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Themeasurement of gene expression has long provided significant insight into biological functions. The develop-
ment of high-throughput short-read sequencing technology has revealed transcriptional complexity at an un-
precedented scale, and informed almost all areas of biology. However, as researchers have sought to gather
more insights from the data, these new technologies have also increased the computational analysis burden. In
this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and
weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs.We also discuss the as-
sembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary,
RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords:
RNA-Seq
Transcript
Genome
Transposable element
Long non-coding RNA
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
2. Sequencing Platform Technologies and Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
3. Gene-level and Transcript-level Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
4. De novo Transcript Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
5. Detection of Coding and Long Non-coding RNAs From RNA-Seq data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
6. Assembly of Transposable Elements into Long Non-coding RNAs and Splicing into Coding Genes . . . . . . . . . . . . . . . . . . . . . . . . 633
7. Available Annotation Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
8. Reproducible Sharing of Bioinformatics Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
9. Tools for the Job: RNA-Seq as a Powerful Tool for Gene Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
1. Introduction

The relationship between gene expression dynamics and biologi-
cal function has long been explored [1–3]. Whilst it is clear that mea-
suring gene expression cannot capture all of the cell's information
content, the ease ofmanipulation of nucleic acids has led to thewide-
spread adoption of gene expressionmeasures to many domains of bi-
ology. Recent innovations, first in microarray [4,5], and then in
sequencing technologies [6,7], substantially drove down the cost
and increased the throughput of measuring RNA gene expression,
ns).

. on behalf of Research Network of C
so much so, that a search for the keywords “differential gene expres-
sion” on NCBI PubMed, returned 68,519 hits. RNA sequencing (RNA-
Seq), has become a dominant technique in measuring gene expres-
sion levels [6,8–12]. Indeed, measuring gene expression through
RNA-Seq technology has become near ubiquitous in biomedical re-
search and studies now often sequence hundreds of samples
[13–15]. However, there are many known and unknown biases in
the quantification of RNAs, and efforts have been made to mitigate
these effects [16–21]. In many cases, the choice of analysis strategy
that the researcher wishes to perform determines which of these
biases are critical, and which can be safely ignored. Despite techno-
logical innovations, many RNA-Seq gene abundance estimate
omputational and Structural Biotechnology. This is an open access article under the CC BY
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techniques require the disruption of tissues and cells, followed by the
extraction of RNA, fragmentation, amplification and/or size-
selection. Although newer sequencing technologies aim to dispense
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RNA abundance estimates of gene expression by contributing unseen
biases in the data. In addition, the expression levels of certain tran-
scripts in the same sample are heterogeneous, leading to
stochasticity in the estimates [23,24]. Indeed, there is a number of
confounding issues at almost all stages of the analysis of gene expres-
sion, and a number of bioinformatics tools have been developed to
handle specific steps and biases in the process of capturing the ex-
pression levels. Here, starting with the assessment and treatment
of sequence reads, we review commonly used bioinformatics
methods, available tools and strategic considerations for the assem-
bly and quantification of gene expression (Fig. 1), including a discus-
sion of the case of assembling transcripts that contain repetitive
transposable elements, which pose their own special challenges.
We conclude by giving insights into the factors to consider in decid-
ing which bioinformatics tools or pipelines to use.

2. Sequencing Platform Technologies and Pipelines

The most common form of high throughput sequencing is ‘short-
read’ sequencing, where the read length can range up to 300 bp in
length. This approach in transcriptome analyses is commonly re-
ferred to as ‘RNA-Seq’. In this approach, RNA is extracted,
fragmented, converted to cDNA, amplified and sequenced (Fig. 1).
The processing of RNA to a form ready for sequencing [25] is
known as library preparation, and is an important initial step in
RNA-Seq [26,27], that is constantly being improved [10,28–30]. If
the RNA is collected from tissue, the first step is tissue rupture,
followed by cell lysis, purification and reverse transcription to get
cDNA [25]. In the case of short RNAs such as miRNAs, the short RNA
molecules are size-selected using gel electrophoresis [31]. Longer
transcripts can be selected by using oligodT or ribosomal RNA deple-
tion and then fragmented before reverse transcription [25,27,29,30].
RNA-Seq library is thereafter sequenced to get “reads”. Gene expres-
sion estimates are then made by counting the number of reads that
align to each transcript, to arrive at an estimate of the quantity of
RNA in the original sample.

The underlying sequencing technology can be either single-ended
(the fragment is sequenced from only one end) or paired-end (the frag-
ments is sequenced from both ends). In general, for RNA-Seq, it is desir-
able to have the longest possible paired-end reads, to achieve the best
mapping coverage and the highest chance of observing splice junctions.
However, the transcript type of interest will determine the read length
of choice. For example, in the study of microRNAs and other very short
RNAs, sequencing lengths must be necessarily small, as the RNAs them-
selves are short. Conversely, for coding and long non-coding RNAs, in
general, the longer the reads the better, as it improves the specificity
ofmapping [32,33]. The short-read sequencing technologies are the cur-
rent dominant technology. However, newer approaches that sequence
very long-reads, including the complete transcript, are emerging
[34,35]. Although these technologies suffer from higher sequencing
error rates and lower quantitative range than short-read technology,
they are becoming a powerful tool to correctly annotate full-length
transcripts [36,37].

Long- and short-read technologies are different in the sequence
yield per run, sequencing accuracy, observed raw error rate, read
lengths, insert size and RNA requirement [37–41]. Particularly,
read quality is very important for reproducibility and reliability of
transcript assembly and quantitation [42]. Short read sequencing
quality is commonly assessed by tools such as FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). If the quality
is poor, tools like Fastx-toolkit (http://hannonlab.cshl.edu/fastx_
toolkit/), Trimmomatic [43], PRINSEq. [44], Flexbar [45] and others
can be used to trim or filter reads, which can help improve mapping
accuracy. The higher sequencing error rate in long-reads requires
error correction either by short-reads [39,46-48] or by self-
correction of the long-reads [35,49].
3. Gene-level and Transcript-level Quantification

At the simplest level of analysis, RNA-Seq data can be considered by
mapping it only against a reference transcriptome (not the genome). In
transcript-level analyses, all isoforms of a gene are considered sepa-
rately, whereas in gene-level analyses, all of the isoforms of a gene are
merged to form a single unit. For humans and other model organisms,
the genome sequences and annotations are relatively complete, partic-
ularly for coding genes. Therefore, there is often no need for de novo as-
sembly if the research aims are only to assay well annotated genes.
However, a choice should be made as to whether the analysis is at the
level of the gene or at the transcript. Gene-level analysis is the simplest,
and it removes a lot of confounding information related to minor tran-
script isoforms. In many cases, transcripts have one dominant isoform
and severalminor isoforms. Themeasurement of differential expression
can often overemphasize changes in minor transcripts whilst the major
transcripts are relatively unchanged, making interpretation a challenge
[50,51]. However, analysis at the gene-level losesmuch of the complex-
ity of transcript expression, and is not easily suited to the analysis of par-
ticular types of non-coding genes, such as anti-sense or sense intronic
transcripts, which are difficult to interpret in gene-level quantification.

In well annotated organisms, gene-level quantification may be all
that is required for many purposes. This is because gene-level quantifi-
cation is less complicated, the properties of genes are relatively well
known and the focus is mostly on protein-coding genes. In addition,
most highly expressed genes have single dominant isoform [52]. In
fact, many studies (e.g. [53,54]) skip the assembly of transcripts and
only consider well annotated genes from, for example, GENCODE [55].
This has allowed the development of databases that reanalyze very
large amounts of data, often frommany laboratories, using unified pipe-
lines. For example, Vivian et al. [56] developed the Toil pipeline, to
quantitate over 20,000 samples. Other projects include the analysis of
cancer samples by the Cancer Genome Atlas (TCGA), involving N8000
samples from N30 cancer and normal cell types [57] and the Genotype
Tissue Expression (GTEx) project which has N9000 samples across 53
tissues from 544 healthy individuals [13]. Necsulea et al. [15] used 185
RNA-Seq samples, including previously available and newly generated
sequences from six species, to investigate lincRNA (long intergenic
non-coding RNA) evolution in tetrapods. Another study [58] used nu-
merous samples to study in vitro human cerebral cortex development
from human embryonic stem cells. We previously reanalyzed 921
RNA-Seq samples, from 272 mouse tissues and cell types to identify
eight major domains of cell type specification [53].

Most pipelines pass through a quantification step. Quantification can
be achieved using alignment-based or alignment-free tools. Alignment-
based tools align all reads from a sample to a genome or transcriptome,
and then using only the mapped reads, count the number of reads that
map to an individual transcript or gene. Some of the most common
alignment-based tools include RSEM [54], StringTie [59], eXpress [60],
TopHat/Cufflinks [61], rQuant [62], MMSEq. [63] and Scallop [64].
These tools have seen widespread use in a range of projects, for exam-
ple, TopHat/Cufflinks [65], or RSEM [53], the last of which is particularly
popular due to its accuracy and user friendly interface. Many quantita-
tive tools are ‘wrappers’ around a lower-level alignment tool which
aligns reads to an indexof DNA/RNA sequences.Widespread aligners in-
clude Bowtie1/2 [66], STAR [67], HISAT1/2 [68], GSNAP [69] or BWA
[32]. These tools accept reads and align them to an index, which could
be composed of the genome, transcriptome, or any custom index built
by the end-user. A list of steps, selected associated tools, and their pur-
poses are presented in Table 1. One advantage of alignment-based
quantification methods is their sensitivity [70]. However, this comes
with a time and memory cost [71–73], which is due to the requirement
to optimally align each read accurately.

To speed up quantification methods, alignment-free tools have been
developed. Alignment-free quantification strategies use some variant of
k-mer counting within the sequencing libraries (i.e. counting all the
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Table 1
Selected tools for transcript assembly

Process Tool Purpose Input Output

Read treatment FastQC Checks the integrity and quality
of reads

Fastq files Quality charts

FastX toolkit, Flexbar,
Trimommatic

Filters or trims reads Fastq files Clean reads; reports

Assembly Trinity, Trans-ABySS, Oases, SSP,
IDBA-tran

Assembles reads without
reference

Clean reads Assembled
transcripts

TOPHAT, STAR, HISAT, HISAT2
with stringTie

Assembles reads with reference
annotation

Clean reads, genomic reference, reference annotation Assembled
transcripts

Transcript
Classification

BEDtools, glBase Checks overlap between
coordinates

BED, GTF, GFF files BED, GTF, GFF, report
files

BLAST, BLAT, GMAT, Augustus Homology based classification Fatsa files Alignments, reports
CPAT, FEELnc, NRC, lncRScan-SVM Coding potential assessment GTF or fasta files; reference annotations (mRNA fasta or GTF

and genomic fasta)
Coding potential
scores, reports

Mapping TOPHAT, STAR, HISAT, HISAT2,
Bowtie, BWA

Aligns reads to transcript or
genes

Reads; reference annotations (gtf) Alignments (bam,
sam)

Quantification RSEM, StringTie, bam-readcount,
featureCount

Estimates transcript abundance Alignment files Abundance estimates

Sailfish, Salmon, Kallisto Estimates abundance without
alignment

Reads; reference annotations Abundance estimates
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k-mers in a sequencing library, without looking at the genome), which
can be collected very fast, rather than align every single read and then
quantitate afterwards, as in alignment-based strategies. Sailfish [73] or
Salmon [72] count the k-mers and then uses only the unique k-mers to
quantify expression. In these approaches, only the final unique k-mers
need to be mapped to the transcriptome to identify the transcript, lead-
ing to a substantial increase in speed, at the cost of a small loss in sensi-
tivity. A problem with these tools is that they only consider unique
k-mers, and so are unsuited to the quantification of repeat-derived
RNAs, and they are most suited to transcript-level quantification, as
they exploit unique splicing patterns to collect unique k-mers. Indeed,
the authors of Kallisto suggest that it is only suited to transcript-level
quantification, and gene-level quantification may be misleading [71].
Evaluation of alignment-free methods by Wu et al. [70] revealed that
they tend to perform poorly with lowly expressed transcripts or short
RNAs. These tools also tend toperformbetter inwell annotated genomes,
with good transcript annotations. However, for many users, the loss of
some sensitivity is a good tradeoff for large speed improvements. Other
related expression quantification tools such as HTSEq. [74] and
featureCounts [75] are now increasingly being used. The speed is compa-
rable to those of other alignment-free methods but the sensitivity is
improved.

A typical quantification begins after alignment with the number of
reads/fragments (or k-mers) that mapped to a transcript or gene. This
number depends on the actual expression level, the library size, percent
of reads aligning, transcript length, GC content, and other (often hid-
den) confounding parameters (e.g. batch effect, operator bias, etc.)
[17,76]. To have a better picture of the true expression level, quantifica-
tion is usually followed by expression normalization. The classic expres-
sion unit is Reads Per Kilobase per Million aligned reads (RPKM) [7] or
Fragments Per Kilobase transcript per Million aligned (FPKM) [77]
which both correct for the library sizes and transcript lengths (RPKM
is for single-end reads and FPKM is for paired-end reads). These ap-
proaches are conceptually simple, and allow for the comparison of
gene expression levels across samples. However, despite their common
usage, several studies have pointed out significant flaws in RPKM/FPKM
approaches. Highlighted flaws include bias in gene length, GC content
and dinucleotide frequency [78], and inconsistency in the averages of
the relative molar RNA concentrations across sets of transcripts [79].
Consequently, Transcripts Per Million reads (TPM) was developed as a
new unit [79]. However, in our experience we find that the RPKM/
FKM or TPM only performwell when the samples under analysis are al-
ready closely matched. For example, they came from similar cell types,
were sequenced inside the same batch, and do not have much overall
variation. When any of these conditions is violated, more robust
normalization procedures are required for meaningful quantification.
For example, a comparison of normalization methods suggests
that RPKM/FPKM approaches were poor in terms of distribution,
clustering and false-positive rate, whilst techniques employing mean-
normalization of tag counts had superior performance [80]. In our expe-
rience, the single most important factor to control for is GC-bias in
genes/transcripts, which can help remove batch effects in RNA-Seq
samples [19,53], and mean-normalization and related techniques can
also remove a lot of confounding problems in RNA-Seq data. One impor-
tant assumption that the mean-normalization techniques share is that
the overall level of RNA is relatively similar between samples, and that
the overall variance in gene expression is low. This may not be true in
all cases. For example, it has been argued that the overexpression of
the oncogene c-Myc in tumor cells causes a global amplification of tran-
scriptional output [81]. If the RNA-Seq is mean normalized, this global
amplification would be lost as the transcriptional outputs of both sam-
ples would be normalized to their means.

4. De novo Transcript Assembly

For studies that require only gene or transcript-level quantification,
robust genemodels are required. However, many organisms lack robust
genemodels, and there is evidence that, even in the extensively studied
human genome, the total set of transcripts remains incomplete [82].
This is a particularly acute problem as it is clear that alternative splicing
of novel transcripts is a common cell type-specific occurrence. Conse-
quently, in any particular cell type the gene annotations may be incom-
plete, requiring the assembly of de novo transcripts to generate novel
biological insight.

Because many of the sequencing technologies involve the fragmen-
tation of transcripts followed by sequencing of relatively short frag-
ments, inferring the original full-length RNA molecules that gave rise
to the observed population of short fragments requires accurate recon-
struction of a full-length transcript from the assembly of overlapping
short fragments. Assembly can be achieved by using the reads alone
(i.e.without reference to a genome), a useful technique if no genome se-
quence is available. However, reference-free assembly is less accurate
than guided assembly [50,82]. Because many genome sequences are
available, several pipelines have been developed to assemble transcripts
that take advantage of known genomic features. For example, Pertea
et al. [83] proposed a pipeline for transcript assembly using HISAT2
[68] for alignment, followed by StringTie [59] for assembly. Another
pipeline [61] used TopHat [84] followed by Cufflinks [77]. Other assem-
blers include IsoSCM [85] and Scallop [64]. The assembly of short-reads
onto longer transcripts is a challenging computational problem that has



Table 2
-Example tools and approaches for classifying coding and non-coding transcripts.

Approach Instances Example tools

Coordinate
overlap

Known coordinates from good genome
annotations

BEDTools, glbase

Homology
based

Known sequence and reasonable
databases

BLAST, BLAT, GMAP,
AUGUSTUS

Machine
learning

Characterizing features of coding and
noncoding transcripts

CPAT, FELLnc,
lncRScan-SVM, NRC
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seen the development of many algorithmic approaches. However, the
accurate reconstruction of transcript models remains a problem [82].
For example, in an assessment of 24 protocol variants involving 14 inde-
pendent computational methods, Steijger et al. [50] reported that the
assembly of complete isoform structures was overall poor using short-
read RNA-Seq data in the human genome, with many missing exons
and incorrect splice junctions. Ultimately, there is no single best pipeline
for all cases, and instead there is competition between competing tools
and techniques [41,42].

One advantage of de novo assembly from short-reads is that it can be
used to study gene expression from any species and cell type within a
species [86–89]. De novo assembly is dependent on the mutual overlap
of fragments that can be chained together to infer transcriptmodels. For
highly expressed genes with relatively simple transcript models and
fewer splicing variants, this may be reliable to a certain extent. How-
ever, for lowly expressed genes, genes with complex splicing patterns,
de novo assembly from short-reads is not reliable [37,50]. The full-
length of a gene might not be recovered [90,91]. Hence, the accurate
transcription start site might be missed. The accurate detection of the
transcription start site (TSS) is important for experimental techniques
like CRISPR screens that work best when the sgRNA is targeted within
100–200 bp of the true TSS [92,93]. DeepCAGE technologies have been
a powerful addition to the transcript assembly toolbox as they only se-
quence the TSS [94]. However, this leads to challenges in inferring
which transcript the TSS belongs to [95]. Consequently, transcript as-
sembly is best approached with a combination of tools and experimen-
tal techniques. Wang and Gribskokv [90] recently reviewed different de
novo assembly tools and highlighted the strengths and weaknesses of
each of the eight tools considered. De novo assembly tools include
Trans-ABySS [96], Trinity [91], Oases [97], SSP [98], IDBA-tran [99],
Rockhopper2 [87] and BinPacker [100]. An important option to consider
in de novo transcript assembly is the k-mer size. K-mer size is the length
of oligonucleotides that the reads are “decomposed” into, to prime as-
sembly. A number of the tools then use de-Bruijin graphs to link the
k-mers together and build transcript models [91,99]. Whereas a larger
k-mer size improves speed, smaller k-mer size improves sensitivity.
The tradeoff between the two may not always be obvious. Ultimately
the use of short-read sequences to assemble transcripts can be challeng-
ing as the small fragments (typically 300 bp)mean that only small parts
of the transcript can be observed, and some guessworkmust bemade to
stitch fragments together. A number of simulation-based benchmarking
[101] and spiked-in control [102,103] tools have been developed to op-
timize RNA-Seq experiments.

Recent studies are taking advantage of long-read technology that can
cover intact transcripts, and reveal splice patterns [36,82,104–106]. Long
reads generally have higher sequencing error rates and lower yields.
However, the technology is now being deployed more widely, either in-
dependently [35] or in combination with short-reads [37], to address bi-
ological questions. Sharon et al. [35] reported a survey of the human
transcriptome using long-read sequences of 20 human samples. Au
et al. [37] combined both short and long-reads for isoform identification
and quantification to characterize human ESC transcriptome. Abdel-
Ghany et al. [107] surveyed sorghum transcriptomewith singlemolecule
long-reads. Wu and Ben-Yehezkel [108] used long-reads to survey the
transcriptome of three human tissue samples. These studies show that
the full-length of many transcripts could be retrieved and reported
many previously unannotated transcripts. Likewise, Chen et al. [36] re-
ported a transcriptome atlas of rabbit using both long and short-reads,
an important innovation in rabbit, which lacked extensive sequence
data to assemble transcripts. Thewidespread adoption of long-read tech-
nology is likely to significantly enhance the accuracy of transcript
assembly.

Although long-reads have been reported to perform better than
short-reads in transcript assembly [35,37,109], the bioinformatics
tools and pipelines are still evolving. For example, Au et al. [37] and
Chen et al. [36] combined both short and long-reads for better assembly.
In those studies, short-reads with higher sequencing accuracy, were
used to correct long-reads. Some of the error-correction tools include
LSC [39], LSCplus [46] and loRDEC [48]. The Pacbio company provides
the Isoseq3 pipeline (https://github.com/PacificBiosciences/IsoSeq3)
that uses long-reads exclusively to get near full-length transcripts, sim-
ilar to the pipeline of Sharon et al. [35]. A number of tools have been
used for aligning long-reads. Au et al. [37] used BLAT [110]. Križanović
et al. [40] compared the performance of STAR [111], GMAP [112] and
BLASR [113]. Another tool that has been used for aligning long-reads
is Minimap2 [114]. Ultimately the use of long-reads for transcript as-
sembly remains work in progress, but shows great promise to improve
transcript annotations.

5. Detection of Coding and Long Non-coding RNAs From RNA-
Seq data

Over the last fewyears,manynon-coding RNAs have beendiscovered
that are increasingly being assigned biological functions [115–118].
However, the detection and annotation of these transcripts is challenging
as they are generally lowly expressed, often contain repetitive regions
(see below) [119], and even the classification of coding versus non-
coding is a surprisingly complex problem [120–122] as it is not simply
a case of just measuring the longest coding sequence in the transcript.
Clamp et al. [122] argued that open reading frames are randomly present
in the genome and that their presence is not enough to classify a tran-
script as coding. Similarly, many genes have multiple isoforms [52,123],
and a gene may have both protein-coding and a non-coding transcript,
which will confuse sequence homology based searches as the non-
coding transcript may contain stretches of truncated coding sequence
[124,125]. Indeed, Jungreis et al. [126] argued that nearly all new
protein-coding predictions in the CHESS database [127] are not
protein-coding.

The first check on the nature of an assembled transcript is to overlap
the coordinates with known transcripts. This can be done with tools
such as BEDTools [128] and glbase [129]. Homology-based approaches
can also indicate the possibility of coding potential, for example,
BLAST [130], BLAT [110], GMAP [112], AUGUSTUS [131] and others.
These tools classify transcripts based on the similarity of the amino
acid sequences of their translated transcripts to known protein-coding
genes. Coding potential is thusmeasured as the similarity of a transcript
to other coding transcripts. The obvious limitation is in cases where no
related coding sequence is available. Several other tools take a different
approach to assess the coding potential of a transcript. These tools use
the properties of known coding or non-coding transcripts to test the
likelihood that a transcript codes for a protein or not. For example, cod-
ing potential can be estimated bymachine learning approaches that dis-
criminate transcripts based on combinations of properties such as
transcript length, length of open reading frame (ORF), ORF coverage,
k-mer frequency, Fickett score or codon usage bias. Several tools, such
as CPAT [132], FEELnc [133], lncRScan-SVM [134] and NRC [135], use
the same overall approach, but optimize for different techniques or
scores. Machine learning approaches rely less on homology and learn
the properties of known transcripts to predict coding or non-coding
transcripts, making them suitable to annotate novel coding and non-
coding genes. These approaches are especially useful in organisms that
lack good gene annotations, as demonstrated by the use of FEELnc to

https://github.com/PacificBiosciences/IsoSeq3
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annotate coding and non-coding transcripts in the dog genome [133].
Table 2 summarizes the tools available for classifying transcripts into
coding and non-coding.

6. Assembly of Transposable Elements into Long Non-coding RNAs
and Splicing into Coding Genes

Transposable elements (TEs) are themost common type of genomic
unit within genomes, outnumbering protein coding exons by a consid-
erable margin [136]. TEs consist of two major types. The first is the
DNA transposons that replicate mostly by a cut-and-paste mechanism
and rely on the DNA repair mechanism or cell division to replicate.
The secondmajor type is the RNA transposons that use anRNA interme-
diate. The RNA transposons can be further subdivided into the long and
short interspersed elements (LINEs and SINEs) and the long-terminal
repeats (LTRs), which are endogenous retroviruses [137,138]. TEs
have often been considered as parasites, or background genomic
noise, but they are increasingly appreciated for their expanding number
of roles in genome evolution, and gene regulation rewiring [139–141].
Importantly, TEs are a major contributor to the sequences of non-
coding RNAs [119] and several studies have observed the splicing of dis-
tal TE exons into coding sequences that did not contain any TEs [142–
144]. For example, MERVL expression marks a subpopulation of totipo-
tent cells in cultures of embryonic stem cells [145,146], and a distinctive
feature of these cells is the splicing ofMERVLs into coding genes, such as
Zfp352 and Apol7b [147].

There are significant challenges in the analysis of TEs, and splicing
into alternate transcripts. The repetitive nature of TEs means that accu-
rate mapping of the short-reads from typical RNA-Seq protocols is diffi-
cult [148]. As most TEs have between several tens to several million
copies through the genome [136,137], there remains some uncertainty
about where exactly a TE-derived RNA-Seq read is derived from. This
can be mitigated, to some extent, by analyzing TEs as ‘metagenes’ and
aligning the reads across all genomic copies of the TE and then merging
the reads to treat each TE type as a single entity [147,149]. This approach
is likely the most robust, until very long-reads becomewidely available
[82]. However, this approach discards the genomic context of the TE
copies, which leaves a lot of potential insight unexplored. For example,
TE expression can act as sense and anti-sense regulatory RNAs
[148,150], and can be spliced into normal coding genes to make chime-
ric transcripts [117,151]. Consequently, it would be preferable to assem-
ble transcripts that include reads derived from TEs, whilst maintaining
ETnERV-int

shLuc

shRnf2

1 kbpchr6:85,862,801-85,881,066 (mm10)

Nat8f2

LTRs

SINEs

LINEs

GENCODE
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Novel Splice

Junctions

Mouse ESC
RNA-seq

RLTR13G MERVL-int/MT2_Mm ETnERV-int

LTRs-spliced into Nat8f2

A

Fig. 2. Splicing of transposable elements into genes. RNA-Seq data from mouse ESCs showing t
(shRnf2), that leads to the activation of expression of two genes: Nat8f2 (panel A) and Apol
pileup density in the control (shLuc; red) and knockdown (shRnf2; blue) experiments. The s
knocked down (shRnf2). Splice junctions that join an exon of Nat8f2 or Apol7b to an LTR are
GENCODE genes at this locus. The fourth row shows the locations of the LTRs (red), SINEs (
labeled. Data is from GSE108091 [147]. Reads were aligned to the mm10 genome using STAR [
their genomic context. Another problem is the relationship between
TEs and long non-coding RNAs. The problem can be illustrated by
looking at the lincRNA Trp53cor1 (lincRNA-p21), which has a functional
role in somatic cell reprogramming and several other biological pro-
cesses [152]. Trp53cor1 transcript contains an L2b LINE, a MLTR14 LTR,
and 7 SINEs (2xAlu, 1xB2, 3xB4, and 1xMIR) [136], and because the
TEs exist as multiple genomic copies, reads are often multi-mapped to
several genomic locations [153]. Similar problems occur when looking
for TEs that become spliced into transcripts, although in this case it is
possible to look for paired-end reads where one of the pairs is uniquely
mapped, whilst the other pair is multi-mapped inside a TE. An example
is the splicing of MERVL TEs into coding genes (Fig. 2A, B) [147,154].
Precisemapping of reads to TEs is further challenging as TEs themselves
can contain introns [139,155–157], and spliced transcripts can occur in
themiddle of TEs. This is surely a contributing factor to the problems in
assembling transcripts [158].

To date, no systematic analysis of the best practices for the analysis
of TE-derived transcripts has been performed. Researchers usually use
a host of tools that were originally designed for the assembly of non-
TE containing coding genes. It is unclear if these tools are ideal for the
task of assembling TE containing transcripts. Attempts have been
made for specialized analysis of TEs. For example, the LIONS [159] anal-
ysis suite is a wrapper around the cufflinks [77] transcript assembler
that focuses on accurately determining the transcriptional initiation
start site for the TE. However, the authors caution that the suite is inac-
curate for lowly expressed transcripts.

Finally, the assembly of TEs into transcripts is made more com-
plex as the number of TEs, and their precise genomic locations
change between different experimental strains of Arabidopsis and
Mouse [160–162], and also across human populations [163]. Conse-
quently, the reference genomes cannot be considered the ground
truth for TEs. Researchers should be careful in any analysis involving
TEs that are known to be polymorphic. For example, the MuLV TE
family is different between mice lines [162]. Care should be taken
with TE types that are still active in the human genome, for example
the various subfamilies of Alu, L1 and SVA TEs [164–166]. TEs are
nonetheless important regulators and components of long non-
coding RNAs and are often found in the UTRs of coding genes,
where they may work as regulatory domains for RNAs, something
akin to protein regulatory domains [161]. Consequently, it is impor-
tant to accurately determine the pattern of assembly of TEs into tran-
scripts, and best practices should be explored.
10 kbpchr15:77,419,179-77,455,030 (mm10)

Apol7b

4930571N24Rik
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B

he control (shLuc) or a knockdown of the RING finger domain, polycomb 1 protein RNF2
7b (panel B). For each genomic view, the first row shows the short-read RNA-Seq read
econd row shows the novel splice junctions detected in the RNA-Seq data when Rnf2 is
indicated in red, other splice junctions are indicated in grey. The third row shows the
green) and LINEs (blue). LTRs that show evidence of splicing into Nat8f2 or Apol7b are
111], with the parameters described in [147].



634 I.A. Babarinde et al. / Computational and Structural Biotechnology Journal 17 (2019) 628–637
7. Available Annotation Resources

Annotations are useful at two stages of transcriptome analyses. First,
reference annotations are useful in guiding the assembly tools such as
STAR [111], HISAT [68], Tophat [65] and others. Second, annotations
are useful in determining the nature of the newly assembled transcripts.
The decision of whether a transcript is known or novel depends on its
presence, or the presence of its homolog in an annotation database.
There are many annotation databases available, for example RefSeq.
[167], Ensembl [168] and UCSC [169] databases. These databases collate
other databases to form a curated set of data that is often thefirst port of
call for researchers looking for high quality annotations.

GENCODE [158] contains the reference annotations for mouse and
human, and efforts are being made for other model organisms such as
Drosophila sp and Caenorhabditis elegans. The choice of the annotation
resources to use depends on the species and the tissues being investi-
gated. Additionally, there are specific databases that address certain
needs. For example Intropolis [170] is a large-scale dataset of splice
junctions in the human genome. Similarly, different annotation data-
bases follow different strategies on inclusion; GENCODE tends to re-
quire a higher burden of evidence before calling a gene, whilst other
databases contain a much wider set of data with lower requirements.
For example, GENCODE reports 16,193 long non-coding RNAs, LNCi-
pedia 56,946 [171], and NONCODE reports 96,308 [172]. Clearly, care
needs to be taken by the researcher on which annotation database to
use, in human and mouse GENCODE is most suitable, but if the re-
searcher is interested in non-coding transcripts then other more exten-
sive databases may need to be considered.

8. Reproducible Sharing of Bioinformatics Pipelines

Reproducibility is a potential problem in genomic research, as tools
are often chained together to form a ‘pipeline’, and changes in one
step of the pipeline can have downstream effects on subsequent tools.
Additionally, researchers often prefer different tools in different steps
when trying to optimize analysis for their preferred strategy. To en-
hance reproducibility, pipelines are often presented as part of a pub-
lished report. For example, Pertea et al. [83] presented a pipeline for
RNA-Seq, and Trapnell et al. [61] presented a pipeline for differential ex-
pression. Toil pipeline [56] enables reproducible analyses of big data
Table 3
Example tools for different stages of RNA-seq.

Analysis Conditions When to use Rec
read
typ

Mapping Transcripts as reference Reliable and near-complete
annotations

Sho

Genome sequences as
reference

Poor transcript annotation, new
assembly

Lon

Quantification Good annotation Normal expression level estimation Sho
Poor/no annotation Assembly follwed by quantification Lon

read
Gene level quantification Comparing genes Sho
Count of aligned reads Expression level from alignments Sor
Transcript level
quantification

Interest in isoforms Sho

Limited computational
resources

Quick estimation Sho

Repeatitive element Transposable element
quantification

Lon
read

Assembly Good annotation De novo transcript discovery Lon
read

Poor/no annotation Good transcript annotation Lon

Repeatitive element Transposable element expression Lon

Automated
process

Sequential analyses Limited bioinformatics skills Lon
read
using tools such as Kallisto [71]. The bioinformatics pipelines used in
the ENCODE project are available at their website and are well docu-
mented (www.encodeproject.org). These can be a valuable source of
example analysis strategies.

In addition, there are computational tools that are specifically aimed at
reproducible bioinformatics analysis. Snakemake (https://snakemake.
readthedocs.io/en/stable/), Nextflow (https://github.com/nextflow-io)
andDocker (https://github.com/ngs-docs/2015-nov-docker/)are different
platformswith pipelines for reproducible transcriptome analysis. The tools
accept the annotations (genome sequences and gene annotations) and
short-reads as input and run specific bioinformatics analyses. SystemPipeR
[173] is another tool thatprovidespre-configuredworkflowsandreporting
templates for numerous NGS data including RNA-Seq. Using these plat-
forms,more comprehensive and user-friendly tools have been produced.
For example, Visualization Pipeline for RNA-Seq analysis (VIPER) is a user-
friendly and comprehensive analysis workflow that uses Snakemake
[174]. Another Snakemake-based pipeline, hppRNA [175], is a parameter-
free pipeline that can be used for numerous samples.While these tools are
user-friendly, convenient and requireminimal bioinformatics experience,
somespecificcasesrequireadjustmentofcertainparametersthatrequirefa-
miliaritywith theworking of the bioinformatics tools.

9. Tools for the Job: RNA-Seq as a Powerful Tool for Gene
Quantification

Often time, the decision of which tool is optimum has to be taken at
one point or the other. This is sometimes a Herculean decision because
of the enormity of the tools available [40,176]. Even experienced
bioinformaticians have to make such decisions in the process of opti-
mizing the pipeline. A number of factors determine which tools and
pipelines to use (see Table 3). Some of the factors to consider include
the purpose of the analyses, the quality of annotation, the type of se-
quence reads available, available computational resources, nature of
the transcripts of interest (transposable elements or non-duplicate
genes), the level (gene or transcript level), desired speed of analysis
and familiarity with bioinformatics procedure. These factors should be
considered before adopting any published bioinformatics tools or
pipelines.

Gene quantification is a powerful tool that has achieved widespread
use. Whilst the quantification of RNA cannot capture all cellular
ommended

e

Useful tools Possible pipeline

rt reads Bowtie2, STAR, HISAT Trinity package

g reads GMAP, Minimap2, STAR

rt read RSEM, Kallisto, Salmon
g and short
s

Hisat2/StringTie, TopHat/Cufflin Hisat2/StringTie,
TopHat/Cufflinks

rt reads RSEM, Kallisto, Salmon RSEM
t reads HTSeq, featureCount
rt reads RSEM, StringTie, TopHat

rt reads Kallisto, Salmon Toil

g and short
s

RSEM with special parameters LIONS

g and short
s

Isoseq followed by GMAP, Minimap
or STAR

g reads Isoseq followed by GMAP, Minimap
or STAR

g reads Isoseq followed by GMAP, Minimap
or STAR

g or short
s

Numerous tools SystemPipeR, VIPER,
hppRNA

http://www.encodeproject.org
https://snakemake.readthedocs.io/en/stable/
https://snakemake.readthedocs.io/en/stable/
https://github.com/nextflow-io
https://github.com/ngs-docs/2015-nov-docker/
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variation, it is nonetheless a powerful exploratory tool to understand
cellular dynamics in response to changes in cell type, environmental
stimuli or the effects of disease. We have mostly discussed bulk RNA-
Seq in this review, but cells are heterogeneous mixtures. Single cell
RNA-Seq is revealing more heterogeneity in gene expression than ex-
pected [177,178], which is challenging traditional definitions of cell
type [179,180]. Overall, expression quantification and particularly
RNA-Seq is a powerful technique that has led to major insights into bi-
ological processes, and has become a key tool for solving future biomed-
ical problems.
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