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ABSTRACT

Objective: The study sought to investigate the disease state–dependent risk profiles of patient demographics

and medical comorbidities associated with adverse outcomes of severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) infections.

Materials and Methods: A covariate-dependent, continuous-time hidden Markov model with 4 states (moder-

ate, severe, discharged, and deceased) was used to model the dynamic progression of COVID-19 during the

course of hospitalization. All model parameters were estimated using the electronic health records of 1362

patients from ProMedica Health System admitted between March 20, 2020 and December 29, 2020 with a posi-

tive nasopharyngeal PCR test for SARS-CoV-2. Demographic characteristics, comorbidities, vital signs, and lab-

oratory test results were retrospectively evaluated to infer a patient’s clinical progression.

Results: The association between patient-level covariates and risk of progression was found to be disease state

dependent. Specifically, while being male, being Black or having a medical comorbidity were all associated

with an increased risk of progressing from the moderate disease state to the severe disease state, these same

factors were associated with a decreased risk of progressing from the severe disease state to the deceased

state.

Discussion: Recent studies have not included analyses of the temporal progression of COVID-19, making the

current study a unique modeling-based approach to understand the dynamics of COVID-19 in hospitalized

patients.

Conclusion: Dynamic risk stratification models have the potential to improve clinical outcomes not only in

COVID-19, but also in a myriad of other acute and chronic diseases that, to date, have largely been assessed

only by static modeling techniques.

Key words: COVID-19, disease progression, risk factors, hidden Markov model, patient trajectory

VC The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com

864

Journal of the American Medical Informatics Association, 29(5), 2022, 864–872

https://doi.org/10.1093/jamia/ocac012

Advance Access Publication Date: 22 February 2022

Research and Applications

https://academic.oup.com/
https://academic.oup.com/


INTRODUCTION

Since its emergence in late 2019, the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) has caused a global pandemic

with more than 5.5 million estimated deaths worldwide.1 An under-

standing of risk factors influencing disease severity is critical for the

efficient clinical management of COVID-19 patients. Studies have

shown that risk factors, such as obesity, sex, and age, are highly cor-

related with adverse outcomes in COVID-19 patients.2–7 Further-

more, recent studies suggest such risk factors also may affect certain

aspects of COVID-19 progression, specifically disease onset,8 hospi-

tal utilization,9 and time-to-death.10 However, the effects of individ-

ual patient characteristics on the entire course of COVID-19

progression during a patient’s hospitalization is still not well charac-

terized. A better understanding of how individual characteristics in-

fluence not just the final outcome, but the full patient trajectory,

could lead to better care, improved patient outcomes, and improved

utilization of scarce resources.

Various approaches to disease progression modeling have been

proposed in the literature. These approaches range from determinis-

tic approaches based on differential equations,11 statistical

approaches such as autoregressive models,12 hidden Markov mod-

els,13 and Gaussian processes,14,15 deep learning methods such as re-

current neural networks,16 and computational simulation methods

such as discrete event simulations (DESs).17,18 The choice of model-

ing approach depends on the degree of knowledge of the underlying

disease mechanism, the stochasticity and heterogeneity of disease

symptoms, the number of samples available for parameter estima-

tion, and the need for model interpretability. In this article, we focus

on hidden Markov models for characterizing the disease trajectories

of hospitalized SARS-CoV-2 positive patients. This particular choice

is motivated by several factors: (1) a general lack of understanding

of the disease mechanism, (2) significant heterogeneity of disease

presentation and outcomes, and (3) a modest cohort size of 1362

hospitalized patients. In addition, HMMs are fairly easy to interpret,

compared to other statistical approaches such as Gaussian processes.

While DES-based methods are also easy to interpret and are capable

of modeling highly complex interactions, they require either in-

formed inputs for parameter values or extensive data for model cali-

bration.19 Because COVID-19 is a novel and still evolving disease,

neither of these requirements is currently met.

To better understand the impact of demographics and comorbid-

ities on the disease progression of hospitalized SARS-CoV-2 positive

patients, we propose a covariate-dependent, continuous-time Mar-

kov model with 4 states (moderate, severe, discharged, and de-

ceased) to capture the dynamic progression and regression of

COVID-19 during the course of hospitalization. We assume that the

underlying disease states are not directly observed; rather, these

states must be inferred from observational data collected throughout

the course of hospitalization. Using electronic health records (EHRs)

from patients in the ProMedica healthcare system in northwestern

Ohio and southeastern Michigan, we propose a hidden Markov

model that allows us to infer the effects of individual patient covari-

ates on the progression and regression of COVID-19. Demographic

information (e.g., age, race, sex) along with the history of 5 vital

signs and 10 laboratory test results collected during hospitalization

were used to train the covariate-dependent, continuous-time hidden

Markov model.

Instead of only analyzing the association between patient-level

covariates and a single adverse outcome, as is done in static risk-

factor analysis, we seek to uncover associations between patient-

level covariates and multiple adverse disease-related events. It is hy-

pothesized that these dynamic associations will depend on the cur-

rent disease state. To the best of our knowledge, this is the first

comprehensive model of disease trajectory for hospitalized COVID-

19 patients which integrates demographic information, comorbid-

ities, as well as important vitals and laboratory test results. In con-

trast to previously published work that simply identifies static risk

factors associated with adverse outcomes, we take disease severity

into account which allows us to identify when in the course of the

disease progression certain patient-level covariates are associated

with adverse outcomes, such as progressing to a more severe state.

We also demonstrate for the first time that the nature of association

of certain demographic variables (such as age, sex, and race) and

comorbidities (such as asthma, diabetes, hypertension and kidney

disease) with adverse patient outcomes can depend on the underly-

ing disease state of the patient.

MATERIALS AND METHODS

Several retrospective studies have analyzed the associations between

various risk factors and adverse outcomes of COVID-19 patients, a

number of which have been data-driven predictive modeling

approaches.2–10 The vast majority of these studies have ignored the

dynamic progression and regression of COVID-19, instead relying

on static data and methods. However, many infectious diseases have

a natural interpretation in terms of a finite number of progressively

severe disease states.20,21 Our objective is to investigate the disease

state–dependent association between patient-level covariates and

risk of progression. To this end, we model hospitalized COVID-19

patient trajectories given standard EHR data collected throughout

the course of hospitalization. This constrains our modeling choices

to discrete state space models. Multi-state Markov models (MMs)

and hidden Markov models (HMMs) are 2 well-known discrete

state space models22 with a long history in disease modeling. Their

generality and flexibility make them attractive models for biomedi-

cal panel data, with both MMs and HMMs having been applied to a

wide variety of disease progression modeling tasks. A non-

exhaustive list of such works includes applications to HIV,20 cancer

progression and diagnosis,23,24 cancer screening,21,25 vascular dis-

ease,26,27 pulmonary disease,28 neurodegenerative disease,29,30 sep-

sis,31,32 and diabetes.33

One benefit of MMs and HMMs is that biologically plausible

models can be proposed for the various disease states and the transi-

tions between them. This is done through the use of a Markov chain

or Markov jump process. HMMs bring in the additional benefit of

being able to account for stochasticity in the observation process. Fi-

nally, we note that Markov jump processes are continuous-time

models, as opposed to Markov chains, which are discrete time mod-

els. As such, Markov jump processes are more appropriate when

dealing with irregularly sampled data with a large amount a vari-

ability in the sampling rates. For these reasons, we focused on Mar-

kov jump processes for modeling the underlying disease progression

of a COVID-19 patient.

Data
The data used in this study are composed of EHRs from patients of

ProMedica, the largest healthcare system in northwestern Ohio and

southeastern Michigan. The patient data used in this study corre-

sponds to patients who (1) had a positive nasopharyngeal PCR test

for SARS-CoV-2 between March 20, 2020 and December 29, 2020,
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and (2) were admitted to the hospital within 3 days of a positive

result. This inclusion criteria ensured that hospitalization was pri-

marily due to COVID-19-related complications. We further dropped

patients with unknown discharge status and those without any

recorded vital measurements or laboratory test results. A total of

1362 patients met these criteria. A detailed flow diagram showing

inclusion criteria for data preprocessing is provided in Figure 1.

There are 3 main sources of data available in this dataset, all of

which were collected throughout the course of the patients’ hospital-

izations. Patient demographic information includes age, sex,

body mass index (BMI), and race. Patient comorbidities considered

include asthma, hypertension, diabetes, and kidney disease. Patient

vital measurements (vitals from here on) used in this study are sys-

tolic blood pressure (SBP), diastolic blood pressure (DBP), respira-

tions (Resp), temperature (Temp), and urine output (UO). Patient

laboratory test results (labs from here on) used in this study are C-re-

active protein (CRP), blood urea nitrogen (BUN), lactate dehydroge-

nase (LDH), procalcitonin, ferritin, anion-gap, D-dimer, oxygen

saturation (%O2 Sat), hemoglobin, and platelets. More details

on the ProMedica dataset are summarized in the Supplementary

Material.

A continuous-time hidden Markov model for COVID-19

patient data
A finite state Markov jump process St with state-space S is fully

characterized by an initial state probability distribution p ¼ ðp1;p2;

. . . ;pjSjÞ over S and a transition intensity matrix Q that governs the

rates of transitions between the states of S. The ij entry of Q is

denoted qij. The off-diagonal elements of Q are non-negative while

the diagonal elements satisfy qii ¼ �
P

j 6¼i qij. For homogeneous

continuous-time Markov jump processes, the time spent in state i

2 S is exponentially distributed with mean ki ¼ �1=qii. If the pro-

cess is in state i and transitions to a different state, the process enters

state j 6¼ i with probability pij ¼ �qij=qii. We then say a sequence of

random variables St is a Markov jump process if S0 ¼ i with proba-

bility pi for i ¼ 1;2; . . . ; jSj and the stochastic transitions are gov-

erned by the matrix Q as described above.

To capture both COVID-19 disease progression and regression,

we consider a 4-state Markov jump process. Two states correspond

to the underlying disease state of a patient. We distinguish moderate

disease burden from severe disease burden. We do not consider

mild disease burden because of our focus on hospitalized patients.

Mild cases of COVID-19 were typically treated as out-patient

visits. The other 2 states correspond to the 2 possible terminal states

of a patient’s hospitalization: discharged and deceased. To simplify

notation we sometimes label the states discharged, moderate, severe,

and deceased as 0, 1, 2, and 3, respectively, giving us the state space

S ¼ f0; 1;2; 3g. We assume that patients in the moderate disease

state can transition into the severe disease state or into the dis-

charged state, while patients in the severe disease state can transition

into the moderate disease state or the deceased state. A graphical

representation of this model is shown in Figure 2. More mathemati-

cal details of the model can be found in the Supplementary Material.

To capture heterogeneity in disease progression, we model the

intensities qij as functions of patient covariates. For this analysis we

consider covariates which are static over the course of the hospitali-

zation and have been shown to be associated with adverse outcomes

in COVID-19 patients. This includes the demographic variables age,

sex, BMI, and race.34–36 Sex was recorded as either male or female.

Because there were so few non-White/non-Black races represented in

this dataset, we categorized race into 3 categories: White, Black, and

Other.

In addition to demographic information, medical comorbidities

were included as patient covariates as well. While all known comor-

bidities of hospitalized patients were available in the dataset, we

narrowed our focus to 4 relatively common comorbidities, all of

which have been shown to be associated with adverse outcomes of

COVID-19: asthma, hypertension, diabetes, and kidney disease.37

There was no missing data among these covariates.

In total there were 9 ProMedica facilities included in this study.

ProMedica established care protocols that were distributed to all fa-

cilities and were used to diagnose and treat patients. A critical care

telemedicine service was established to provide support to outlying

hospitals and was staffed by a small group of critical care providers

who established protocols for care of patients at all ProMedica facil-

ities. The protocols and real-time management by these providers re-

duced any variation in care between facilities. Moreover, there were

no major structural differences between facilities other than some

outlying hospitals that transferred patients to Toledo Hospital when

Figure 1. Flow diagram showing inclusion criteria for data preprocessing.
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they became critically ill. For these reasons site information was not

included in the analysis.

We incorporated the above patient-level covariates into the Mar-

kov model as follows. If there are M covariates, then for patient n,

let xn be the M-dimensional vector encoding all covariates. We

model the transition intensity qij for i 6¼ j as qijðxnÞ ¼ ewij �xn , where

wij 2 R
M is a vector of parameters to be learned, and wij � xn denotes

the dot product between vectors wij and xn. Because of the restric-

tions placed on transitions between latent states, we must have

q13 ¼ q20 ¼ 0. Because states 0 and 3 are absorbing states, we must

have q0i ¼ q3i ¼ 0 for i 2 f0; 1; 2;3g.
We similarly assume that the initial state probabilities are func-

tions of patient covariates. Letting p ¼ ðp0; p1; p2;p3Þ denote the ini-

tial state probability distribution satisfying pi � 0 and
P

i pi ¼ 1, we

assume piðxnÞ ¼ evi �xnP
j
e

vj �xn for i 2 f0; 1; 2;3g, where vi 2 R
M is a vector

of parameters to be learned. Note that hospitalized patients cannot

be in the discharged state or the deceased state when initially admit-

ted, so we set p0 ¼ p3 ¼ 0. This leaves only one set of parameters to

be learned for p1 since p2 ¼ 1� p1.

Given parameters vi and wij along with covariates xn, we can de-

fine a Markov jump process Sn
t taking values in f0; 1; 2;3g. Condi-

tioned on model parameters and patient covariates, we assume that

individual Markov jump processes (i.e., patient disease trajectories)

are independent of one another. Such an assumption requires that at

no point during the study period did clinicians recommend sub-

optimal treatments due to the scarcity of resources, such as short-

ages of materials for patient care or personal protective equipment.

Due to pre-pandemic planning, there were no shortages of materials

for patient care or personal protective equipment for providers dur-

ing the study period. Thus, such an independence assumption among

disease trajectories is reasonable.

The underlying disease states moderate and severe are never di-

rectly observed. Instead, they are indirectly observed by various

measurements taken throughout the course of the hospitalization. In

particular, the vitals and labs can be interpreted as indirect, noisy

measurements of an underlying disease state, and they can be used to

infer the disease state. These measurements are sometimes referred to

as emissions in the HMM literature. The main assumption of these

emissions is that they are independent from all other model parame-

ters when conditioned on the latent disease state. Specifically, we as-

sume that all emissions are independent and normally distributed

when conditioned on the underlying latent state. Namely, if we let yk
t

be the kth emission observed at time t>0 for patient n, then condi-

tioned on the patient being in state i 2 f0;1; 2; 3g at time t we have

yk
t jSn

t ¼ i � Nðlk
i ;r

k
i Þ;

where lk
i and rk

i are the mean and standard deviation, respectively,

of a normal distribution and are to be learned from the data.

While not all vitals and labs were available for all patients at all

times, the conditional independence assumption makes it trivial to

account for missing emissions by simply integrating over the unob-

served data. More details on the prevalence of observed vitals and

labs among the study population can be found in the Supplementary

Material.

Finally, we note that the end states discharged and deceased are

observed states and thus do not have normally distributed emissions

associated with them. Details on how to account for these fully ob-

served states into the HMM framework can be found in the Supple-

mentary Material. All model parameters were estimated via

maximum likelihood estimation, while 95% confidence intervals of

the maximum likelihood estimators were obtained via a naive boot-

strap.38 Statistical significance of parameter estimates at the 5%

level was implied by a 95% confidence interval that excluded the

null value of zero. All inference procedures were performed using

Lawrence Livermore National Laboratory high-performance com-

puting resources. Details can be found in the Supplementary Mate-

rial.

Analysis of risk factors
Identification of risk factors is critical for efficient clinical manage-

ment of COVID-19 patients. A significant amount of research has

been published on risk factors for adverse outcomes for COVID-19

patients.2–10 Most of these studies focus on uncovering statistically

significant associations between patient covariates (risk factors) and

adverse outcomes (such as the need for mechanical ventilation or

death). In addition to typical terminal outcomes, our proposed

model includes intermediate disease states. Specifically, our model

considers the following events: (1) progression from a moderate dis-

ease state to a severe disease state; (2) regression from a severe dis-

ease state to a moderate disease state; (3) progression from a severe

disease state to the deceased state; and (4) regression from a moder-

ate disease state to the discharged state.

To investigate possible correlations of patient-level covariates

with adverse disease progression indicators, we estimated statistics

that characterize the underlying Markov process. First, we estimated

the probability of disease progression conditioned on a state transi-

tion occurring. For example, if a patient is in the moderate state,

then eventually the patient will transition to either the severe state

or the discharged state. We estimated the probability that the patient

transitions to the severe state (rather than the discharged state)

when this transition occurs, and we denote this probability by p12.

Similarly, we estimated the probability that a patient in the severe

state transitions to the deceased state (rather than the moderate

state) conditioned on a transition occurring, and we denote this

probability by p23.

A given set of patient-level covariates x determines distinct tran-

sition probabilities p12ðxÞ and p23ðxÞ. We investigate the effect of

covariates on these transition probabilities by taking 2 patient co-

variate vectors x and x0 that differ only by a single covariate of inter-

est. We compute the relative risk of transitioning to a more severe

state between the 2 different cohorts. Specifically, the relative risk

Figure 2. A 4-state Markov model for a COVID-19 positive patient: 2 hidden disease states and 2 observed outcome states.
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(RR) between groups x and x0 of transitioning from state moderate

to state severe is defined by

RR12ðx; x0Þ ¼
p12ðx0Þ
p12ðxÞ

:

Similarly, the relative risk of transitioning from the severe state

to the deceased state is

RR23ðx; x0Þ ¼
p23ðx0Þ
p23ðxÞ

:

In addition to the relative risk of disease progression, we also es-

timated the overall relative risk of mortality as follows. Let p�i3ðxÞ be

the probability that a patient with covariate vector x eventually ends

in the deceased state starting from state i¼1, 2. This is known as a

hitting probability, and details can be found in the Supplementary

Materials on how to compute it. Furthermore, let piðxÞ be the prob-

ability that patient x is in state i at the time of hospitalization (i.e.,

the initial state probabilities). We then define the overall relative

risk of mortality as

RR�ðXÞ ¼ p1ðx0Þp�13ðx0Þ þ p2ðx0Þp�23ðx0Þ
p1ðxÞp�13ðxÞ þ p2ðxÞp�23ðxÞ

:

The value RR� is not conditioned on being in either latent disease

state, but is averaged over the initial state probabilities, giving us an

overall relative risk of mortality from the time of hospitalization.

If we consider the covariate vector x as a baseline (or control) co-

hort and x0 as the alternative (or treatment) cohort, then the statistics

RR12ðx; x0Þ and RR23ðx;x0Þ provide information on how risk factors

in vector x0 and absent in vector x are associated with the likelihood

of progressing to more severe disease states. In particular, if

RR12ðx; x0Þ > 1, this suggests that the risk factors present in vector x0

and absent in vector x are associated with an increase in the proba-

bility of progressing from a moderate disease state to a severe disease

state, whereas RR12ðx;x0Þ < 1 suggests that the risk factors present

in vector x0 and absent in vector x are associated with a decrease

in the probability of progressing from a moderate disease state to

a severe disease state. Analogous relations hold between the statistic

RR23ðx; x0Þ and the probability of transitioning from the severe state

to the discharged state. The statistic RR�ðx;x0Þ provides information

on how risk factors present in vector x0 and absent in vector x are as-

sociated with the overall probability of ending in the deceased state.

In particular, if RR�ðx; x0Þ > 1, then this suggests that the risk factors

present in x0 and absent in vector x are associated with an increase in

the overall probability of ending in the deceased state.

In order to isolate the association between a particular covariate

and the risk of progression, we average the above statistics over the

empirical distribution of patient covariates. Specifically, suppose x‘
¼ x0‘ for all ‘ 6¼ k and xk 6¼ x0k for some k. Then letting x�k ¼ ðx1; . . . ;

xk�1;xkþ1; . . . ;xnÞ and Ex�k
denote expectation with respect to the

joint distribution of x�k, we wish to estimate �RRij ¼ Ex�k
½RRijðx;x0Þ�.

We approximate this value via Monte Carlo integration using boot-

strap samples of the empirical distribution of patient covariates.

Namely, if x(b) is drawn with replacement from the empirical distribu-

tion of patient covariate vectors and x0ðbÞ is the same as x(b) except

for one covariate of interest, we approximate the mean relative risk as

�RRij �
X

b

RRijðxðbÞ; x0ðbÞÞ:

Bootstrapped standard errors and the bias-corrected percentile

method38,39 were used to construct 95% confidence intervals for

these statistics. Statistical significance at the 5% level is implied by

95% confidence intervals that exclude the value of 1.

RESULTS

For each emission (observed lab or vital), there are 2 distinct sets of

parameters: one associated with the moderate state and one with the

severe state. Table 1 shows the emission distribution parameters (the

mean and standard deviation of a Gaussian distribution) for both la-

tent states. In addition, it shows the differences between the esti-

mated severe and moderate emission distribution parameters, along

with 95% confidence intervals of these differences. An � denotes

that the difference is significant at the 5% level. Of the 15 emission

distributions, all but 4 mean parameters and 5 standard deviation

parameters are significantly different at the 5% level. This indicates

that our model is successfully learning to differentiate 2 distinct la-

tent states which can be characterized by vital and lab measure-

ments. Parameter estimates for all other model parameters can be

found in the Supplementary Material.

The bootstrapped confidence intervals of the mean relative risk

metrics, �RRijðx; x0Þ and �RR
�ðx;x0Þ, are shown in Table 2. All risk

factors considered, other than BMI, were associated with a statisti-

cally significant increase in the relative risk of progressing from

moderate to severe states. On the other hand, all risk factors consid-

ered, other than BMI and age, were associated with a statistically

significant decrease in the relative risk of progressing from the severe

to deceased state. Both age and BMI were associated with an in-

creased risk of progressing from severe to deceased, but this was not

significant at the 5% level. Finally, we note that only age and being

Black were associated with a statistically significant increase in the

relative risk of mortality.

DISCUSSION

Understanding which risk factors are associated with adverse

patient-centered outcomes is critical to improving patient care. A

more dynamically responsive healthcare system should also consider

when in the course of hospitalization certain risk factors are more

associated with adverse patient-centered outcomes. By modeling the

entire course of disease trajectories during hospitalization with a

covariate-dependent, continuous-time hidden Markov model, we

found known risk factors to have different associations to disease

progression depending on the disease state of the patient. The risk

factors that demonstrated this pattern were being male, being Black

and having a medical comorbidity.

Perhaps somewhat counter intuitive is the fact that a particular

risk factor, such as being Black or being male, can be associated

with an increase in the relative risk of transitioning from moderate

to severe, a decrease in the relative risk of transitioning from severe

to deceased, and an increase in the overall relative risk of mortality.

This is best understood by remembering that the relative risks com-

puted here are conditioned on being in a particular disease state.

Taking sex as an example, females are more likely to transition to

the discharged state from the moderate disease state than males,

while males are more likely to transition to the severe state from the

moderate disease state than females. But once we condition on being

in the severe state and assess the risk of transitioning to the deceased

state, we only account for those males and females that were sick

enough to reach the severe state. Looking at only those individuals

in the severe disease state it can happen (as is the case with sex, race,

868 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac012#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac012#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac012#supplementary-data


and some comorbidities) that the risk of entering the deceased state

is higher for the individuals that were less likely to enter the severe

state in the first place. Figure 3 shows a graphical representation of

this situation.

Note that if a fixed-time (static) model had been used to discern

any associations between disease severity and patient outcome

(death or discharge), one may introduce an immortal time bias, lead-

ing to incorrect inferences about relative risk.40 This is because in a

fixed-time model periods of follow-up may be inappropriately

assigned to a particular disease state. An HMM, on the the other

hand, is not susceptible to such biases because it can infer the disease

severity throughout the course of follow-up in a time-varying man-

ner, greatly reducing such errors. We believe that the counter-

intuitive results presented in this article have not been reported ear-

lier due to the significant prevalence of static data and models used

for risk stratification of COVID-19 patients.

The clinical implications revealed by the dynamic modeling in

the current study are important. By only focusing on the static risk

factors, a care-provider may mistakenly assign risks that do not re-

flect the true underlying risk conditioned on current disease state.

For example, if a male and female patient are both assessed to be in

a severe disease state, and the prevailing static risk factors are used

to evaluate the risk of progression, one may mistakenly infer that

the male is at higher risk than the female because being male is con-

sidered a risk factor for adverse outcomes of COVID-19. But in fact,

based on our findings the female patient is at higher risk of death

once we condition on the current disease states of the patients. Such

a conditional risk assessment may lead to improved patient out-

comes as at-risk patients can be appropriately identified for inter-

vention. Similarly this strategy may allow more focused allocation

of hospital resources, especially during a global pandemic such as

COVID-19, which has repeatedly strained hospital resources during

multiple waves of mass infections.

Higher age was the only risk factor shown to be associated with

an increase in risk of disease progression from both the moderate

disease state and the severe disease state. While the relative risk of

transitioning from the severe state to the deceased state was not

found to be significant at the 5% level, the CI for this value was

(0.94, 1.73), which is still rather strong evidence that higher age is

associated with a higher relative risk of death.

BMI, on the other hand, did not appear to be a risk factor in ei-

ther state. One explanation for this is the fact that the population

under consideration is biased toward high BMI. The self-reported

prevalence of obesity (BMI > 30) in the state of Ohio is 34.8%,41

whereas the prevalence of obesity in the current dataset is 60%.

Thus even though we find that BMI is not associated with elevated

Table 1. Maximum likelihood estimates of emission distribution parameters along with 95% CIs of the differences between moderate and

severe state parameters

moderate severe severe � moderate severe � moderate

Mean (SD) Mean (SD) Mean (95% CI) SD (95% CI)

C-reactive protein 7.62 (15.92) 13.98 (19.36) 6.37 (5.91, 7.75)* 3.44 (3.24, 4.56)*

Blood urea nitrogen 26.95 (48.90) 46.98 (66.74) 20.03 (19.11, 27.63)* 17.85 (16.59, 22.29)*

Lactate dehydrogenase 293.60 (435.70) 412.22 (633.67) 118.62 (103.83, 175.61)* 197.97 (136.99, 373.51)*

Procalcitonin 0.28 (2.96) 6.53 (30.13) 6.26 (6.14, 12.46)* 27.17 (31.41, 42.88)*

Ferritin 540.85 (1170.92) 1005.17 (1737.23) 464.33 (215.53, 719.22)* 566.31 (360.75, 857.73)*

Anion-gap 9.66 (12.76) 11.57 (14.37) 1.90 (1.68, 2.59)* 1.61 (1.53, 1.97)*

D-dimer 503.54 (2042.11) 3571.77 (9842.44) 3068.23 (2741.31, 5145.36)* 7800.33 (6535.21, 11623.34)*

% O2 Sat 95.30 (96.22) 90.46 (104.69) �4.85 (�7.28, �4.10)* 8.475 (7.27, 11.08)*

Hemoglobin 11.83 (14.07) 11.49 (14.18) �0.35 (�1.69, �0.11)* 0.11 (�0.16, 0.31)

Platelets 240.79 (352.09) 252.70 (390.57) 11.91 (�4.73, 38.58) 38.48 (19.82, 88.84)*

Systolic pressure 125.51 (144.13) 121.40 (145.26) �4.10 (�24.92, 1.45) 1.13 (�0.80, 5.45)

Diastolic pressure 70.55 (83.49) 68.95 (84.36) �1.60 (�13.32, 0.88) 0.87 (�0.51, 4.00)

Respirations 19.02 (24.44) 25.80 (26.66) 6.78 (6.56, 7.43)* 2.23 (�2.41, 2.82)

Temperature 98.19 (99.01) 98.93 (100.93) 0.74 (�0.56, 0.92) 1.92 (�1.50, 2.48)

Urine output 329.54 (567.03) 516.24 (2839.69) 186.70 (116.68, 615.94)* 2272.67 (1044.50, 6726.36)*

*Denotes that the CI does not contain zero, indicating significance at the 5% level.

Table 2. Maximum likelihood estimates and 95% CIs for the relative risk of disease progression between 2 cohorts

�RR12ðx; x0Þ �RR23ðx; x0Þ �RR
�ðx; x0Þ

Covariatea: x0=x moderate! severe severe! deceased entry! deceased

Age: high/lowb 1.08 (1.01, 1.27)* 1.21 (0.94, 1.73) 1.26 (1.07, 1.58)*

Sex: male/female 1.91 (1.25, 2.40)* 0.32 (0.20, 0.46)* 1.26 (0.61, 1.53)

Race: Black/White 1.62 (1.19, 1.90)* 0.29 (0.20, 0.46)* 1.27 (1.11, 1.61)*

BMI: high/low 0.97 (0.88, 1.03) 1.04 (0.67, 1.27) 0.96 (0.78, 1.10)

Asthma: yes/no 1.33 (1.16, 1.66)* 0.41 (0.27, 0.88)* 0.97 (0.69, 1.40)

Diabetes: yes/no 1.49 (1.20, 1.72)* 0.33 (0.23, 0.49)* 1.10 (0.75, 1.33)

Hypertension: yes/no 1.55 (1.27, 1.83)* 0.35 (0.27, 0.51)* 1.09 (0.81, 1.36)

Kidney disease: yes/no 1.47 (1.22, 1.69)* 0.31 (0.22, 0.45)* 1.15 (0.92, 1.50)

*Denotes that the CI does not contain one, indicating significance at the 5% level.
aIn each row, vector x0 differs from vector x by a single covariate.
bFor age and BMI, high/low are defined as one standard deviation above/below the population mean.
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risks of disease progression among hospitalized COVID-19 patients,

it does appear to be associated with higher rates of hospitalization

among the general population. Another explanation for this finding

is that BMI itself is not associated with changes in the relative risk of

disease progression, but various medical comorbidities that are cor-

related with high BMI are associated with such elevations in risk.

This is supported by the fact that when we performed a similar anal-

ysis but without comorbidity information, higher BMI was found to

be associated with an increased relative risk of disease progression.

Importantly, while this model was trained only on EHR data

from ProMedica health system in northwestern Ohio and southeast-

ern Michigan, there is evidence that the results may be transferable

to other cohorts. We found a high degree of correlation with the

Epic deterioration index,42 a proprietary risk metric validated on

much larger patient cohorts, suggesting that our approach is trans-

ferable to other cohorts. Similarly, we found a high degree of con-

cordance with our inferred emission distribution parameters and

NIH clinical guidelines on identifying COVID-19 disease severity.43

Details of both the Epic deterioration index and NIH validations

can be found in the Supplementary Material. While such validations

are reassuring, future work should validate the proposed methods

on a larger, independent dataset to see if similar results are observed.

Extensions to the work herein involves relaxing the Markov as-

sumption on disease dynamics, considering nonlinear effects of the

covariates, and explicitly modeling interventions such as ventilation.

CONCLUSION

Compared to many reported studies that ignore the temporal pro-

gression of disease in their analysis, this study provides a unique

modeling-based approach to understanding how patient demo-

graphics and medical comorbidities can present differential risk pro-

files depending on the underlying disease state. The proposed

approach performs risk forecasting and stratification based on the

full patient trajectory and serves as an exploratory tool for generat-

ing novel clinical hypotheses. We estimated the parameters of our

proposed HMM based on a cohort of 1362 hospitalized SARS-CoV-

2 positive patients via maximum likelihood estimation. By modeling

the entire trajectory of hospitalized COVID-19 patients, we were

able to show statistically significant differences in the relative risk of

disease progression conditioned on current disease state. These dif-

ferences should be taken into consideration when performing risk

assessment among hospitalized patients. Such information is poten-

tially more actionable throughout the course of care, possibly lead-

ing to better patient outcomes. Moreover, disease state–dependent

risk assessments can be applied not only to COVID-19, but also to

many other acute and chronic diseases that, to date, have largely

been assessed only with static data and modeling techniques.
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