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Purpose: Generative adversarial networks (GANs) are deep learning (DL) models that can create and modify
realistic-appearing synthetic images, or deepfakes, from real images. The purpose of our study was to evaluate
the ability of experts to discern synthesized retinal fundus images from real fundus images and to review the
current uses and limitations of GANs in ophthalmology.

Design: Development and expert evaluation of a GAN and an informal review of the literature.
Participants: A total of 4282 image pairs of fundus images and retinal vessel maps acquired from a

multicenter ROP screening program.
Methods: Pix2Pix HD, a high-resolution GAN, was first trained and validated on fundus and vessel map

image pairs and subsequently used to generate 880 images from a held-out test set. Fifty synthetic images from
this test set and 50 different real images were presented to 4 expert ROP ophthalmologists using a custom online
system for evaluation of whether the images were real or synthetic. Literature was reviewed on PubMed and
Google Scholars using combinations of the terms ophthalmology, GANs, generative adversarial networks,
ophthalmology, images, deepfakes, and synthetic. Ancestor search was performed to broaden results.

Main Outcome Measures: Expert ability to discern real versus synthetic images was evaluated using
percent accuracy. Statistical significance was evaluated using a Fisher exact test, with P values � 0.05
thresholded for significance.

Results: The expert majority correctly identified 59% of images as being real or synthetic (P ¼ 0.1). Experts 1
to 4 correctly identified 54%, 58%, 49%, and 61% of images (P ¼ 0.505, 0.158, 1.000, and 0.043, respectively).
These results suggest that the majority of experts could not discern between real and synthetic images. Addi-
tionally, we identified 20 implementations of GANs in the ophthalmology literature, with applications in a variety of
imaging modalities and ophthalmic diseases.

Conclusions: Generative adversarial networks can create synthetic fundus images that are indiscernible
from real fundus images by expert ROP ophthalmologists. Synthetic images may improve dataset augmentation
for DL, may be used in trainee education, and may have implications for patient privacy. Ophthalmology
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Image-based deep learning (DL) systems developed for
ophthalmic diseases1e7 have achieved diagnostic perfor-
mance comparable to that of ophthalmologists, but require
large amounts of training data. Moreover, it is essential to
train on diverse datasets with heterogeneous features present
in clinical populations to avoid biased performance in
practice.8,9 Development of these datasets typically requires
sharing data across institutions, which can be limited by
time, cost, legislation,10 and privacy regulations.11 Data-
and model-sharing methods including federated12,13 and
distributed14,15 learning have shown potential in
facilitating DL algorithm training without inter-
institutional data sharing. However, even if these ap-
proaches work as well as developing a multi-institutional
ª 2021 Published by Elsevier Inc. on behalf of the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dataset, they too may be time-consuming and costly to set
up, and still may not provide adequate dataset size and
heterogeneity, especially for rare diseases.

Generative adversarial networks (GANs) are DL-based
models that can generate realistic-looking fake images, so-
called deepfakes.16 Deepfakes have garnered notoriety in
the media for their nefarious applications,17,18 but recently
have been explored in multiple medical domains.9,19e26

Since ophthalmology has been at the forefront of the DL
revolution, there are numerous potential applications of
synthetic images, starting with fundus9,19,20 and OCT.27e29

Synthetic images can be modified to adjust image features
such as pigmentation,9 image quality,30 and even disease
severity.31 One of many potential applications is as an
1https://doi.org/10.1016/j.xops.2021.100079
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alternative solution to increase the size and diversity of
training datasets for DL algorithms.32,33 However, the
potential uses of GANs in ophthalmology remain
underexplored, including the utility of creating fully
synthetic image datasets, their applications for DL
development and medical education, and implications for
privacy laws and data sharing. The purpose of our study
was 2-fold: (1) to evaluate whether clinicians could
discern synthetic fundus images generated by a GAN from
real fundus images acquired from a retinopathy of prema-
turity (ROP) screening program and (2) to review current
uses and limitations of GANs in ophthalmology.

Methods

Dataset

This study was approved by the Institutional Review Board at the
coordinating center (Oregon Health & Science University) and at
each of 7 study centers (Columbia University, University of Illinois
at Chicago, William Beaumont Hospital, Children’s Hospital Los
Angeles, Cedars-Sinai Medical Center, University of Miami, Weill
Cornell Medical Center) comprising the Imaging and Informatics
in ROP (i-ROP) consortium. This study was conducted in accor-
dance with the Declaration of Helsinki. Written, informed consent
was obtained from parents of all enrolled infants.

As part of the i-ROP cohort study conducted from January 2012
to July 2020, 970 subjects with birth weight < 1501 g or gesta-
tional age < 31 weeks underwent ROP screening over the course
of their infancy. During each screening exam, posterior pole-
centered retinal fundus images were acquired using RetCam
cameras (Natus). A reference standard diagnosis was applied to
each eye exam using previously published methods34 by 3 to 8
independent ROP experts for zone, stage, and presence of pre-
plus or plus disease. A subset of fundus images was selected;
images were excluded if they were not centered on the posterior
pole or exhibited stage 4 or 5 ROP (partial or total retinal
detachment). This dataset was randomly split, retaining the natural
distribution of plus disease into training (70%), validation (15%),
and testing (15%) data subsets by subject identification number to
ensure subjects were unique to the respective datasets.

Image Preparation

For each image, black-and-white retinal vessel maps were gener-
ated using a U-Net previously trained on a subset of 200 images
from 154 subjects in the i-ROP database;1 these subjects were not
included in any datasets for this study. Low-level pixel information
was removed from retinal vessel maps by converting all pixel
values below a 10% intensity threshold (i.e., pixel value < 26) to
0 to remove information about choroidal blood vessel patterns and
pigmentation, both of which are not easily visible to the naked eye
on vessel maps. Finally, a black, circular mask was applied to all
retinal fundus images and corresponding retinal vessel maps to
standardize the field of view. This same mask was applied to
generated retinal fundus images.

GAN Training

Models were built and trained in Python35 using PyTorch36 on an
Nvidia V100 GPU (Nvidia). We tuned pix2pixHD, a GAN trained
to generate large, high-resolution synthetic images from segmented
images,37 using default settings (Fig 1). All fundus images and
corresponding vessel maps were loaded, pairwise, into the model
during training at a pixel size of 640�480�3. We chose Pix2Pix
2

because we wanted to train a GAN to focus specifically on
learning the vascular pattern in a given fundus image. This
paired-to-paired image transition can be taken one step further to
potentially alter vascular severity to generate novel synthetic im-
ages of different severity (i.e., turning a normal image to a plus
image).31 The model was trained for 200 epochs using the Adam
optimizer with a b value of 0.5. The learning rate was constant
at 3�10�4 during the first 100 epochs and then linearly decayed
to 0 over the remaining 100 epochs. Discriminator and generator
loss functions in the training set were monitored to ensure
learning was occurring at an equal rate between objective
functions and that overfitting did not occur. After training was
completed, retinal fundus images were generated from retinal
vessel maps in the validation dataset and were manually
reviewed by a non-expert (A.S.C.) for veracity.

Synthetic Image Evaluation

Synthetic fundus images were generated from vessel maps in the
test dataset. Of the 880 real retinal fundus images in the test
dataset, 50 images were randomly selected for evaluation. Like-
wise, 50 synthetic retinal fundus images were also selected. This
subset of images, 50 real and 50 synthetic, was used for evaluation
by practicing ROP ophthalmologists familiar with Retcam images
(L.O., M.E.H., D.M., and R.V.P.C.). Using a custom online sys-
tem,38 the ophthalmologists reported whether they believed each
image was real or synthetic. All images were presented at a
resolution of 640�480�3. Expert majority predictions for all
images were also calculated; ties between experts were recorded
as “synthetic” because this designation represented significant
uncertainty around whether an image was perceived as fake or
real. Individual experts’ predictions and the expert majority
predictions were compared with the ground truth.

Data Analysis

All analyses were performed in R (R Foundation).39 Accuracies of
individual experts, as well as the expert majority, were assessed. A
Fisher exact test for count data was used to determine whether
experts were statistically able to identify synthetic images from
real images. Significance was determined at P values � 0.05.

Informal Review of GANs in Ophthalmology

An informal review of published GANs was performed to evaluate
current uses of synthetic images in ophthalmology. PubMed and
Google Scholar were iteratively reviewed for any type of GAN
(i.e., conditional, cycle GANs) using a combination of the
following terms: GANs, generative adversarial networks,
ophthalmology, images, deepfakes, synthetic. We additionally
performed an ancestor search on included articles to broaden our
search.

Results

Image Generation

Overall, 6058 images from 970 subjects were included in
this dataset and split into training, validation, and test sets
with a roughly equal distribution of plus disease and stage
across the sets. The distribution of stages across each set
was approximately 45% no stage, 15% stage 1, 15% stage 2,
and 5% stage 3. The distribution of plus disease across each
set was approximately 80% normal, 15% pre-plus, and 5%
plus disease. All real retinal fundus images were



Figure 1. Generative adversarial network (GAN) pipeline for generating synthetic fundus images. First, a U-Net, a convolutional neural network archi-
tecture designed to segment image features such as vessels, was used to generate vessel maps from all fundus images in the dataset. Next, paired fundus images
and their corresponding vessel maps from the test set were fed as inputs into Pix2Pix, a conditional GAN. This GAN consists of 2 neural networks: (1) a
generator that was trained to generate synthetic fundus images from vessel maps and (2) a discriminator that was trained to discriminate between real and
synthetic fundus images. After training was completed, vessel maps from the test set were inputted into the GAN and a synthetic fundus image was
generated.
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successfully segmented into grayscale vessel maps using a
U-Net (Fig 2). After training for 200 epochs on 4282 image
pairs, the GAN was evaluated for veracity via manual
review of images generated from retinal vessel maps in
the validation dataset; synthetic retinal fundus images
were then generated from all vessel maps in the test
dataset (Fig 2). Although most images appeared realistic
to a layperson, 5 of the 880 images (0.57%) in the test
dataset were obviously unrealistic (Fig 3). This
observation seemed to occur only in areas of lower-quality
images where retinal vessel information was lacking.

Image Evaluation

Fifty real and 50 synthetic images of similar stage and plus
disease distribution as the original dataset were uploaded to
a custom online evaluation platform,38 and 4 ROP experts
determined whether the images were real or synthetic. The
expert majority correctly identified 59% of images as
being real or synthetic; experts 1 to 4 correctly identified
54%, 58%, 49%, and 61% of images, respectively
(Table 1). Fisher exact test P values for the expert
majority and experts 1 to 4 were 0.100, 0.505, 0.158,
1.000, and 0.043, respectively. These results suggest only
expert 4 could significantly discern between real and
synthetic images, and that, in general, the majority of
experts could not.

GANs in Ophthalmology

We found 20 published implementations of GANs specific
to ophthalmology. Of these, 11 articles synthesized fundus
3



Figure 2. Synthetic retinal images generated from retinal vessel maps. Real retinal fundus images (left) are first segmented into retinal vessel maps (center)
using a previously trained U-Net. By using pix2pixHD, a custom implementation of a generative adversarial network (GAN), the retinal vessel maps are
then used to generate synthetic retinal fundus images (right).
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images,9,19,20,23,32,37,40e44 6 articles synthesized OCT
images,27e29,45e47 2 articles synthesized fluorescein angi-
ography images,48,49 and 1 article synthesized infrared
images21 (Table 2). The majority of GANs were proof-of-
concept studies demonstrating feasibility of generating
realistic-appearing synthetic images. Specific implementa-
tions of GANs were published in 9 articles for diagnosis of
ophthalmic diseases, including diabetic retinopathy
(DR),9,20,32,40 glaucoma,28,45 age-related macular degener-
ation,19,46 and meibomian gland dysfunction.21

Discussion

In this study, we demonstrated (1) that a U-Net and GAN
pipeline can generate realistic-appearing synthetic fundus
images from vessel maps of real fundus images acquired
from ROP screening and (2) that the majority of experts are
unable to discern between real and synthetic fundus images.
4

We identified multiple examples of GANs, applied a num-
ber of ophthalmic imaging modalities and diseases, and
review the potential utility of GANs for dataset augmenta-
tion to improve the robustness of algorithms, contribute
to medical education, and reduce privacy concerns resulting
from the sharing and use of patients’ images. We addi-
tionally discuss the limitations of GANs in clinical use and
offer future directions for research.

Dataset Augmentation and Generation

A fundamental requirement of training DL algorithms for
clinical deployment in a heterogeneous population is a large,
diverse dataset, which may be challenging to acquire from a
single institution. However, multi-institutional datasets are
also difficult to acquire because of patient privacy regula-
tions and the practicality of storing these data. Although
augmentation methods such as image flips and rotations are
routinely used to increase the size of training datasets in DL,



Figure 3. Obvious cases where the generative adversarial network (GAN)
did not produce realistic results. A small proportion of test dataset images
(0.57%) had clear and obvious markings that indicated they were synthetic
images (white arrows).
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they do not increase the feature diversity of the data, which
in turn affects an algorithm’s generalizability. Similar to
previous work exploring synthesis of fundus
images,9,19,20,23,32,37,41,43 our GAN was trained on a smaller
sample of images and subsequently used to generate 880
synthetic images. These results highlight the potential for
GANs to augment the size of the dataset through the
combination of real and synthetic data.

Another strategy to increase both the size and diversity of
the dataset is the creation of multi-institutional datasets.
Although this strategy may marginally increase dataset
heterogeneity and size, it is challenging to create datasets
that contain examples of every combination of image
quality, demographic and ethnic diversity, and so forth that
an algorithm might encounter in the clinical population.4 To
address this, synthetic images can be modified during the
GAN’s image generation process to specifically address
biases by augmenting synthetically “unseen” populations
to real training data. Potential biases that can be addressed
by GANs include underrepresented demographic groups,
image acquisition from different devices, and class
imbalances, such as limited images available for rare
diseases. For example, Burlina et al9 demonstrated that
augmenting synthetic images of darkly pigmented retina
images to a predominantly lightly pigmented dataset could
decrease DL performance bias toward lightly pigmented
retinas for DR. These principles of modifying synthetic
images to increase dataset diversity potentially hold true
for other population characteristics beyond pigmentation
and other image characteristics. Generative adversarial
networks can also modify existing vessel maps from
“normal” fundus images to demonstrate various degrees of
vascular severity for ROP and other diseases that present
along a spectrum of severity. Future work is needed to
assess the use of these synthetic images modified along a
spectrum of disease in DL.

Beyond dataset augmentation, GANs can create
completely novel datasets. As part of the proof-of-concept
GAN studies by Burlina et al19 and Zheng et al,27 both
studies demonstrated comparable performance of DL
algorithms trained on exclusively synthetic versus
exclusively real fundus and OCT images, respectively,
although both maintained similar disease distribution across
their training sets. Similar to models trained on clinically
acquired data, models trained exclusively on synthetic data
will need to be validated on data from clinical settings.
However, because these models were trained on data distri-
butions present in the original datasets, there may be biased
performance against certain demographic groups, which
could be addressed by using synthetic images to balance
dataset augmentation as described.9 Future studies should
assess whether training GANs on more synthetically
balanced datasets in terms of demographics and disease
prevalence results in improved testing performance on data
representative of the general population.

Medical Education

The rise in importance of big data, artificial intelligence,
electronic health records, and tele-health and tele-
education in the setting of the Coronavirus Disease 2019
pandemic have all led to calls for changes in the way we
educate trainees in ophthalmology.50e53 Tele-education
platforms for ophthalmic imaging have been well docu-
mented in the literature.50,54,55 However, the effectiveness
of tele-education platforms to transfer knowledge about
disease phenotypes depends on adequate numbers of
representative images across the entire disease spectrum.
In diseases with a low prevalence of severe cases
(i.e., ROP), there may be a dearth of high-quality training
images from certain disease phenotypes, cameras, ethnic
5



Table 1. Confusion Matrix of Expert Determinations of Real versus Synthetic Images

True

Expert Majority Expert 1 Expert 2 Expert 3 Expert 4

Real Synthetic Real Synthetic Real Synthetic Real Synthetic Real Synthetic

Image Real 35 15 38 12 32 18 43 7 34 16
Type Synthetic 26 24 34 16 24 26 44 6 23 27

Experts were generally unable to discern between real and synthetic images (accuracy ¼ 54%, 58%, 49%, and 61%, respectively).
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subgroups, and patients who have consented to use their
images for educational purposes. Synthesizing cases to
augment and customize trainee-specific educational expe-
riences may result in improved recognition of more severe
cases without having to prospectively identify patients
who develop severe disease. Because GANs can also
modify an image along a disease spectrum represented in a
Table 2. Informal Review of Current Applications of G

Authors, Year
Image

Modality
GAN

Architecture

Andreini et al, 201832 Fundus Pix2Pix HD

Wang et al, 201837 Fundus Conditional GAN
Zhao et al, 201823 Fundus Custom GAN

(Tub-GAN)
Burlina et al, 201919 Fundus ProGAN

Niu et al, 201940 Fundus Custom GAN
Odaibo et al, 201929 OCT Unspecified GAN
Yu et al, 201941 Fundus Custom GAN,

Pix2Pix
Ha et al, 202044 Fundus Super-Resolution

GAN
Hassan et al, 202045 OCT Conditional GAN
Li et al, 202047 Fluorescein

Angiography
Conditional GAN

Liu et al, 202046 OCT Pix2Pix HD

Tavakkoli et al, 202049 Fluorescein
Angiography

Conditional GAN

Zheng et al, 202027 OCT Progressively
Grown GAN

Zhou et al, 202020 Fundus GAN

Burlina et al, 20219 Fundus StyleGAN

Cheong et al, 202147 OCT Custom GAN
Coyner et al, 202142 Fundus Pix2Pix HD

Khan et al, 202121 Infrared Images Conditional GAN

Wang et al, 202143 Fundus Custom GAN

Zheng et al, 202128 OCT Progressively
Grown GAN

AMD ¼ age-related macular degeneration; CNN ¼ convolutional neural netw
ROP ¼ retinopathy of prematurity.
Overall, 20 published implementations of GANs were found in ophthalmology. T
and infrared images. The majority of these GANs were proof-of-concept studie
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dataset, synthetic images of the hypothetically “same”
patient across various levels of disease severity may
improve trainee recognition of disease progression.31

These images may be used to train trainees/clinicians to
stage disease and progression longitudinally. Future work
assessing the utility of synthetic images in ophthalmic
disease education is warranted.
enerative Adversarial Networks in Ophthalmology

Summary of GAN Use Case

Synthesis of high-resolution fundus photos using vessel segmentations of
publicly available DR image sets.

Synthesis of high-resolution fundus photos.
Synthesis of fundus photos using 10-20 images.

Synthesis of fundus images for wet vs. dry AMD. Evaluation of expert
ability to discern synthetic vs. real. Trained CNN to identify AMD using
datasets of exclusively synthetic or real images.

Synthesis of lesions specific to diabetic retinopathy.
Synthesis of retinal OCT images.
Synthesis of high-resolution optic disc photos using a multiple-channel and
landmark strategy.

Synthesis of high-resolution optic disc photos from low-resolution photos.

Predict progression of glaucoma using macular OCT images.
Synthesis of fluorescein angiography photos from fundus photos.

Synthesis of retinal OCT photos. Evaluation of image quality. Evaluate use
of synthetic images to predict treatment response for AMD.

Synthesis of fluorescein angiography photos from fundus photos. Evaluate
expert ability to discern synthetic vs. real.

Synthesis of retinal OCT images. Evaluation of image quality between real
vs. synthetic images. Training a CNN on diagnosis of referral warranting
findings using exclusively synthetic or real images.

Synthesis of fundus photos that show modification of lesions representative
of DR.

Synthesis of fundus images of diverse pigmentation for augmentation to a
DL algorithm for DR synthesis.

Synthesis of retinal OCT images with blood vessel shadows removed.
Synthesis of high-resolution fundus photos from an ROP screening
program.

Synthesis and processing of infrared images for quantification of
irregularities of the meibomian gland.

Synthesis of diabetic retinopathy image and diagnosis using a multi-
channel strategy.

Synthesis of anterior-segment OCT images. Evaluation of image quality
between real vs. synthetic images. Training a CNN on diagnosis of
glaucoma using synthetic vs. real images.

ork; DR ¼ diabetic retinopathy; GAN ¼ generative adversarial network;

hese GANs were used to synthesize fundus, OCT, fluorescein angiography,
s demonstrating feasibility of creating realistic synthetic images.
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Privacy

Data privacy laws enacted by the European Union56e59 to
protect patient privacy have other important implications in
regulating dataset sharing, which in turn restrict the ability
to train more generalizable DL algorithms. In ophthal-
mology, these challenges are further compounded because
the retina and its vasculature are considered protected health
information.60e63 In our study, the synthetic images
appeared similar to the original, even though the choroidal
vascular patterns ostensibly were fully synthetic. However,
GANs trained on paired image-to-image transition may be
used to alter the severity of vessel maps (i.e., from normal to
pre-plus to plus or vice versa) to generate completely new
segmentations and fundus images that are potentially bio-
metrically distinct from the patient’s native vasculature. In
practice, using retinal vasculature as identifiable data may be
problematic to implement, because the retinal appearance
can change over time, perhaps more so than other biometric
data such as fingerprints. For example, in DR, the purpose
of screening using retinal photographs is to detect change in
retinopathy status, that is, a change in the way an image
looks over time. The degree to which a retinal image can be
used to identify a person, especially when that retina looks
different over time with age,64 the presence of disease,65 and
with different cameras, is unclear.

Similar to other DL algorithms, GANs have also been
shown to be vulnerable to malicious privacy breaches such
as membership attacks, which are adversarial attacks
designed to identify which images or patients were used in
model training.66e73 These attacks essentially operate on the
premise that DL algorithms perform better on images that
they were trained on74 and depend on whether the attacker
has access to the code underlying the model (white-box)
or not (black-box).75 While defense against these attacks
remains an active area of research,71,74 they are costly,74

and some defense approaches that require re-training the
model may even decrease the performance of the original
DL algorithm.75

Limitations of GANs

Important inherent limitations of GANs exist that require
further study before clinical implementation of these algo-
rithms. First, GANs can only synthesize images representing
disease phenotypes and imaging features within the training
data’s distribution.16 Therefore, the phenotypic spectrum of
synthetic images may not represent the full phenotypic
variability seen in clinical practice, which is crucial for rare
diseases. Second, GANs are often used to improve signal
quality or fill in missing information in an image; however,
the resulting “improved” image might obscure the presence
of real pathology that would have been visible without the
artifact or on a better-quality scan/image.47 Additionally,
they can produce so-called image hallucinations, that is,
the addition of image features not actually present, which
may or may not be useful.76e79
Study Limitations

Our study has additional limitations. First, our GAN was
trained on RetCam images from North American infants
screened for ROP. Future work is needed to evaluate the
generalizability of our GAN in other populations and de-
vices. Second, our GAN generated a few images that were
clearly unrealistic (Fig 3). These erroneous images were few
and were easily identified from our generated dataset, but
we speculate that training on larger datasets with varying
image quality likely improved the overall quality of
synthetic images. Third, we did not ask experts to review
images more than once, and therefore did not evaluate the
reproducibility of expert evaluation. Although the majority
of experts were statistically unable to discern between
synthetic and real images, it may be interesting to evaluate
whether experts can learn to recognize synthetic versus
real images over time. Finally, our GAN was only trained
on images from stages 1 to 3 ROP because of the sparsity
of images with stages 4 and 5 in our dataset; more
prospective data collection is needed to train GANs that
can generate realistic-appearing images across the full
spectrum of stage, zone, and plus disease.

In conclusion, generative adversarial networks can
generate synthetic fundus images that are indiscernible from
real fundus images by expert ROP ophthalmologists.
Although these synthetic images have many potential ap-
plications in DL data augmentation and education, issues
surrounding privacy and hallucinations must be further
studied before clinical implementation.
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