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Coagulation & its Disorders

Cytoprotective and pro-angiogenic functions of
thrombomodulin are preserved in the C loop of
the fifth epidermal growth factor-like domain
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ABSTRACT
We previously found that the fifth epidermal growth factor-like

domain of thrombomodulin (TMES5) exerts cytoprotective and

pro-angiogenic functions via G-protein coupled receptor 15
(GPR15). TMES is comprised of three S-S bonds that divide it into three
loops: A (TMESA), B (TMESB), and C (TMES5C). Herein we identified
the minimum structure of TMES that produces favorable effects in vas-
cular endothelial cells (ECs). We found that TME5C, composed of 19
amino acids, but not TME5SA or TMESB, stimulated the proliferation of
human umbilical vein endothelial cells (HUVECs) and human hepatic
sinusoidal endothelial cells (HHSECs). Matrigel plug assays showed that
TMESC stimulates in vivo angiogenesis. In addition, TME5C counteract-
ed calcineurin inhibitor-induced apoptosis and vascular permeability in
HUVECs and HHSECs. Western blot analysis indicated that exposure of
either HUVECs or HHSECs to TMESC increased the levels of anti-apop-
totic myeloid cell leukemia-1 protein in association with the activation
of signal transduction pathways, including extracellular signal-regulated
kinase, AKT, and mitogen-activated protein kinase p38. Importantly,
TMESC did not affect the coagulation pathway in vitro. The cytoprotec-
tive function of TMESC was mediated by cell surface-expressed GPR15,
as TMES5C was not able to protect vascular ECs isolated from Gpri15
knock-out (KO) mice. Strikingly, TMES5C successfully ameliorated sinu-
soidal obstruction syndrome in a murine model by counteracting the
reduction of sinusoidal EC numbers. Taken together, the cytoprotective
and pro-angiogenetic functions of TM are preserved in TMESC. The use
of TME5C may be a promising treatment strategy to prevent or treat
lethal complications, such as sinusoidal obstruction syndrome, whose
pathogenesis is based on endothelial insults.

Introduction

Hepatic sinusoidal obstruction syndrome (SOS) is a potentially life-threaten-
ing complication after hematopoietic stem cell transplantation (HSCT).! The inci-
dence of SOS ranges from 5% to 60%, depending on the conditioning regimen
and transplantation type.” The clinical manifestation of SOS includes rapid and
unexplained weight gain, ascites, painful hepatomegaly, and jaundice.® The
development of SOS after HSCT is associated with injury to sinusoidal endothe-
lial cells (ECs) and hepatocytes via a variety of factors, including a hepatotoxic
conditioning regimen, immunosuppressive treatments with calcineurin
inhibitors, and lipopolysaccharide (LPS) released by gram-negative bacteria.*’
Due to the paucity of glutathione content in zone III of the liver, sinusoidal ECs
are more vulnerable to toxic agents than hepatocytes.” SOS is now referred to as
an endothelial syndrome together with transplant-associated thrombotic
microangiopathy (TA-TMA) and engraftment syndrome (ES).”® As a result of
endothelial injury, a hypercoagulable state is caused in patients with ES.” As of
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yet, clinical trials evaluating the efficacy of anticoagu-
lants or thrombolytics for treatment of endothelial syn-
drome have not been conducted.*"

Since 2008, recombinant human soluble thrombomod-
ulin ('TM) has been used to treat disseminated intravas-
cular coagulation in Japan. rTM binds thrombin and con-
verts protein C to activated protein C (APC), which
inhibits activated factor V and VIII and acts as an anti-
coagulant."™ APC is well known to protect various cell
types, including endothelial cells and podocytes, via pro-
tease-activated receptor 1 and endothelial protein C
receptor.” rTM counteracted capillary leakage in a patient
who developed ES after HSCT."In addition, rTM rescues
individuals with SOS and TA-TMA developed after
HSCT."?* We previously showed that rTM possesses the
ability to protect vascular ECs in an APC-dependent and
ABC-independent manner from various insults, including
the calcineurin inhibitor cyclosporine.” In addition, we
found that the cytoprotective and pro-angiogenic func-
tions of r'TM are localized in the fifth epidermal growth
factor-like domain of thrombomodulin (TMES5), which
does not possess the ability to produce APC, although it
retains some binding capacity towards thrombin.”*
Furthermore, we found that G protein-coupled receptor
15 (GPR15) expressed on vascular ECs is indispensable for
the cytoprotective functions of TMES.%*

TMES consists of 40 amino acids, including six cysteine
residues that form three disulfide bonds, making TMES a
structure with three separate disulfide-bonded loops: the
A loop (residues C390 to C395), B loop (residues C399 to
C407), and C loop (residues C409 to C421).” In contrast
with the A and B loops, the structure of the C-loop is sim-
ilar to that of epidermal growth factor (EGF).” In the
study herein, we identified the minimum structure of
TMES that exerts its cytoprotective and pro-angiogenic
activities in vitro and in vivo.

Methods

Cell culture

HUVECs were purchased from Lonza Walkersville Inc.
(Walkersville, MD, USA) and cultured in endothelial cell growth
basal medium-2 (EBM-2) culture medium supplemented with
endothelial cell growth factors (EGM-2; Lonza Walkersville Inc.).
Human hepatic sinusoidal endothelial cells (HHSECs) were pur-
chased from ScienCell (San Diego, CA, USA) and cultured
(87°C, 5% CO,) in endothelial cell medium (ECM, containing
5% fetal bovine serum (FBS; ScienCell).

Murine thoracic aorta vascular ECs were isolated from mice as
previously described.” Briefly, mice were anesthetized, and the
thoraces were opened to expose the heart and lungs. The aorta
was dissected out and immersed in 20% FBS dulbecco's modi-
fied eagle medium (FBS-DMEM; Wako, Tokyo, Japan) in the
presence of collagenase type II (Sigma-Aldrich, Tokyo, Japan) for
45 min at 37°C. The cells were then collected and cultured with
DMEM supplemented with endothelial cell growth supplement
(Sigma-Aldrich, Tokyo, Japan). Five days later, the cells were
harvested and utilized for further experiments.

Mice

Gpri5  knockout  (Gpr15 KO) mice  (129/SvEv;
129P2-Gpr15 tm1.1Litt/], stock number 008769) were purchased
from Jackson Laboratory (Bar Harbor, ME, USA). This strain had
been backcrossed to C57BL/6 for three generations before being

Table 1. Amino acid sequences of TMESA, TME5B, and TME5C.

Name Amino acid sequence
TMESA QMFCNQTACPA
TMES5B DCDPNTQASCE
TME5C ECPEGYILDDGFICTDIDE
TME5C mutant ECPEAYILDDGFICTDIDE

TM: thrombomodulin.

used for experiments. Female C57BL/6 mice (8-week-old) were
purchased from Japan SLC, Inc. (Hamamatsu, Japan). Female
BALB/c (H-2K¢, donor) and female C57BL/6 (H-2Kb, recipient)
mice, aged ten weeks and weighing 20-25 g, were purchased
from Japan SLC, Inc. All procedures were performed according
to the animal care guidelines of Fukushima Medical University.
During invasive operations, animals were anesthetized by inhal-
ing isoflurane.

Reagents

TM mutants TME5SA (residues C387-C397), TMESB (residues
C398-C408), and TMESC (residues C408-C426) were synthe-
sized by the Peptide Institute Inc. (Osaka, Japan). The TME5C
mutant with a single amino acid substitution was synthesized
by GL Biochem (Shanghai, China). The amino acid sequences
are listed in Table 1. Cyclophosphamide (CY) was purchased
from Shionogi & Co., Ltd (Osaka, Japan). Busulfan (BU) and
tacrolimus (FK506) were purchased from Sigma-Aldrich, Tokyo,
Japan. TME5 and rTM were provided by Asahi Kasei Pharma

(Tokyo, Japan).

Proliferation assays

HUVECs (5x10° cells/well), HHSECs (5x10° cells/well), or
murine ECs (5x10° cells/well) were cultured in 96-well plates
containing TME5C (25, 50, 250, 500, 1000 nM), TMES5A (500
nM), TMES5B (500 nM), or TMES (30 nM) with or without FK506
(10 ug/ml) for 24 h. Bromodeoxyuridine (BrdU, 10 uM/well) was
added and incubated for an additional 4 h. The quantity of BrdU
incorporated into cells was assessed in accordance with the
manufacturer’s protocol (Roche, Basel, Switzerland).

Vascular permeability assay

The effects of FK506 and TM mutants on vascular permeabil-
ity were measured by a vascular permeability assay kit
(Millipore, Billerica, MA). Briefly, HUVECs were plated onto col-
lagen-coated inserts and cultured for 72 h until confluence. After
starvation for 24 h, cells were treated with TMESA/B/C (500
nM) or TMES5 (30 nM) with or without FK506 (10 ug/ml) for 12
h. Then fluorescein isothiocyanate-dextran was added. The
extent of permeability was determined by measuring the fluo-
rescence of the plate well solution (excitation: 485 nm, emission:
535 nm).

In vitro vascular tube formation assay

To evaluate the pro-angiogenetic effects of TMESC, TMESA,
and TMESB in vitro, HUVECs or HHSECs were plated on growth
factor-reduced matrigel (Corning corporation, NY, USA) pre-
coated 24-well plates (2.0x10" cells/well) and incubated with
control diluent, TMES (30 nM), TME5A/B/C (500 nM), or vascu-
lar endothelial growth factor (VEGE 0.5 nM, positive control).
After 8 h, the endothelial cell-derived tube-like structure was
photographed using an inverted microscope (KEYENCE BZ-
X700, Osaka, Japan) (magnification x40). The tube length in
three randomly chosen fields from each well was measured
using NIH Image] software (NIH, Bethesda, MA, USA).

TMESC exerts cytoprotective and angiogenic functions -
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Figure 1. TMESC stimulates proliferation of endothelial cells. (A). Amino acid sequence alignhment of TMESA, TME5SB, and TMESC. (B, C). BrdU incorporation assay.
HUVECs or HHSECs were cultured with TME5SC (25, 50, 250, 500, 1000 nM), TME5A (500 nM), TME5B (500 nM), TME5SC mutant (500 nM), or TME5 (30 nM) for
24 h. Proliferation was measured by BrdU incorporation assays. Experiments were performed three times in triplicate plates. Results represent the mean + SD.
*P<0.05. BrdU: bromodeoxyuridine; HUVECs: human umbilical vein endothelial cells; HHSECs: human hepatic sinusoidal endothelial cells; TM: thrombomodulin;

Murine angiogenesis assay

To assess the pro-angiogenetic effects of TM mutants i vivo,
growth factor-reduced matrigel (0.3 mL, containing 40 U/mL
heparin) with control diluent, TME5SA/B/C (500 nM), TMES (30
nM), VEGF (0.5 nM, positive control) was subcutaneously inject-
ed into C57BL/6 mice (8-week-old, female) near the abdominal
midline. Four days later, mice were euthanized, and the matrigel
plugs were dissected out and photographed.

Hemoglobin determination of matrigel plugs

Matrigel plugs were mixed with 1 ml distilled water and put
on ice for 5-10 min. After centrifugation for 6 min at 8000 g, the
supernatants were mixed with drabkin’s reagent (Sigma-Aldrich,
Tokyo, Japan) and hemoglobin was measured as previously
described.** Absorbance was measured with a microplate reader
at 540 nm. Methemoglobin (Sigma-Aldrich, Tokyo, Japan) was
used to obtain a standard curve.

Apoptosis Assays

The ability of TM mutants to rescue HUVECs, HHSECs, or
murine ECs from FK506-induced apoptosis was measured using
the Annexin V Apoptosis Detection Kit (K129, BioVision,
Milpitas, CA, USA) and propidium iodide (PI) as previously
described.” Briefly, cells were exposed to FK506 (10 ug/ml) with
or without TME5A/B/C (500 nM) or TMES (30 nM). After 36 h,
cells were harvested and subjected to PI and PE-Cy5 anti-annex-
in V. Early apoptosis cells are annexin V positive and PI negative.
Late apoptosis cells are annexin V positive and PI positive.

Western blot analysis

Western blot analysis was performed as described previous-
ly.”> The following antibodies were used: anti-p-ERK
(T202/Y204) (Cell Signaling Technology, Danvers, MA, USA),
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anti-ERK (Cell Signaling Technology; 9102), anti-p-AKT (Ser473)
(Cell Signaling Technology; 9271), anti-AKT (Cell Signaling
Technology; 9272), anti-p-Stats (Tyr694) (Cell Signaling
Technology; 9351), anti-Stat5 (Cell Signaling Technology; 9363),
anti-p38 (Cell Signaling Technology; 9212 ), anti-p-p38
(Tyr180/182) (Cell Signaling Technology; 9216), anti-Mcl-1 (Cell
Signaling Technology; 4572), and anti-GAPDH (Cell Signaling
Technology; 5174).

Prothrombin time (PT) and activated partial
thromboplastin time (APTT)

For PT detection, 200 ul PT reagent (Sysmex Corporation,
Kobe, Japan) was mixed with 100 ul human plasma with or
without rTM, TMES, TMESA/B/C, or TMESC mutant (10 ul).
For APTT detection, 100 ul APTT reagent (Sysmex Corporation)
was mixed with 100 ul human plasma with or without rTM,
TMES, TMESA/B/C, or TMESC mutant (10 ul). After incubation
for 120 s, 100 ul CaCl, was added to this mixture. The clotting
time was measured using a KC1 Delta coagulometer (Tcoag, Co.
Wicklow, Ireland).

S$0S murine model

C57BL/6 mice were randomly divided into three groups
(n=16 in each group): mice that received vehicle phosphate
buffered saline (PBS) without bone marrow transplantation
(BMT) were defined as the control group. Mice that received
BU/CY followed by BMT and treated with vehicle PBS were
defined as the BMT group. Mice that received BU/CY followed
by BMT and treated with TMESC were defined as the BMT
treated with TMESC group. SOS was induced by previously
reported BU/CY reconditioning treatment followed by BMT
with some modification;” in brief, BU (25 mg/kg/day for 4
days) followed by CY (100 mg/kg/day for 2 days) were given to
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Figure 2. TME5SC stimulates angiogenesis in endothelial cells. (A, B, E). In vitro vascular tube formation assays. HUVECs or HHSECs were plated on growth factor-
reduced matrigel-precoated 24-well plates (2.0x10* cells/well) and incubated with control diluent, TME5 (30 nM), TME5A/B/C (500 nM), TME5C mutant (500 nM)
or VEGF (0.5 nM, positive control). After 8 h, the endothelial cell-derived tube-like structure was photographed. (C, D, F). The tube length in three randomly chosen
fields from each well was measured using NIH ImageJ software. (G, H). In vivo angiogenesis assays. Growth factor-reduced matrigel (0.3 ml, containing 40 U/ml
heparin) with control diluent, TME5 (30 nM), TME5A/B/C (500 nM), or VEGF (0.5 nM, positive control) was subcutaneously injected into C57BL/6 mice near the
abdominal midline (n=3 in each group). Four days later, mice were euthanized, and the matrigel plugs were dissected out and photographed. The matrigel plugs were
homogenized in the presence of 1 ml distilled water and mixed with drabkin’s reagent. The hemoglobin levels were then measured using a microplate reader. Results
represent the mean + SD. *P<0.05. VEGF: vascular endothelial growth factor; HUVECs: human umbilical vein endothelial cells; HHSECs: human hepatic sinusoidal

endothelial cells; TM: thrombomodulin; N.S.: not significant.

the mice intraperitoneally from day -7 to day -4 and from day -
3 to day -2, respectively. Two days later, the mice were intra-
venously infused with bone marrow cells harvested from
BALB/C mice (5x10° per mouse). The day of BMT was set as
day 0. Intraperitoneal administration of either TME5SC (500
ug/kg) or vehicle PBS was initiated on day -7 and continued to
day 13. Each agent was given to mice every other day. Blood
was withdrawn, and plasma levels of aspartate aminotrans-
ferase (AST) and alanine aminotransferase (ALT) were meas-
ured on days 7, 14, and 20.

Hematoxylin-eosin (H&E), inmunohistochemistry
(IHC), and Masson staining

On days 7, 14, and 20 after BMT, some of the mice were sac-
rificed. Livers were surgically removed and fixed with formalde-
hyde solution. Specimens were dehydrated, waxed, and sliced
into 4-um thickness by an RM2126 microtome. After H&E
staining, pathologic changes were evaluated under a light micro-

haematologica | 2018; 103(10)

scope. Some liver slices were treated with 3% H,O, and blocked
with 1% bovine serum albumin (BSA). The slices were then
incubated with primary pan-endothelial cell monoclonal anti-
body (MECA-32, Novus Biologicals, Littleton, MA, USA) fol-
lowed by incubation with biotinylated goat anti-rat secondary
antibody and ABC HRP reagent. Color was developed with 3,3'-
diaminobenzidine. Quantification of MECA-32-positive stained
sinusoidal ECs was performed using NIH Image] software and
expressed as the number of positive stained cells/analyzed area.
Masson staining was carried out in accordance with the manu-
facturer’s protocol (Sigma-Aldrich, Tokyo, Japan).

SOS score

Histological slices after H&E, IHC, or Masson staining were
blindly evaluated according to the scoring system modified from
that described by DeLeve et al.*® Based on the total score, the
observed SOS was ranked as mild, moderate, or severe as previ-
ously described.”
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TUNEL staining

Apoptosis of hepatocytes and sinusoidal ECs was assessed
using an in situ cell death detection kit (Roche) according to the
manufacturer’s protocol. Briefly, paraffin-embedded liver tissue
sections were pretreated with dewaxation, rehydration, and
proteinase K working solution, and subsequently the terminal
deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) reaction mixture was added before adding the convert-
er-POD. After the substrate solution was added, the slides were
evaluated under a light microscope (x400).

ELISA

The plasma of mice was collected and analyzed with an
enzyme-linked immunosorbent assay (ELISA) kit to measure the
concentrations of TM, fibrinogen/fibrin degradation product
(FDP), and plasminogen activator inhibitor-1 (PAI-1) according

to the manufacturer’s protocol (Cloud-Clone Corp. Wuhan,
China).

Statistical analysis
Statistical analyses were performed to assess the differences
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Figure 3. TMES5C blocks apoptosis of FK506-treated endothelial cells. (A). BrdU incorporation assay. HUVECs or HHSECs were cultured with TME5SC (25, 50, 250,
500, 1000 nM), TME5A (500 nM), TME5B (500 nM), TME5C mutant (500 nM), or TME5 (30 nM) in combination with FK506 (10 ug/ml) for 24 h. Proliferation was
measured by BrdU incorporation assays (n=3). (B, C). Apoptosis assays. HUVECs or HHSECs were exposed to FK506 (10 ug/ml) with or without TME5A/B/C (500
nM) or TME5 (30 nM). After 36 h, cells were harvested, stained with anti-annexin V and PI, and subjected to FACS. Annexin V+PI- and Annexin V+PI+ indicate early
and late apoptosis, respectively. (D, E). Quantitative analysis of the apoptotic cells in each group (n=3). (F). Vascular permeability assays. HUVEC monolayers were
exposed to TME5 (30 nM) or TMESA/B/C (500 nM) with or without FK506 (10 ug/ml) for 12 h, and then fluorescein isothiocyanate-dextran was added. The fluores-
cence of the plate well solution was measured to quantify the extent of permeability. Experiments were performed three times. Results represent the mean + SD.
*P<0.05. BrdU: bromodeoxyuridine; HUVECs: human umbilical vein endothelial cells; HHSECs: human hepatic sinusoidal endothelial cells; Pl: propidium iodide.
FK506: tacrolimus; TM: thrombomodulin; N.S.: not significant.
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between two groups under multiple conditions using one-way
analysis of variance (ANOVA) followed by Bonferroni multiple
comparison tests using GraphPad Software (La Jolla, CA, USA).
Differences in animal survival (Kaplan-Meier survival curves)
were analyzed by log-rank test. A P-value < 0.05 was considered
statistically significant.

Results

TMESC, but not TMESA or TMESB, stimulates
proliferation of endothelial cells

Figure 1A shows the amino acid sequences of TM
mutants TMESA, TMESB, and TMESC. We first exam-
ined the effects of each TM mutant on the proliferation of
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HUVECs and HHSECs (Figure 1B). TMES also stimulated
the proliferation of endothelial cells in a dose-dependent
manner, which was consistent with our previous study.”
TMES produced the maximum pro-proliferative effect at
a concentration of 30 nM (Online Supplementary Figure S1).

We conducted further experiments with a TMESC
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Table 1). This mutant form of TMESC lost the ability to

Intensity of p-AKT
(fold induction of control)
o - N w £ o
-
]*

O Ao 4
«© " 5 2
& ¢ ¢ ¢
s
- € -
583
=
= 0
o c
>8 2
235
7]
c 3
o T
£E1
“3
€,
> o v ®
& 5 A S
P S P
= %
3 —
o
$83
2%
282
£3
@3
s
S84
g
=3
e
=~ 0
> ¥ o
& & < P
PR R N

3 o
& & >
N N 00490

Figure 4. TMES5C increases the levels of p-ERK, p-AKT, p-p38, and Mcl-1 in endothelial cells. (A and C). HUVECs or HHSECs were exposed to control diluents (PBS
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stimulate the proliferation of HUVECs, suggesting that
the pro-proliferative effect of TMESC was dependent on

the specific amino acid sequence of this peptide (Figure
1C).

TMES5C stimulates angiogenesis

The potential role of TMES5C to stimulate angiogenesis
was examined in vitro and in vivo. TMESC (500 nM) but
not TMESA or TMESB stimulated vascular tube forma-
tion of HUVECs and HHSECs by nearly 3-fold compared
with control diluent-treated cells (Figure 2A-D). On the
other hand, no remarkable proangiogenic effect was
noted in the mutant form of TME5C (Figure 2EF).
Furthermore, in vivo angiogenesis assays with matrigel
plugs revealed that TMESC (500 nM) stimulated angio-
genesis in C57BL/6 mice (Figure 2G). In addition, the
hemoglobin concentration was significantly increased in
matrigel containing TMESC (Figure 2H) compared to
matrigel containing control diluent. Consistent with the
results of the proliferation assays, 30 nM TMES produced
an almost identical angiogenic effect with 500 nM
TMESC (Figure 2A-D, G, H).
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TMESC, but not TMESA or TMESB, blocks
FK506-induced growth inhibition and apoptosis
in endothelial cells

We examined whether TMESC counteracted the
growth inhibition of HUVECs and HHSECs induced by
the calcineurin inhibitor FK506. FK506 inhibited the pro-
liferation of HUVECs and HHSECs by 80-90% and 70-
80%, respectively. This growth inhibition was signifi-
cantly attenuated by the presence of TMES5C in a dose-
dependent manner up to 500 nM (Figure 3A). The highest
dose of TMESC (1000 nM) was not as potent as 500 nM
TMESC. Neither TMESA (500 nM) nor TMESB (500 nM)
counteracted the effect of FK506 on proliferation of
HUVECs and HHSECs (Figure 3A). We therefore chose
500 nM of TME5C for subsequent experiments.
Importantly, the mutant form of TMES5C lost the ability
to block FK506-induced growth inhibition (Figure 3A).
We next examined whether TMESC could block FK506-
induced apoptosis in HUVECs and HHSECs. FK506
induced more than 40% of HUVECs and HHSECs to be
apoptotic. Interestingly, when these cells were cultured in
the presence of both FK506 (10 ug/mL) and TME5C (500
nM), the population of apoptotic cells significantly
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Figure 5. TME5C exerts cytoprotective function in murine ECs in a GPR15-dependent manner. (A). BrdU incorporation assays. WT or Gpr15 KO murine ECs were
cultured with TMESC (500 nM) with or without FK506 (10 ug/ml) for 24 h. Proliferation was measured by BrdU incorporation assays. (B). Apoptosis assay. WT or
Gpr15 KO murine ECs were exposed to FK506 (10 ug/ml) and/or TME5C (500 nM). After 36 h cells were harvested and stained with anti-annexin V and PIl. FACS
was used to analyze apoptotic cells. Annexin V+PI- and Annexin V+PI+ indicate early and late apoptosis, respectively. (C). Quantitative analysis of apoptotic cells in
each group (n=3). (D, E). Vascular tube formation assays in vitro. WT or Gpr15 KO murine ECs were plated on growth factor-reduced matrigel-precoated 24-well plates
(2.0x10°* cells/well) and incubated with control diluent, TME5C (500 nM), or VEGF (0.5 nM, positive control). After 8 h, the endothelial cell-derived tube-like structure
was photographed using an inverted microscope. The tube length in three randomly chosen fields from each well was measured using NIH ImageJ software. Results
represent the mean + SD. *P<0.05. BrdU, bromodeoxyuridine; KO: knock out; GPR15: G-protein coupled receptor; WT: wild-type; FK506: tacrolimus; TM: thrombo-
modulin; N.S.: not significant; VEGF: vascular endothelial growth factor.
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decreased (Figure 3B-E). By comparison, neither TME5SA
(500 nM) nor TMESB (500 nM) showed cytoprotective
effects in HUVECs and HHSECs. In parallel with the
induction of apoptosis, vascular permeability was pro-
foundly induced in HUVECs after exposure to FK506 (10
ug/ml) for 12 h. Of note, FK506-induced vascular perme-
ability was significantly attenuated in the presence of
TMESC (500 nM), but not TMESA or TMESB (Figure 3F).
Once more, a lower dose of TME5 (30 nM) produced a
cytoprotective effect comparable to 500 nM TMES5C
(Figure 3).

TMES5C upregulates p-ERK, p-AKT, p-p38, and Mcl-1 in
endothelial cells

We examined whether TMESC acts through the intracel-
lular signal transduction pathways in HUVECs and
HHSECs. Western blot analysis with different antibodies
against intracellular signal transduction pathways found
that exposure of either HUVECs or HHSECs to TMES5C
(500 nM) but not TMES5A (500 nM) or TMESB (500 nM) for
48 h significantly increased the levels of phospho (p)-ERK,
p-AKT, p-p38, and Mcl-1 in these cells (Figure 4A-D).

GPR15 is indispensable for the effects of TME5C
Further experiments were carried out to test whether
GPR15 also mediated the cytoprotective function of
TMESC as it did for TMES. BrdU incorporation assays
found that TMES5C stimulated the proliferation of ECs
isolated from WT C57BL/6 mice by nearly 1.5-fold com-
pared with ECs treated with control diluent. In contrast,
TMES5C was not able to stimulate the proliferation of vas-
cular ECs isolated from Gpr15 KO mice (Figure 5A). In

TMESC exerts cytoprotective and angiogenic functions -

addition, TME5C significantly rescued the ECs isolated
from WT C57BL/6 mice, but not Gpr15 KO mice, from
FK506-induced growth inhibition and apoptosis (Figure
5A-C). Moreover, TME5C stimulated vascular tube for-
mation in WT C57BL/6 murine ECs but not Gpr15 KO
murine ECs (Figure 5D,E).

TMES5C does not affect thrombin-mediated coagulation

The fourth, fifth and sixth region of EGF-like domain of
TM (TMEA456) binds thrombin and converts protein C to
APC.” The present study explored whether TMESC
binds thrombin by measuring PT and APTT. rTM (500
nM) prolonged PT and APTT by approximately 200%
and 165%, respectively. A much higher concentration of
rTM (5000 nM) prolonged PT and APTT by more than
400% and 900%, respectively. Interestingly, TMES (5000
nM) also prolonged PT and APTT by 137% and 225%,
respectively. Of note, even the highest concentration of
5000 nM TMES5C did not prolong either PT or APTT

(Figure 6).

TMESC ameliorates SOS in a murine model

To induce SOS, we used a murine BMT model precon-
ditioned with BU and CY (Figure 7A). BMT recipients
treated with PBS showed a decrease in food intake, curled
hairs, and abdominal distention (data not shown). Dark
brown colored livers indicating congestion and massive
ascites were noted in BMT recipients treated with PBS on
day 7 after BMT (Figure 7B,C). In addition, liver enzymes,
including ALT and AST, were significantly elevated in
BMT recipients treated with PBS at day 7 (Figure 7D). On
the other hand, these indicators were less significant in
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Figure 6. Effects of TMESC on PT and APTT. Plasma was obtained from a healthy volunteer and mixed with PT or APTT reagent with or without a series of TM frag-
ments at various concentrations. (A, B). PT assays of TM fragments. (C, D). APTT assays of TM fragments. Experiments were performed three times. Results repre-
sent the mean + SD. *P<0.05 compared with control. PT: prothrombin time; APTT: activated partial thromboplastin time; TM: thrombomodulin; rTM: recombinant

human soluble thrombomodulin.
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BMT recipients treated with TMESC (Figure 7B-D).
Strikingly, 9 out of 16 (56.3%) BMT recipient mice treated
with PBS died by day 30 after BMT (Figure 7E), while
none of the BMT recipient mice treated with TME5C
died during the experimental period (Figure 7E).
Pathological examination of livers removed from BMT
mice treated with PBS on day 7 showed severe hemor-
rhagic necrosis with partial obstruction of liver sinusoids,
infiltration of inflammatory cells, subendothelial hemor-
rhage, and loss of liver sinusoidal lining cells (Figure 7F).
IHC staining of ECs with MECA-32 indicated a decrease
in the number of sinusoid ECs, loss of integrity of sinu-
soid walls, and liver sinusoidal EC detachment (Figure
7G,H). These liver abnormalities were partly recovered
by the 20th day after BMT in PBS-treated mice. In addi-

. Bl control

3 BMT+TMESC

& K4 .

Figure 7. TME5C ameliorates SOS in mice.
C57BL/6 mice were randomly divided into
three groups (n=16 in each group):
untreated mice without BMT were defined
as the control group, BMT recipient mice
treated with vehicle PBS were defined as
the BMT group, and BMT recipient mice
treated with TMESC were defined as the
BMT+TMESC group. (A). Schematic dia-
gram of SOS model with the schedule of
treatment. (B). Liver macroscopic picture
of mice. On day 7 after BMT, some mice
were sacrificed, and their livers were pho-
tographed. The images show representa-
tive livers of mice in each group. (C).
Volume of ascites. On day 7 after BMT,
ascites was harvested from mice (n=3 per
group) and weighed. (D). Plasma levels of
liver enzymes. On days 7, 14, and 20 after
BMT, blood was collected from mice (n=3
per group), and plasma levels of AST and
ALT were measured. (E). Survival of mice.
Survival of mice was monitored every day.
(F, G, I). H&E, IHC, and Masson staining

33 control (H&E and Masson x100, IHC x200). On
, Easwmr days 7, 14, and 20 after BMT, some mice
rq ©evmmese were sacrificed. Livers were removed and
fixed with formaldehyde solution for H&E
staining (blue arrow shows necrosis of
hepatocytes and obstruction of liver sinu-
soid). Some liver slices were incubated
with primary pan-endothelial cell mono-
clonal antibody (MECA-32) for IHC stain-
ing. Yellow arrows indicate the sinusoidal
ECs. Masson staining was also carried out
to evaluate the sinusoidal fibrosis of liver.
Blue indicates collagen. (H). Quantification
of MECA-32 positive-stained sinusoidal
ECs in each group (n=3 in each group). (J).
SOS score. Scoring of light microscopy his-
tological slices stained with H&E or
Masson stain were blindly evaluated
according to the scoring system. (K).
TUNEL stain (x400). Apoptosis of hepato-
cytes were assessed using an in situ cell
death detection kit. Red arrows indicate
apoptotic hepatocytes and sinusoidal ECs.
(L). ELISA. Plasma was collected for ELISA
to measure the concentrations of TM, FDP,
and PAI-1. Results represent the mean +
SD. *P<0.05. BU: busulfan; CY: cyclophos-
phamide; BMT: bone marrow transplanta-
tion; H&E, hematoxylin-eosin; IHC,
immunohistochemistry; TM: thrombomod-
ulin; FDP: fibrin degradation product; PAI-
1: plasminogen activator inhibitor-1; PBS:
phosphate buffered saline.
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tion, Masson staining demonstrated massive sinusoidal
fibrosis with collagen deposition in livers removed from
BMT recipients treated with PBS (Figure 7I). Importantly,
all liver damage and associated findings were less severe
in BMT recipients treated with TMESC. Careful patho-
logical examination of livers with the SOS scoring system
also found that the severity of SOS was significantly less
in BMT recipients treated with TMESC than in those
treated with PBS throughout the experimental period
(Figure 7]). Moreover, TUNEL assays identified fewer
apoptotic hepatocytes and sinusoid ECs in livers removed
from TMES5C-treated BMT mice compared with livers
removed from BMT recipients treated with PBS (Figure
7K).

We additionally measured plasma levels of TM, FDP,




and PAI-1, which are recognized markers of endothelial
cell damage and coagulopathy in these mice. All of these
markers steeply increased in PBS-treated BMT mice at the
7th day after BMT. Levels of these markers were signifi-
cantly lower in BMT recipients treated with TMESC than
in those treated with PBS (Figure 7L).

Discussion

Our previous study found that the cytoprotective
effects of TM were preserved in TMES.*** TMES5 consists
of three loops: A, B, and C (Figure 1A). The C-loop in the
C-terminal subdomain is formed by a stretch of amino
acids between the fifth and sixth cysteine residues, and
its amino acid sequence is longer than those of the other
two loops.” The C loop contains a short tri-stranded B-
sheet structure,® and is more similar to EGF when com-
pared to the A or B loops.” The study herein found that
TMES5C, but not A or B, exerted pro-angiogenetic and
cytoprotective effects in a GPR15-dependent manner
both in vitro and in vivo. Strikingly, TME5C ameliorated
HSCT-associated SOS in a murine model.

We previously showed that TMES5 did not produce
APC,* but retained some binding capacity towards
thrombin (Figure 6). The present study found that
TMESC lost the ability to interact with thrombin, as
TMESC did not affect PT or APTT (Figure 6). The ratio of
concentration of TMES5 that affect cytoprotection (30 nM)
to coagulation (5000 nM) was approximately 1:166. The
concentration of TMES5C that produced cytoprotection
was 500 nM. However, even the 166-fold higher concen-
tration of TMESC (83 uM) did not prolong APTT (data not
shown). Thus, the use of TMESC may be safe for BMT
recipients as well as SOS patients who are at risk of
bleeding due to low platelet counts and/or coagulopathy.

We have recently identified GPR15 as a binding partner
of TME5 by performing a pull-down assay with mem-
brane protein isolated from HUVECs followed by matrix
assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF MS) analysis.”” We found that
the cytoprotective and pro-angiogenic effects of TMES
were mediated by GPR15, as neither cytoprotection nor
angiogenesis is noted in vascular endothelial cells isolated
from Gpr15 KO mice after exposure to TMES5.* The study
herein found that TMESC exerts cytoprotective and pro-
angiogenic effects in vascular ECs isolated from wild-type
C57BL/6 mice, but not in ECs isolated from Gpr15 KO
mice, suggesting that TMES5C also produces favorable
effects in ECs via GPR15.

GPR15 is also expressed on T lymphocytes and is
required for infection of HIV as a co-receptor.”
Accumulating evidence suggests the involvement of
GPR15 in the regulation of inflammation; GPR15
expressed on murine TH1 and TH17 effector cells is
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