns in three-monthly blood samples in cohort children admitted to hospital with severe malaria were compared to
controls matched on age, residential location and time of sampling. P. falciparum detected at least once from birth
conferred an increased risk of severe malaria and particularly if multiclonal infections, as characterized by genotyping of a
polymorphic antigen gene, were ever detected. The results show for the first time that children with severe malaria have
more infections early in life compared to community controls. These findings provide important insights on the immunity to
severe disease, knowledge essential for the development of a vaccine against severe malaria.
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Introduction

Severe P. falciparum malaria continues to cause an intolerably

high burden of morbidity and mortality on children living in

malaria endemic areas [1]. In areas of high transmission, life-

threatening forms of malaria are restricted to young children

before they gradually develop clinical protection after repeated

exposure. Understanding how immunity to severe manifestations

of malaria develops is important in designing interventions to

reduce severe disease and death.

The age distribution of severe malaria indicates that resistance

to serious complications develops much earlier than immunity to

uncomplicated and asymptomatic infections [2]. One possibility is

that within an age cohort the individuals who develop severe

disease are relatively naı̈ve by virtue of the pattern of exposure to

malaria that they experience in early life. The number of infections

needed to achieve protection against severe malaria is however not

clear. Protection against non-cerebral severe malaria has been

proposed to be acquired after only a few infections, and even after

a single infection in infants with transferred maternal antibodies

[3]. Prospective risk assessments of severe malaria in relation to

exposure require large cohorts to capture the relatively rare event

of severe disease and have not previously been reported.

Three major syndromes of severe malaria have been identified

in children: cerebral malaria severe malarial anemia, and

respiratory distress as a sign of acidosis [4]. Cerebral malaria is

predominant in areas of low to moderate transmission and peak

incidence occurs in children older than 2 years [2], [5], [6].

Cerebral malaria is also one of the most common severe features in

previously non-immune adults [7] and in outbreaks of malaria in

areas inhabited by a previously un-exposed population [8]. Severe

malarial anemia is reported in highly endemic areas affecting

mainly young children around the age of 1 year [2]. Respiratory

distress with deep breathing has been shown to be a good ‘‘proxy’’

for metabolic acidosis and an indicator of severity [4].

The P. falciparum parasite is a highly polymorphic organism with

an extensive genetic diversity and natural infections are often

composed of several genetically distinct clones expressing different

antigen variants. Based on the knowledge from malaria therapy of

neuro-syphilis [9] as well as animal models [10], protective

immunity to malaria is considered to have a substantial degree of

‘‘strain-specificity’’ reflected by more pronounced clinical symp-

toms in individuals infected with a new ‘‘strain’’. Whether

immunity to severe malaria develops in a strain-transcending

manner remains unclear, as does the number of different parasite

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56032



variants that needs to be encountered to acquire protection. A

well-established method to characterize P. falciparum populations is

by genotyping the highly polymorphic merozoite surface protein-2

gene (msp2), encoding a thoroughly studied potential vaccine

candidate antigen [11]. Since the parasite is haploid in the human

host, clones i.e. genetically identical sets of blood-stage parasites

derived from the same progeny, will have the same msp2 genotype

and different infections can be studied within individuals over

time.

The aim of this study was to investigate whether the pattern of

exposure and particularly number of infections and different

clones in early childhood affect the risk of severe malaria. A large

birth cohort established in Kilifi District on the coast of Kenya,

offered the opportunity to study the infection patterns from birth

in relation to severe malaria outcome. In a nested case-control

design we have investigated the parasite prevalence and the

number and types of P. falciparum msp2 genotypes in three-monthly

samples collected from birth in cohort children who subsequently

were admitted with severe malaria and from controls matched for

age, time of sampling and area of residency. Moreover, serum

samples were analysed with regards to antibodies to whole P.

falciparum schizont extract as a marker of previous parasite

exposure [12], [13].

Materials and Methods

Study Setting
The study was conducted in Kilifi District along the Kenyan

coast. Approval for the study was granted by the Kenyan Medical

Research Institute National Ethics Committee and the Central

Ethical Review Board Stockholm, Sweden. Kilifi District is

mesoendemic for P. falciparum malaria and transmission typically

has two seasonal peaks (June-August and November-December).

Spatial differences in transmission intensity and entomological

inoculation rate in the area have been described [14] and malaria

morbidity and mortality decreased markedly between 2000 and

2007 [15].

Kilifi District Hospital (KDH) serves as a first referral centre for

more than 500 000 people. All children admitted to KDH are

investigated with a malaria slide and blood cultures, except those

admitted after accidents or for elective procedures. Clinical and

laboratory data are recorded systematically at admission.

The Kilifi Health and Demographic Surveillance system

(KHDSS), established in 2000, covers 891 km2 around KDH

and currently tracks a population of about 240000 people. All

homesteads in KHDSS are visited 4–6 monthly to collect

information on births, migrations and deaths [16].

Study Population and Cohort Visits
A birth cohort, the Kilifi Birth Cohort (KBC) was set up within

the KHDSS in 2001 to study the immunoepidemiology of

pneumococcal disease. Children either born at KDH or presenting

to the vaccination clinic within their first month of life were

recruited and subsequently followed with three-monthly visits for

two years. The study was explained to parents or guardians by

team members fluent in Swahili or Giriama and parents were also

given written versions of the information. At each visit, axillary

temperature was recorded together with sampling of 2 ml venous

blood (without anticoagulant) and a thick and thin film for malaria

microscopy. The blood samples were centrifuged and blood clots

and serum samples were stored at 280uC. Children unwell during

the study visits were attended to by medical staff and referred to

KDH. Parents/guardians who did not bring their children for

follow-up visits were visited in their homes the following day and

again invited to attend the three-monthly sampling.

Severe Malaria Cases and Controls
A matched case-control study was nested within the Kilifi Birth

Cohort. Cases were children admitted to KDH between April

2002 and January 2010 with P. falciparum parasites detected by

microscopy together with either one or more of the following signs

(syndromes) (1) impaired consciousness defined as Blantyre Coma

Score ,5 [17]; (2) severe anemia defined as hemoglobin ,5g/dl

[4]; and/or (3) deep breathing and/or chest indrawing i.e.

respiratory distress as a sign of acidosis [4], [18]. Children with

positive bacterial cultures from blood or cerebrospinal fluid and/

or .10 white blood cells in cerebrospinal fluid were excluded to

avoid misclassification of children with other infections and

incidental parasitemia [19].

Controls were cohort children who had not developed severe

malaria up to the time point when the matched case had its

episode, and who were individually matched to cases on age (+/

24 months), sampling time (+/23 months) and residential

location. Three controls were sought for each case.

Detection of P. falciparum by Microscopy
Thick and thin blood films were prepared from finger prick

blood and stained with Giemsa. Slides were examined under light

microscopy and parasites were counted against 200 leukocytes or

500 erythrocytes. P. falciparum densities were defined as the

number of asexual parasites/ml of whole blood, based on an

estimated leukocyte count of 8000/ml or 5 million erythrocytes/ml,

respectively. Each blood film was evaluated separately by two

expert microscopists and discrepancies resolved by the results from

a third microscopist. The slides from the cohort visits were read

during 2010. Slides taken at the time of admissions were read

promptly as part of the acute clinical management.

Genotyping of P. falciparum Infections
DNA was extracted by processing frozen blood clots by high-

speed shaking in a cell disruptor [20] followed by extraction with

Puregene kits (Qiagen). Genotyping of the polymorphic block 3 of

the msp2 gene was performed by fluorescent PCR followed by

capillary electrophoresis [21]. In brief, the PCR included an initial

amplification of the outer msp2 domain, followed by two separate

nested reactions with fluorescent primers targeting the two allelic

types of msp2: FC27 and IC (also referred to as 3D7), and fragment

analysis in a DNA sequencer (3730, Applied Biosystems) and

GeneMapper software (Applied Biosystems).

Antibody Assay
Antibodies against P. falciparum schizont extract were assessed by

Enzyme-linked immunosorbent assay (ELISA) using the A4

parasite line [12], [13]. Test samples were scored as positive if

the OD values were above the mean+3 SD of 20 European sera.

Statistical Analysis
Statistical analyses were performed using PRISM GraphPad

and R version 2.13.1. Parasite prevalence at the cohort visits was

based on results from microscopy as well as PCR genotyping of the

P. falciparum msp-2 gene depending on availability of samples. The

number of concurrent clones was categorized as 1 clone or $2

clones (i.e. multiclonal infections). Patterns of infections in three-

monthly samples were defined in three categories; parasite

negative in all samples, parasite positive with single clone and

parasite positive with multiple clones in at least one sample.

Infection Patterns and Risk of Severe Malaria
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Conditional logistic regression, including risk sets where at least

one matched control was available for each case, was used to

analyze the risk of being a case given previous parasite exposure.

This analysis included the 42 risk sets where the case was no older

than 2 years and 3 months at the time of severe malaria episode

and thus had samples until three months before the admission.

The analyses were adjusted for the logarithm of the number of

visits, which was approximately linearly related to the logarithm of

the odds of becoming a case. An unconditional case-control study

was performed within the 61 cases according to syndrome; severe

malaria with impaired consciousness versus non-cerebral severe

malaria, using an exact logistic regression due to the small sample

size, with a model adjusted for age (in six-month categories) and

number of visits.

Results

In total 5949 children were recruited into the Kilifi Birth

Cohort between March 2001 and March 2008; of which 1637

children (28%) had been admitted to Kilifi District Hospital until

January 2010. In 265 of the total 2366 (11%) admissions, a blood

film was positive for P. falciparum, and 93 children (4% of all

admissions, 35% of admissions with parasites) fulfilled the criteria

of severe malaria by a strict syndrome definition (Figure 1). Among

these, 61 children had three-monthly samples collected prior to

admission; 42 children with one of the three syndromes (impaired

consciousness, severe anemia, respiratory distress), 14 with two

and 5 children presenting with all three syndromes (Figure 2). No

child in the cohort was admitted with severe malaria more than

once. Four children died at the time of the severe malaria

admission. The median age at admission was 14.8 months (IQR

7.5–24.5) and varied over time (Figure S1) and did not differ

between children with or without impaired consciousness.

Matched controls were available within the cohort for 55 of the

61 cases (52 cases with 3, 2 cases with 2 and 1 case with 1 control,

respectively). The degree of matching is demonstrated in Table 1.

Parasite Patterns at Three-monthly Visits and Severe
Malaria Admission

P. falciparum parasites were detected by PCR or microscopy in at

least one of the three-monthly visits in 33% of the cases and 15%

of the controls (Table 1). Among the PCR positive samples, most

were composed of a single msp2 genotype i.e. clone (65% and 70%

in cases and controls, respectively). The number of clones in

multiclonal infections ranged from 2–3 clones in the cases and 2–6

clones in the controls. The cumulative number of clones, including

all samples, ranged from 0–6 in cases and 0–15 clones in controls.

The number of clones was not correlated to parasite densities

(r = 20.25, P = 0.33). Children admitted with impaired conscious-

ness had only one single clone in samples prior to admission;

whereas children with respiratory distress and/or anemia (without

impaired consciousness) had up to 6 clones cumulatively in three-

monthly visits.

Hospital admission samples from the admission sample archives

were available for genotyping in 40 of 61 cases. For 21 cases,

admission samples had either not been collected or had been used

in other studies. Single clones were detected in 52%, and the

multiclonal infections were composed of 2 or 3 clones. None of the

cases had been infected with the exact same msp2 allele (same type

and fragment size) before admission and 5 of 10 cases had a new

msp2 allelic type (FC27 or IC) at admission. The same alleles (at bp

precision) were detected in consecutive three-monthly visits in 3

control children (illustrated in File S1). Additional information of

msp2 genotyping profiles and allele frequencies in visits and

admissions are presented in the Supporting information (Figure S2

and File S1).

Exposure and Risk of Severe Malaria
Detection of P. falciparum parasites in at least one of the visits

predicted, compared to only negative visits, an increased risk of

admission with severe malaria (OR 3.70, 95% CI 1.25–10.92,

P = 0.018) and particularly if a multiclonal infection was ever

detected (OR 15.32, 95% CI 1.49 2157.40 P = 0.022) (Table 2).

Parasite positivity in the most recent sample before admission gave

a similar odds ratio as parasite positivity at any time (OR 3.62,

95% CI 0.84–15.71, P = 0.085). Assessment of the risk of severe

malaria with regards to parasite status at different ages, number of

parasite positive visits, or to cumulative number of clones was

restricted by limited data for subgroup analysis.

Antibodies against P. falciparum schizont extract (assessed as a

marker of ever being exposed) were detected in at least one of the

three most recent samples before admission, in 75% of cases and

70% of controls, respectively (Table 1). Children with parasite

positive visits were all antibody positive, except five children (one

with fever). There was no association between detection of anti-

schizont antibodies and severe malaria (OR 0.76, 95% CI 0.30–

1.89).

Exposure was further assessed with regards to the different

syndromes of severe malaria. Anti-schizont antibodies were

detected before admission in three-monthly samples in 59% of

children with impaired consciousness and 86% of children with

respiratory distress and/or anemia (without impaired conscious-

ness) (Table 3). Within a comparison among the 61 cases with

severe malaria the odds of having impaired consciousness was

lower if antibodies were ever detected (OR 0.15, 95% CI 0.03–

1.23, Table 4).

Discussion

In this matched case-control study nested within a birth cohort

on the coast of Kenya, detection of P. falciparum infections,

especially infections with multiple clones, in three monthly samples

during the two first years of life was associated with an increased

risk of admission with severe malaria. The infection patterns in the

cohort children who had been admitted to hospital with severe

malaria were compared to the profiles in children of the same age,

residential location and time of sampling. Although the back-

ground cumulative parasite rates were relatively low, detection of

antibodies to schizont extract suggested an overall high exposure

to P. falciparum parasites in both cases and controls. This high

seroprevalence confirms that a majority of cases had been exposed

to P. falciparum prior to the severe disease episode, thus arguing

against the notion that severe malaria occurs predominantly after

first encounters with the parasite.

The three-monthly assessments provide only snapshots of the

infection dynamics [22] and data were not available on the

incidence of mild malaria and the frequency of antimalarial

treatment. The number of infections in these children is thus likely

to be underestimated. One interpretation of the higher prior

parasite positivity among the cases is that this simply reflects higher

exposure, due to local heterogeneity in transmission, i.e. ‘‘hot

spots’’ [23].

However, the finding of similar and high rates of preexisting

antimalarial antibodies in the closely matched cases and controls

indicates that similar proportions of children have been exposed to

P. falciparum at least once. In the youngest children, antibodies

might have been partly maternally derived and a more in depth

Infection Patterns and Risk of Severe Malaria
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analysis of the dynamics of anti-malarial antibodies in these

children is ongoing.

An alternative explanation for the more frequent prior detection

of parasites in children developing severe malaria is that it reflects

less good control of parasite densities in those individuals following

exposure to malaria. It should be noted that most prior infections

were asymptomatic at the cohort visits suggesting a state of partial

immunity, at least to the infecting parasite. Children thus succumb

Figure 1. Matched case-control study profile.
doi:10.1371/journal.pone.0056032.g001

Infection Patterns and Risk of Severe Malaria
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to severe malaria despite having previously been able to harbor

parasites without fever. We therefore tested whether subsequent

episodes of severe disease represented exposure to new infections.

Genotyping of the msp2 gene provides more sensitive and

detailed data on different P. falciparum populations than just

assessing parasite prevalence by microscopy or PCR. The

genotyping confirmed that the infections at the time of the severe

malaria admissions were all different from the parasites detected in

previous three-monthly visits. The finding of multiclonal P.

falciparum infections in the cohort visits might be a result of several

genotypes transmitted in single mosquito inoculations but can also

reflect accumulation of repeated infections. However, most PCR

Figure 2. Syndromes overlap and mortality among the 61 cohort children admitted with severe malaria to Kilifi District Hospital.
Four children died (marked *).
doi:10.1371/journal.pone.0056032.g002

Table 1. Characteristics of the study population.

Characteristics Cases (n = 61) Controls (n = 161)

Sex female, n (%) 31 (51) 78 (48)

Age (months) at the time of case admissiona, mean (range) all 19.3 (1.9–37.0) 19.5 (1.6–37.5)

42 risk setsb 12.5 (3.9–26.9) 12.5 (2.3–28.2)

Number of three-monthly visits per child, mean (range) 2.77 (1–8) 3.09 (1–8)

Proportion parasite positive visitsc, n (%) 17/150 (11) 30/432 (7)

Proportion of children with at least one parasite positive visitc, n (%) 20/61 (33) 25/161(15)

Proportion of children with at least one antibody positive visitd, n (%) 44/61 (75) 105/161 (70)

Visits with fever, n (% of visits) 9/169 (5.3) 27/498 (5.4)

Visits with fever and parasites (by microscopy), n (% of visits) 2/169 (1.2) 10/498 (2.0)

a. age at case admission of the cases and respective controls.
b. restricted to the 42 risk sets where case was younger than 2 years and 3 months at the severe malaria admission and thus had complete follow up periods before
admission,
c. including PCR and microscopy results.
d. antibodies to schizont extract detected in at least one of the three most recent visits before admission in the cases and corresponding time in the controls.
doi:10.1371/journal.pone.0056032.t001

Infection Patterns and Risk of Severe Malaria
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positive samples in these children were composed of single clones.

Also in high transmission areas where infections are mainly

multiclonal, children younger than 1 year are more often infected

with fewer clones [24], [25] and duration of infections and number

of concurrent clones increase with age [25], [26].

The risk of severe malaria was highest in children who had a

multiclonal infection detected in at least one sample since birth. In

previous studies of uncomplicated malaria from this and other

areas of low or moderate transmission intensity, multiclonal

infections in asymptomatic individuals at base line have predicted

an increased risk of subsequent malaria [27-29]. In high

transmission settings and in older children detection of multiple

P. falciparum clones has, on the contrary, been associated with a

reduced risk of uncomplicated malaria [29], [30]. The contradic-

tory findings could be explained by the idea that in young children

with limited acquired immunity, multiple clones reflect either

higher degrees of exposure to malaria or less good immune

control. As argued above, data on antibody prevalence suggest the

latter. In a recent study, the cumulative number of clones in

repeated samples, defined as ‘‘molecular force of infection’’, was

found to be a major factor determining the risk of clinical malaria

in children up to three years of age and was suggested as measure

of individual exposure [31]. How and when the transition from

susceptibility to protection against clinical malaria occurs in an

Table 2. Risk of severe malaria associated with parasite
positivity, number of clones and antibodies to schizont extract
in three-monthly visits before admission.

Exposure OR (95% CI)b P

Negative in all 1 (ref) –

Parasite positive in anyc 3.70 (1.25–10.92) 0.018

Negative in all 1 (ref) –

At most 1 clone d 4.30 (1.12–16.46) 0.033

$2 clones in any sample d 15.32 (1.49–157.40) 0.022

Negative in all 1 (ref) –

Antibody positive in any e 0.76 (0.31–1.89) 0.558

Conditional logistic regression adjusted for log number of visits including 42
risk sets where the case was no older than 2 years and 3 months at the time of
severe malaria episode and thus had samples until three months before the
admissiona.
a. excluding 13 risk sets with children with longer time since their last visit (4–47
months).
b. adjusted for log number of visits in the period before the severe admission of
the cases and respective periods in the controls.
c. including PCR and microscopy results.
d. including only risk sets where PCR results were available (n = 41).
e. antibodies to schizont extract detected in at least one of the three most
recent visits before admission in the cases and corresponding time in the
controls, including 40 risk sets where samples for antibody analysis were
available.
doi:10.1371/journal.pone.0056032.t002

Table 3. Assessment of exposure in three-monthly visits from birth until admissiona in 61 children admitted with severe malaria.

Impaired consciousnessb

n(%) Non-cerebral malariac n (%)

Number of children 32 29

Parasite positive visits 0 25 (78) 19 (65)

1 7 (22) 8 (28)

2 0 2 (7)

Proportion positive 7 (22) 10 (34)

Number of clones in PCR positive visits Only 1 cloned 6 (19) 5 (17)

Ever multiclonal 0 5 (17)

Cumulative numbere, median (range) 1 (1–1) 2 (1–6)

Antibody positive visits Proportion positive 19/31 (62) 25/28 (89)

Exposedf 20/32 (63) 25/29 (86)

Not exposedg 12/32 (37) 4/29 (14)

a. samples until 2 years of age at most.
b. cases with impaired consciousness with or without other syndromes.
c. including respiratory distress and severe malaria anemia and not impaired consciousness.
d. ever detected in all samples.
e. total number of clones detected in an individual including all visits.
f. exposed (parasite positive and/or antibodies to schizont extract at least once) n (%).
g. not exposed as determined by PCR and antibodies to schizont extract.
doi:10.1371/journal.pone.0056032.t003

Table 4. Risk of impaired consciousness in relation to parasite
exposure in three-monthly samples among 61 cases with
severe malaria.

Exposure OR (95% CI) P

Ever parasite positive a 0.50 (0.08–2.49) 0.46

Ever multiple clones b 0.44 (0–4.91) 0.51

Ever antibody positive c 0.15 (0.03–1.23) 0.06

Unmatched case-control analysis performed with exact logistic regression
adjusted for age and number of samples, defining patients with impaired
consciousness as ‘‘cases’’ (n = 32) and those with non-cerebral severe malaria as
‘‘controls’’ (n = 29).
a. including PCR and/or microscopy results.
b. including only PCR results.
c. antibodies to schizont extract detected in at least one of the three most
recent visits before admission in the cases and corresponding time in the
controls.
doi:10.1371/journal.pone.0056032.t004

Infection Patterns and Risk of Severe Malaria
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individual with regards to exposure to different parasite variants

remains to be established.

The design of this study was unique in the sense that the three-

monthly sampling within this large birth cohort allowed for

genotyping of the infections encountered before the episodes of

severe malaria. Although the study was running over several years,

only a limited number of children had developed severe malaria

within the cohort. Since Kilifi District Hospital is the only referral

hospital in the district and the systematic recording of all pediatric

hospital admissions is well established, we believe that the linkage

was successful in capturing the majority of admissions of severe

malaria within the cohort. Only including children with the major

syndromes of severe malaria restricted the number of cases,

however a high specificity was achieved [4]. The relatively low

number of cases identified within the cohort reflects the decline of

malaria transmission in the study area [15]. Matching for location,

age and season (+/23 months) was thus highly important to

control for regional and temporal differences in transmission in

Kilifi District during the study period.

Immunity to severe non-cerebral malaria has been suggested to

be acquired after only one or two infections [3]. Here, none of the

cases were parasite positive in more than two three-monthly

samples before admission. Nonetheless, up to six different clones

were detected over time before admission in children with severe

non-cerebral malaria. In contrast, the children who developed

severe malaria with impaired consciousness never had more than

one clone prior to admission, thus suggesting different force of

infection. Further analysis with regards to the different severe

malaria syndromes was limited by the number of cases for

subgroup analysis. Nonetheless in addition to having no detected

prior multi-clonal infections, children with impaired consciousness

also were less likely than children with other forms of severe

disease to have evidence of exposure as judged by antimalarial

antibodies. Children admitted with impaired consciousness might

be those who either developed severe complications during their

first infection or those that did not acquire appropriate immune

responses during earlier infections.

Knowledge of how and when children develop protective

immunity to severe malaria is important for the development of a

vaccine and important also for design of other control measures.

Although findings need to be confirmed, the results suggest that

infection patterns differ between children who develop severe

malaria when compared with children who do not, and also may

differ in children who develop different syndromes of severe

malaria. Although epidemiological evidence shows that immunity

develops faster to severe than to mild disease, our results argue

against the notion that children who succumb to severe malaria

are previously naı̈ve to the infection.

Supporting Information

Figure S1 Distribution and mean age at admissions
with severe malaria within the cohort during the study
period 2002–2010. Severe malaria admissions were included up

to 2010, i.e. 2 years after inclusions ended.

(TIF)

Figure S2 Distribution of alleles of A) FC27 types and B)
IC types in admissions and three-monthly visits. The y-

axes determine the number of alleles of the same fragment length

at base pair precision.

(TIF)

File S1 Additional information of msp2 genotyping
profiles and allele frequencies in visits and admissions.

(DOCX)
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