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TAB182 aggravates progression of esophageal squamous cell
carcinoma by enhancing β-catenin nuclear translocation
through FHL2 dependent manner
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Ming Sun 6✉ and Jundong Zhou 1✉
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TAB182 (also named TNKS1BP1), a binding protein of tankyrase 1, has been found to participate in DNA repair. Our previous study
has revealed the involvement of TAB182 in the radioresistance of esophageal squamous cell carcinoma (ESCC) cells. However,
whether TAB182 contributes to the ESCC tumorigenesis and progression remains unclear. In this study, we found that highly
expressed TAB182 is closely associated with a poor prognosis of patients with ESCC. TAB182 silencing reduced ESCC cell
proliferation and invasion in vitro, tumorigenicity and metastasis in vivo. RNA-seq and IP-MS analysis revealed that TAB182 could
affect the β-catenin signaling pathway via interacting with β-catenin. Furthermore, TAB182 prevented β-catenin to be
phosphorylated by GSK3β and recruited four and a half of LIM-only protein 2 (FHL2), which thereby promoted β-catenin nucleus
translocation to result in activation of the downstream targets transcription in ESCC cells. Our findings demonstrate that TAB182
enhances tumorigenesis of esophageal cancer by promoting the activation of the β-catenin signaling pathway, which provides new
insights into the molecular mechanisms by which TAB182 accelerates progression of ESCC.
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INTRODUCTION
Esophageal cancer (EC) is the sixth most prevalently diagnosed
malignancy in the world with estimated 450,000 deaths every
year. Strikingly, China accounts for half of the global morbidity as
well as mortality of EC [1, 2]. Esophageal squamous cell carcinoma
(ESCC), as well as esophageal adenocarcinoma (EAC), is the
primary histological types of EC. In China, ESCC is the most
predominant subtype with high incidences, accounting for 90% of
newly diagnosed EC cases [3, 4]. To date, the prognosis among
patients suffering from ESCC is still poor, with a 5-year overall
survival (OS) rate of less than 25% [5]. A better comprehension of
the underlying mechanism of ESCC pathogenesis can facilitate the
developing of novel therapeutic and diagnostic strategies to
improve ESCC outcome.
TAB182, also referred to as TNKS1BP1, was first discovered as a

tankyrase 1-binding protein that acts as an receptor of poly (ADP-
ribosyl) action by tankyrase 1 [6]. Recently, Zhong et al. reported
that TAB182 is up-regulated in lung adenocarcinoma and affects
lung adenocarcinoma cells’ sensitivity to DNA damage regent
through regulating the homologous recombination pathway of
DNA double-strand breaks (DSB) [7]. Moreover, Zhou and
colleagues found that TAB182 could be induced by ionizing

radiation (IR), and TAB182 is required for the efficient repair of IR-
mediated DSB through enhancing DNA-PKcs’ interacting with
PARP-1 [8]. Our previous study showed that TAB182 heightens the
radioresistance of ESCC cells by mediating the G2-M checkpoint
via its interaction with FHL2 [9]. Although recent studies have
revealed the crucial roles of TAB182 in DNA damage response,
whether and how TAB182 associates with ESCC tumorigenesis and
progression remain unclear.
FHL2 is a multifunctional scaffolding protein that belongs to the

four-and-a-half LIM domains protein family. FHL2 has been found
to interact with multiple types of proteins due to its unique
structure that consists of several LIM motifs, including IER3 and
MDM2 [10], EGFR, and EGFRvIII [11]. Additionally, it is reported that
the zinc-finger motif in the LIM domain confers FHL2 with
transcriptional repressor or co-activator function [12, 13]. As a
result, FHL2 is involved in the modulation of varied cellular
processes, including gene expression, cell proliferation and motility
[14]. Interestingly, accumulating evidence has demonstrated the
critical roles of FHL2 in tumorigenesis and the progression of
carcinoma in a context-dependent manner. For instance, it exerts
oncogenic function in ovarian cancer [15], cervical cancer [10], and
gastrointestinal cancer [16], but exhibits a tumor-suppressive
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function in rhabdomyosarcoma [17] and hepatocellular carcinoma
[18], which indicates that FHL2 interacts with different partners
that might lead to varying downstream effects.
In this study, we explored whether TAB182 influences the onset

as well as the progression of ESCC. We found that TAB182 is highly
expressed in ESCC, and down-regulation of TAB182 impaired ESCC
cell proliferation, invasion, and cancer stem-like characteristics.
Mechanistic studies reveal that TAB182 physically binds with
β-catenin and prevents it from being phosphorylated by GSK3β,
and further recruits FHL2 to facilitate β-catenin nucleus transloca-
tion and downstream target genes transcription. These findings
demonstrate that TAB182 is an oncogenic regulator that accel-
erate the development and progression of ESCC via regulating the
β-catenin signaling pathway.

MATERIALS AND METHODS
ESCC cell lines
Human ESCC cell lines TE-10 and KYSE-150 were purchased from ATCC
(Manassas, Virginia, USA). TE-10 and KYSE-150 were cultured in RPMI-1640
(Hyclone, USA, Cat# SH30B09.01) with 10% fetal bovine serum (FBS,
Biological Industries, Israel, REF# 04-001-1ACS), 100 U/mL penicillin G, and
100 μg/mL streptomycin (Hyclone, USA, Cat# SV30010) with sustained
parameters of the humidified atmosphere of 5% CO2 at 37 °C. For the
establishment of TAB182-overexpressed or -silenced cells, human TAB182
cDNA and targeted shRNA were cloned into lentivirus-based vectors. The
expression of TAB182 in the virus-infected human EC cell lines TE-10 and
KYSE-150 was confirmed by western blotting.

Cell transfection
TE-10 and KYSE-150 cells were seeded in six-well plates one day before
transfection and transiently transfected with siRNAs using RNAiMAX
(Invitrogen, USA, Cat# 13778150). 48 h after transfection, cells were
harvested and analyzed by qRT-PCR and western blot. HEK293T cells were
transfected with TAB182-WT, TAB182Δ1-2 and FHL2Δ1-4 plasmids using
Lipofectamine3000 Transfection Kit (Invitrogen, USA, Cat# L3000015). Cells
transfected with PCDNA3.0 vector only served as control. The ESCC cell
lines were infected with the lentiviruses that contain TAB182 et al. genes
shRNA or CDS sequence, and stable knockdown or over-expression cell
lines were produced by selection with 1 μg/ml puromycin (Beyotime,
China, Cat# ST551).

Quantitative real-time PCR (qRT-PCR)
Trizol Reagent was utilized in the extraction of total RNA in ESCC cells
following the manufacturer’s specifications. The cDNA was produced by
reverse transcription utilizing RevertAidTM First-Strand cDNA Synthesis Kit
(Thermo Scientific, USA, Cat# K1621) and oligo (dT) in a 20-µL reaction
mixture containing 1 µg of total RNA. qRT-PCR was conducted utilizing
QuantiNova SYBR Green qPCR kit (QIAGEN, Germany, Cat# 208054) on an
ABI Prism 7500 real-time PCR system, according to the manufacturer’s
specifications. Threshold cycle (Ct) values of TAB182 and other different
mRNAs were equilibrated to that of β-actin, which was utilized as an
internal control. The relative expression was computed utilizing the 2-ΔΔCt

approach. The primers used in this study were listed in the Table S1.

Western blotting
Cellular proteins from TE-10 and KYSE-150 cells were obtained using the
M-PER Mammalian Protein Extraction Kit (Thermo Scientific, USA, Cat#
78501) following the manufacturer’s protocols. Total protein or nuclear
protein was extracted using the Nuclear (Nucleic Acid-Free) extraction kit
(Abcam, USA, Cat# ab113477). The same amount of protein was loaded in
every lane and resolved by SDS-PAGE utilizing a Tris-glycine running buffer.
The separated proteins were placed onto nitrocellulose membranes. The
membranes were blocked with 5% non-fat milk before undergoing
incubation with primary antibodies at 4 °C overnight, followed by
incubation with the HRP-coupled secondary antibody for 1 h at room
temperature. The visualization of the blots was achieved with the aid of
enhanced chemiluminescence detection reagents (NCM biotech, China,
Cat# P10100). The blots were stripped and re-probed with the HRP-labeled
anti-β-Tubulin antibody. Antibodies to TAB182, FHL2, β-catenin, and
β-Tubulin were procured from Cell Signaling Technology (Boston, MA, USA).

Cell invasion assay
The TE-10 as well as KYSE-150 cells mentioned above were seeded into the
upper Transwell chamber coated with Corning Matrigel matrix (Sigma,
USA, REF# 356234) in a serum-free RPMI-1640 medium and incubated at
37 °C, with 5% CO2 for 24 h. The invaded cells from the upper Transwell
chamber to the lower chamber were stained using the Wright–Giemsa
solution (Nanjing JianCheng Technology, China, Cat# D010) before
imaging them. Cells in six randomly chosen fields of the lower chamber
were then counted.

CCK8 and colony formation assay
CCK8 reagent was used to evaluate the proliferation ability of ESCC cells. In
brief, 1000 TE-10 or KYSE-150 cells were seeded into each well of 96-well
plate. Then, 10 μL of CCK8 regent (Vazyme, China, Cat# A311-01) was
added onto each well, followed with incubation for 2 h at 37 °C. Then, the
absorbance value of the cells at 450 nm was examined. For the colony
formation assay, the 35-mm tissue culture plate was coated with 0.5%
agarose supplemented with RPMI-1640 complete medium. Upon solidifi-
cation of the bottom layer, 1 × 103 TE-10 or KYSE-150 cells in 1.6 mL of the
complete medium were mixed with 0.15mL of 4% low-melting agarose
and transferred to the plates to allow it to solidify. Subsequently, the dishes
were subjected to incubation at 37 °C in an atmosphere with 5% CO2 for
14 days. The Zoom-Stereo Microscope SZX16 (OLYMPUS, Tokyo, Japan)
was utilized in counting as well as visualizing the colonies.

Tumor sphere formation assay
TE-10 and KYSE-150 cells were cultured to logarithmic growth stage utilizing a
complete medium or a serum-free F12 medium supplemented with 10 ng/ml
EGF (Thermo Scientific, USA, Cat# PHG0311), 10 ng/ml bFGF (Thermo
Scientific, USA, Cat# PHG0368), and 1×B27 (Thermo Scientific, USA, Cat#
12587-010) under a humidified atmosphere of 5% CO2 at 37 °C. Afterward,
Intelligent Bio-image navigation FSX100 (Olympus Optical Co., Ltd, Tokyo,
Japan) was used to image the cells. Tumor spheres denoted spheres that had
greater than 50 mammary cells.

ESCC cell xenograft and metastasis model in mice
6-week-old female nude mice with a weight range of 18–22 g were
subcutaneously administered with human EC cells through injection
(1 × 107 cells per mice). In this experiment, mice were randomly grouped
(n= 6). After 18 days, the tumors in mice were excised and weighed. Then,
the body weight of mice and tumors were measured and monitored each
alternate day. The tumor volume was established utilizing this formula: length
× width2 × 0.5. At the end of 40 days, the mice were killed to allow the
harvesting of the tumors. For the metastasis mouse model, 1 × 107 KYSE-150
cells in 150 µL PBS were administered into tail veins of 6-week-old female
nude mice through injection. 45 days following injection, lung tissues were
collected for detection of cancer cell metastasis. The metastatic nodules were
determined by pathological HE staining. This research was subjected to
approval by the Research Ethics Committee of The Affiliated Suzhou Hospital
of Nanjing Medical University.

Microarray and gene expression profile analysis
The gene expression levels in KYSE-150-NC and KYSE-150-TAB182 KD
(knockdown) cells were assessed using the Illumina Genome AnalyzerIIx
(NovelBio Bio-Pharm Technology Co, Ltd, Shanghai, China; with 48,000
transcripts and 32,375 human genes, including cDNA controls). The genes
upregulated and downregulated by approximately 1.5-folds (p value<0.05)
in the KYSE-150-TAB182 KD cells compared with the expression levels in
KYSE-150-NC control cells were analyzed using the Affy package in R
language (v3.4.4).

Immunoprecipitation (IP)
The ESCC cells underwent lysis utilizing lysis buffer from the M-PER
Mammalian Protein Extraction Kit (Thermo Scientific, USA, Cat# 78501). Cell
lysates underwent incubation with TAB182, FHL2, or β-catenin antibodies at
4 °C overnight before again incubating them with the protein G-beads
(Abcam, USA, Cat# ab193262) pre-blocked using 5% BSA (Multi Sciences,
China, Cat# A3828-100). The beads were then washed four times using 0.1%
Triton-PBS buffer, suspended in 0.1mL of 1× SDS sample buffer and 1mM
DTT (Solarbio, Cat# 3482-12-3), and centrifuged at the rate of 13,000× g for
10min. The eluates from the IP beads were used in Western blotting to
confirm the interaction between TAB182 and the proteins mentioned above.
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Immunofluorescence (IF) staining
The cells were seeded on the slides and cultured at 37 °C, with 5% CO2 for 24
h. Additionally, the cells were exposed to 4% paraformaldehyde (Biosharp,
China, REF# BL539A) for 10min at room temperature in order to fix them,
accompanied by incubation with 0.1% Triton X-100 (Solarbio, China, Cat#
T8200) for 15min to facilitate the permeation of the cells. The slides were then
blocked with 5% BSA for 1 h and underwent incubation using the primary
antibody overnight at 4 °C, followed by incubation with Alexa Fluor 594 and/
or 649-coupled secondary antibodies for 1 h at room temperature. Finally, the
slides were stained utilizing 3,3-diaminobenzidine (DAPI, Sigma, USA, Cat#
28718-90-3) solution, mounted, and imaged with the utilization of an
OLYMPUS confocal microscope (Olympus Optical Co., Ltd).

Immunohistochemical (IHC) staining
Tissue chips containing ESCC and their marginal normal tissues were
procured from Shanghai Outdo Biotech Co., Ltd., including 80 normal
esophagus tissue and 105 ESCC tissue samples. Human ESCC biopsy

samples (0.5–1 cm3) were fixed in 10% neutral buffered formalin,
dehydrated, and immersed in paraffin, as per a previous report [19, 20].
Sections of 2.5-mm thickness were incubated in citrate buffer (pH 6.0)
for 5 min at 120 °C, whereas 0.3% H2O2 for 10 min played a principal role
in the blockade of the endogenous peroxidase. To enhance blockade of
the nonspecific binding sites, the slides were subjected to 5% BSA in
PBS for 30 min at 37 °C, accompanied by incubation with the applicable
primary antibodies at 4 °C overnight and with horseradish peroxidase
(HRP) anti-rabbit IgG or anti-mouse IgG antibodies for 1 h subsequently.
The color was developed using the DAB Substrate kit (Cwbio, China,
Cat# P10100). Upon rinsing the PBS, the tissue slices were counter-
stained with hematoxylin and eosin and visualized with the aid of a
microscope. Major primary antibodies employed in the experiment
included anti-human TAB182 antibody (1:150, Abcam, ab119429),
β-catenin antibody (1:700, Abcam, ab196015), ALDH1A1 antibody
(1:200, Proteintech, ab201986), and anti-CD133 antibody (1:50, Abcam,
ab28364). Five randomly selected fields from every section were
evaluated at the magnification of 20×. This investigation was approved
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Fig. 1 TAB182 expression is up-regulated in ESCC and promotes tumorigenesis in vitro and in vivo. A the expression of TAB182 in human
ESCC tissues was determined by immunohistochemical staining (105 cases), bar, 200 μm. B the overexpression of TAB182 was closely
associated with poor prognosis in ESCC patients. C Western blots results showed TAB182 expression levels in six ESCC cell lines and normal
esophageal epithelial cells. D, protein levels of the TAB182 were detected by western blot in TAB182 knocked down and over-expressed ESCC
cells 48 h post transfection. E Proliferation of TAB182 silenced and over-expressed cells was assessed by CCK8 assay 48 h post transfection.
F soft agar and clonogenic assays were used to determine the clonogenic capacity of TE-10 and KYSE-150 cells 48 h post transfection. Clone
numbers (>50 cells) in soft agar were determined after 2 weeks. G, clonogenic assay was performed to determine the colony formation ability
of ECA109 cells. Clone numbers (>50 cells) were determined after 2 weeks. H subcutaneous xenograft tumors of the TAB182 silenced and
control cells. xenograft tumors in mice followed up to 6 weeks. Data represented as mean ± SD (n= 6 mice per group). I Tumor weights are
represented as the mean tumor weight ± SD. J, tumors from mice were stained with H&E to visualize tumor morphology. TAB182 and Ki67
were detected by immunohistochemical staining. *, p < 0.05; **, p < 0.01.
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by the Research Ethics Committee of The Affiliated Suzhou Hospital of
Nanjing Medical University and all patients who participated offered
informed consent.

Luciferase reporter assay
The ESCC cell lines TE-10 or KYSE-150 were transfected with Top/Fop Flash
plasmids utilizing Lipofectamine3000 Transfection Kit (Invitrogen, USA,
Cat# L3000-015). The lysate cell’s luciferase activity was ascertained with
the aid of a Dual-Luciferase Reporter Assay Kit (Promega, USA, Cat# E1910).

Statistical analysis
The experimental data were statistically analyzed by Student’s t-test,
paired Student’s t-test, or one-way ANOVA. All data are presented as mean
± S.E.M. *P < 0.05 and **P < 0.01 were statistically significant. Data from at
least three independent experiments were utilized in all the cases. SPSS
software package conducted all calculations. No randomization was
followed and no blinding was carried out.

RESULTS
TAB182 expression is upregulated in ESCC and promotes
tumorigenesis in vitro and in vivo
To explore the expression of TAB182 in ESCC, we performed
immunohistochemical (IHC) staining on a tissue chip that
included 105 ESCC samples as well as their paired normal
tissues. The results of IHC revealed that TAB182 was expressed
at a high level in the ESCC tumor tissues compared with that in
the adjacent normal esophageal tissues (*P < 0.05; Fig. 1A).

Table 1. The correlation between TAB182 expression and ESCC
patients’ pathological features.

Characteristics TAB182
expression

P value*

low high

Gender 0.056

Male 23 54

Female 14 14

Age 0.267

≥60 10 14

<60 29 24

Tumor invasion depth (T) 0.002*

T1/T2 13 8

T3/T4 22 62

Lymph node metastasis (N) 0.0001*

N0 28 21

N1-N3 12 45

TNM stage 0.003*

I/II 35 38

III/IV 8 31
*chi-square test.
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Fig. 2 Down-regulation of TAB182 inhibits ESCC cells invasion and metastasis. A knockdown of the expression of TAB182 inhibited the
invasion of TE-10 cells and KYSE-150 cells. B over-expression of TAB182 promoted the invasion of ECA109 cells. All groups started with the
same cell numbers; cell numbers were counted after 24 h. C, D knockdown of the expression of TAB182 inhibited the migration of TE-10 cells
and KYSE-150 cells. E over-expression of the expression of TAB182 enhanced the migration of ECA109 cells. The change in wound area was
recorded daily with ImageJ software at 24, 48 and 72 h. The data were a representative of three repeats. Error bars indicate mean ± S.E.M.
**P < 0.01, student t-test. F the metastasis of KYSE cells was assessed by the number of lung metastatic nodules 30 days after injection of cells
through the tail vein of the mice. **, p < 0.01.
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Furthermore, the expression levels of TAB182 were well linked
to the differentiation status of ESCC tissues, with the highest
TAB182 expression detected in the poorly differentiated ESCC
tissues and the lowest TAB182 expression in well-differentiated
ESCC tissues (Fig. S1A). Importantly, highly expressed TAB182
was associated with patients’ poor prognosis and shorter
overall survival (Fig. 1B and Table 1). Similarly, the findings of
western blot also showed that TAB182 is over-expressed in
ESCC tissues (Fig. S1B). These results indicated the association
between TAB182 and ESCC.
To examine the impacts of TAB182 on the tumorigenicity of ESCC

cells, we firstly evaluated the protein levels of TAB182 in ESCC cell
lines (ECA109, TE-1, TE-10, KYSE-150, KYSE-30 and KYSE-510). The
findings of the western blot showed that TAB182 is also up-regulated
in ESCC cells (Fig. 1C). Then, two siRNAs were used to knock down
the expression of TAB182 in TE-10 and KYSE-150 cells, and TAB182
was exogenously over-expressed in ECA109 cells
(Fig. 1D). Down-regulation of TAB182 in ESCC cells dramatically
inhibited cell proliferation, while over-expression of TAB182
enhanced cell proliferation (Fig. 1E). Consistently, down-regulation
of TAB182 impaired the colony formation ability and reduced the
anchorage-independent cell growth in soft agar, while TAB182 over-
expression enhanced the clonogenic capacity (Figs. 1F-G). As shown
in Fig. 1H, silencing the expression of TAB182 in KYSE-150 cells (KYSE-

150-shTAB182) remarkably inhibited the growth of tumors in nude
mice compared with the controls (KYSE-150-shNC). Additionally, the
tumor weight was heavier in the control group compared with that
in the KYSE-150/shTAB182 group (Fig. 1I). Notably, immunohisto-
chemical staining indicated that the tumors from KYSE-shTAB182-
xenografted mice express lower TAB182 and Ki67 compared with
tumors from the KYSE-shNC-xenografted mice (Fig. 1J). These
findings suggest that highly expressed TAB182 exerts cancer-
promotion function in ESCC.

Down-regulation of TAB182 inhibits ESCC cells invasion and
metastasis
To ascertain the function of TAB182 in ESCC cell invasion as well as
metastasis, we did wound-healing and transwell assays in vitro. The
transwell assay showed that silencing TAB182 decreased the invasive
ability of TE-10 and KYSE-150 cells, while TAB182 overexpression
accelerated the invasion of ECA109 cells (Figs. 2A and B). Moreover,
the results of the wound-healing assay also ascertained that knocking
down of TAB182 expression remarkably reduced the migrative ability
of TE-10 and KYSE-150 cells, however, increased TAB182 facilitated
ECA109 cells migration (Figs. 2C–E). In addition, KYSE-150-shNC and
KYSE-150-shTAB182 cells were injected into the tail vein of nude
mice to verify the impact of TAB182 on ESCC cells metastasis in vivo.
Stable knockdown of TAB182 resulted in a reduction in lung
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colonization following the tail vein injection (Fig. 2F). These findings
suggest that silencing TAB182 in ESCC cells reduces the capacity of
metastatic ESCC cells to migrate and invade, which is consistent with
our findings in Table 1, which showed that TAB182 expression was
strongly linked to tumor invasion depth (P= 0.002), lymph node
metastasis (P= 0.0001), and TNM stage (P= 0.003).

TAB182 regulates the β-catenin signaling pathway by
affecting the nuclear translocation of β-catenin
To further determine the underlying mechanism of the
modulatory effects of TAB182 in ESCC cells, we used RNA-seq
analysis to determine the differential gene expression profiles

between TE-10-shTAB182 and TE-10-shcon cells. With ≥1.5-fold
changes as a cutoff threshold, 756 genes were found to be
downregulated and 509 genes upregulated (Fig. 3A and Table
S2). Importantly, GO pathway analysis showed that the
expression of various genes is important for tumorigenesis,
stemness, EMT, and metastasis was remarkably downregulated
in TE-10-shTAB182 cells in contrast with the control cells (Fig.
S1C and D). Meanwhile, GSEA analysis revealed that the
expression of TAB182-regulated genes is strongly associated
with the β-catenin signaling pathway (Fig. 3B). Interestingly, we
simultaneously performed co-immunoprecipitation combined
with mass spectrometry and found that TAB182 could interact
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with β-catenin in ESCC cells (Fig. 3C and Table S3). Furthermore,
the link between TAB182 and β-catenin was confirmed by
western blot following IP in ESCC cells (Fig. 3D). These findings
motivated us to investigate how TAB182 affects the β-catenin
signaling by binding with β-catenin. As shown in Fig. 3E,
inhibition of TAB182 expression decreased the total protein
level of β-catenin but increased the phosphorylated β-catenin
(Ser33/37/Thr41), while over-expression showed a converse
effect.
Generally, decreased Ser33/37/Thr41 phosphorylation that is

catalyzed by GSK3β prevents β-catenin from subsequent
ubiquitination-mediated degradation, and promotes the
nucleus-translocation of β-catenin. As expected, TAB182 silen-
cing significantly lowered the protein level of β-catenin in the
nucleus of ESCC cells, while over-expression of TAB182 elevated
the nucleus distribution of β-catenin (Fig. 3F). Also, the
immunofluorescence staining showed the same result
(Fig. 3G). Of importance, downregulation of TAB182 led to
enhanced interaction between β-catenin and GSK3β, while
TAB182 over-expression impaired their interaction in ESCC cells
(Figs. 3H, I). These data indicated that TAB182 might contribute

to the progression of ESCC through regulating the nucleus
translocation of β-catenin.

TAB182 regulates nucleus translocation of β-catenin via
interacting with FHL2
The above findings motivated us to investigate the underlying
molecular mechanism through which TAB182 regulates β-catenin
nuclear translocation in ESCC cells. Our previous study revealed
that TAB182 interacts with FHL2, which has been reported to
mediate β-catenin nucleus translocation and TCF/LEF transcription
[21]. To ascertain if FHL2 is involved in TAB182 mediated nucleus
translocation of β-catenin, a co-immunoprecipitation assay was
performed. Co-IP results showed that TAB182, FHL2, and β-catenin
could co-exist in a protein complex in ESCC and HEK293T cells
(Fig. 4A and Fig. S2A). Moreover, knockdown of TAB182 impaired
the interaction of FHL2 and β-catenin (Fig. 4B). Fractionation assay,
immunofluorescence, and IHC staining showed that knockdown of
FHL2 significantly attenuated the nucleus translocation of
β-catenin and further exacerbated the reduced β-catenin nucleus
translocation caused by TAB182 knockdown in ESCC cells (Figs. 4C,
D and Fig. S2B).
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The RXXPDG motif of TAB182 has been reported to be important
for TAB182 interaction with other binding proteins [22]. We next
constructed the TAB182 wild-type (Flag-TAB182-WT) and mutant
(Flag-TAB182-Δ1 and Flag-TAB182-Δ2) expression plasmids. Co-
immunoprecipitation demonstrated that TAB182-Δ1 was unable to
interact with FHL2 while TAB182-Δ2 was able to bind to FHL2 (Fig.
4E). Furthermore, it was found that in TAB182-Δ1 expressed ESCC
cells, the interaction between FHL2 and β-catenin was attenuated
(Fig. 4F). To determine the binding sites on FHL2, we generated
different truncated FHL2 expression vectors. Co-immunoprecipitation
analysis demonstrated that FHL2-Δ2 was unable to interact with
TAB182 (Fig. 4G), which indicated that FHL2 interacted with TAB182
dependent on the 40-92aa domain. Next, we evaluated the
association between TAB182 and nucleus β-catenin or FHL2 in ESCC
tissues. Immunohistochemistry analysis of ESCC samples affirmed that
TAB182 expression was positively related to the FHL2 and nucleus
β-catenin expression (Figs. 4H and I). Taken together, these results
demonstrate that TAB182 mediates promotion of β-catenin nucleus
translocation is at least partially dependent on FHL2 in ESCC cells.

Silencing TAB182 expression significantly reduces the
stemness of ESCC cells
To further verify whether TAB182 activates β-catenin signaling, we
evaluate the expression of multiple representative target genes of

canonical β-catenin signaling. As exhibited in Fig. 5A, the
expression of JUN, CD44, c-Myc (MYC), and SOX9 was decreased
following knockdown of TAB182, but increased in TAB182 over-
expressed cells (Fig. 5B). Additionally, the protein levels of the
β-catenin downstream target genes JUN, MYC, CD44, SOX9, and
MMP7 were altered accordingly (Fig. 5C). Consistently, knockdown
of TAB182 significantly reduced the Top/Flash reporter activity in
ESCC cells as expected (Fig. 5D). There is now substantial evidence
supporting the function of the β-catenin signaling pathway in the
sustenance of the stemness of cancer cells in ESCC. To determine
whether TAB182 influences the stemness of ESCC cells, we
performed sphere-formation assays. Compared with control cells,
the TAB182-knockdown cells exhibited a considerably lower
tumor sphere-forming ability (Fig. 5E). Next, we investigated the
impact of TAB182 knockdown on the transcription of stemness-
related markers. As predicted, TAB182 knockdown remarkably
attenuated the transcription of stemness-related genes, e.g.,
ALDH1A1, BMI1and Oct-4, as well as the genes encoding surface
markers of cancer stem cells such as p75NGF, while over-
expression of TAB182 showed conversed effect (Fig. 5F).
Consistently, the result of the western blot showed the same
alterations (Fig. 5G). These findings were further corroborated by
flow cytometry analysis showing that the counts of ALDH1A1 and
p75NGF positive cells are remarkably reduced in the shTAB182
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population (Fig. 5H). Moreover, we discovered a substantial
positive connection between TAB182 expression and ALDH1A1
localization in 105 ESCC samples (Fig. S2D, E). Conclusively, these
findings strongly imply that ESCC cells with a high expression of
TAB182 are more likely to be associated with more aggressive
cancer features.

TAB182’s function depends on the 484-514aa domain
As the 484-514aa domain is essential for TAB182’s interaction with
FHL2, we further evaluated whether this domain is required for
TAB182 to be functional in ESCC cells. Our results showed that
wild-type TAB182 could facilitate the growth of ESCC cell
oncospheres and enhance the ability of colony formation, but
the mutant TAB182-Δ1 cells had no such impact (Figs. 6A and B).
The invasion and wound healing assays showed that wild-type
TAB182, but not TAB182-Δ1, promoted the invasive and migration
ability of KYSE-150 cells (Fig. 6C and D). Moreover, the protein
levels of several β-catenin downstream targets were up-regulated
in wild-type TAB182 cells compared to that in TAB182-Δ1 cells
(Fig. 6E). In addition, nucleus accumulation of β-catenin and FHL2
was increased in TAB182-WT cells but not in the mutant TAB182-
Δ1 cells (Fig. 6F). The over-expression of wild-type TAB182, not

TAB182-Δ1 was also found to increase the ALDH1A1+ cell
subpopulation (Fig. 6G). Consistently, the TOP flash reporter
activity was remarkably increased in wild-type TAB182 cells in
contrast with that in control and TAB182-Δ1 cells (Fig. 6H). These
findings indicate that TAB182 exerts oncogenic function in ESCC
cells in a 484-514aa domain-dependent manner.

TAB182 is a novel regulator of the FHL2-β-catenin axis
To verify the presence of the TAB182-FHL2 axis in ESCC cells, the
expression of FHL2 was knocked down by siRNA in ESCC cells.
Knockdown of FHL2 expression led to a remarkable decrease in
TCF/LEF promoter activity in shNC cells, and the activity of TCF/LEF
promoter was even lower in FHL2 and TAB182 both down-
regulated cells (Fig. 7A). Comparable results were observed in the
western blotting examining the expression of the β-catenin
downstream target genes (Fig. 7B). Meanwhile, the clone
formation and sphere formation assays examining tumorigenesis
and stemness (Figs. 7C and D), and the wound healing and
invasion assays analyzing migration and invasive potential (Figs.
7E and F) showed the same findings. Together, these findings
reinforce the concept that TAB182 is a new activator of the FHL2-
β-catenin axis in ESCC cells (Fig. 7G).
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DISCUSSION
One of the most frequently altered pathways in ESCC is the Wnt/
β-catenin signaling pathway [23–25]. This pathway exerts a
fundamental function in development by modulating various
cellular processes, for instance, proliferation, migration, cell fate
determination, cancer cell stemness and embryogenesis as well as
tumorigenesis. Nucleus accumulation of β-catenin, a hallmark of
β-catenin signaling activation, replaces transcription inhibitors to
bind to the TCF/LEF transcription factor family, thus activating
target gene expression and promoting above mentioned cellular
processes [5, 26, 27]. The β-catenin signaling pathway is known to
trigger tumorigenesis and stemness in ESCC cells but the
underlying mechanisms are yet uncertain.
In this study, we manifested that TAB182 is expressed at a high

level in ESCC tissues and related to patients’ poor prognosis,
indicating that TAB182 is likely involved in the progression of ESCC.
Loss-of-function investigations, on the other hand, revealed the vital
functions of TAB182 in promoting tumorigenesis and invasiveness of
ESCC cells in addition to the maintenance of their stemness. Evidence
from in vivo studies confirmed that TAB182 promotes ESCC
aggressiveness and metastasis. Importantly, we demonstrated that
the tumors with a greater percentage of high-TAB182-expressing
cells, which are also exhibiting highly expressed ALDH1A1, are linked
to a poor prognosis among ESCC patients. As a member of the poly
(ADP-ribose) polymerase (PARP) superfamily and the target protein
of Tankyrase, TAB182 was previously reported to interact with
DNAPKcs and involve in the DNA damage repair reaction [8]. We
have recently reported that TAB182 heightens the radioresistance of
ESCC cells by controlling the G2-M checkpoint via its interaction with
FHL2 [9]. In this context, Ohishi et al. affirmed that TAB182 regulates
the invasion of pancreatic malignant cells by binding to the actin-
capping protein CapZA2 and enhancing its’ interaction with the
cytoskeleton [28], suggesting that TAB182 may act differently in
different types of cancer cells.
Tumorigenesis and tumor malignant nature are often associated

with cancer cell stemness. ESCC cells with cancer stem cells
characteristics have been considered to more inclined to distant
metastasis, resulting in poor prognosis of the patients [29]. Here, we
discovered that TAB182 promotes the stemness and tumorigenicity
of ESCC cells by triggering the nucleus translocation of β-catenin to
stimulate the β-catenin pathway, which leads to the activated
transcription of JUN, MYC, ALDH1A1, CD44, and CD133. In
accordance with our findings, Huang revealed that the activation
of β-catenin signaling enhances the androgen-independent self-
renewal of ESCC cells with stem cell-like characteristics [30]. While the
molecular processes underlying the modulation of β-catenin by
TAB182 in ESCC remain to be further elucidated, we discovered that
TAB182 physically interacts with β-catenin and prevents it from being
phosphorylated by GSK3β and ubiquitination-mediated degradation.
TAB182 further recruits FHL2 and forms a TAB182-FHL2-β-catenin
complex allowing for efficient FHL2-mediated β-catenin nucleus
translocation by enhancing the association between FHL2 and
β-catenin, and this is dependent on the RXXPDG motif of TAB182 in
ESCC cells. These findings indicated that TAB182 may serve as a
crucial malignant factor and novel stemness-related modulator via
the TAB182-FHL2-β-catenin axis in ESCC.

CONCLUSIONS
In summary, our study reveals the novel oncogenic role of
TAB182 in ESCC and avail useful insights into a probable
function of the TAB182/FHL2/β-catenin molecular axis in ESCC
cell stemness, invasiveness, and tumorigenicity. Of clinical
relevance, TAB182 might function as a potential diagnostic
marker for ESCC. Additionally, targeting the TAB182/FHL2/
β-catenin can be a new avenue for the development of
therapeutics against ESCC.
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