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Background: Increased uptake of robotic surgery has led to interest in learning curves for robot-assisted
procedures. Learning curves, however, are often poorly defined. This systematic review was conducted
to identify the available evidence investigating surgeon learning curves in robot-assisted surgery.
Methods: MEDLINE, Embase and the Cochrane Library were searched in February 2018, in accordance
with PRISMA guidelines, alongside hand searches of key congresses and existing reviews. Eligible articles
were those assessing learning curves associated with robot-assisted surgery in patients.
Results: Searches identified 2316 records, of which 68 met the eligibility criteria, reporting on 68 unique
studies. Of these, 49 assessed learning curves based on patient data across ten surgical specialties. All
49 were observational, largely single-arm (35 of 49, 71 per cent) and included few surgeons. Learning
curves exhibited substantial heterogeneity, varying between procedures, studies and metrics. Standards
of reporting were generally poor, with only 17 of 49 (35 per cent) quantifying previous experience.
Methods used to assess the learning curve were heterogeneous, often lacking statistical validation and
using ambiguous terminology.
Conclusion: Learning curve estimates were subject to considerable uncertainty. Robust evidence was
lacking, owing to limitations in study design, frequent reporting gaps and substantial heterogeneity in
the methods used to assess learning curves. The opportunity remains for the establishment of optimal
quantitative methods for the assessment of learning curves, to inform surgical training programmes and
improve patient outcomes.
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Introduction

Learning curves describe the rate of progress in gain-
ing experience or new skills and are widely reported in
surgery. Surgeons typically exhibit improvements in per-
formance over time, often followed by a plateau where
minimal/limited additional improvement is observed1.
Generally, surgical learning curves are measured as a
change in an operative variable (which can be consid-
ered a surrogate for surgeon performance) over a series
of procedures. Studies investigating learning curves for
surgical procedures are becoming increasingly important,
as learning curves can have substantial impact on surgical
metrics, clinical outcomes and cost–benefit decisions.

There has been particular interest in learning curves
in robot-assisted surgery, especially in gynaecology and
urology2,3. Despite the reported operative benefits and
improved hospital experience provided by robot-assisted
surgery compared with traditional minimally invasive
approaches4,5, uptake of robotic technology has been
slow, largely due to high capital and maintenance
costs, and uncertainty regarding the potential benefits
of robot-assisted approaches over conventional laparo-
scopic approaches. For example, robot-assisted approaches
have been associated with longer operating times for many
procedure types6. A large proportion of these compar-
ative studies, however, may have been generated from
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Fig. 1 PRISMA diagram for the systematic literature review
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surgeons who were still learning the robotic technology
in question4, potentially underestimating the full benefits
of robotic assistance. Robot-assisted approaches have
the potential to expedite surgeon learning, but meth-
ods used to measure and define learning curves seem
inconsistent1. Studies evaluating the learning curve for
surgical procedures often aim to determine the number of
sequential procedures that comprise the learning curve,
or that are required to ‘overcome’ the learning curve
(sometimes referred to as the learning curve length). To
achieve this aim, studies often define a particular threshold
in surgeon performance. A common threshold includes
reaching a plateau in performance, yet the performance
thresholds used are highly inconsistent1. The way learning
curves are described can lead to misinterpretation. Terms
such as ‘overcome’, for instance, could be considered
misnomers, implying surgeons have mastered a proce-
dure, for which certain performance thresholds may not
provide sufficient evidence. For example, a plateau in
performance does not necessarily equate to high-quality

performance; it only implies that a surgeon is no longer
improving1.

There remains a need to understand better the learn-
ing curve of robot-assisted surgery and broadly character-
ize how learning curves are defined and reported. This
systematic review was performed to characterize the cur-
rent evidence base and appraise the methods used to
define and measure learning curves for surgeons perform-
ing robot-assisted surgery, taking a holistic, panspecialty
view.

Methods

This systematic review was conducted in accordance with
a prespecified protocol and the PRISMA guidelines7.

MEDLINE, MEDLINE In-Process, Embase, the
Cochrane Database of Systematic Reviews, the Cochrane
Central Register of Controlled Trials, and the NHS
Economic Evaluation Database were searched. Surgical
training has evolved alongside the rapid development
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Table 1 Details of studies included in the systematic literature review

Reference Design
Surgical
specialty

Procedure(s)/
task(s) performed

Study arms
(surgeon experience)*

No. of robotic
surgeons

Albergotti et al.10 Retrospective single-arm
observational

ORL TORS Single arm 3

Arora et al.11 Retrospective single-arm
observational

Urology RKT Single arm n.r.

Benizri et al.12 Retrospective controlled
observational

General RDP versus LDP RDP 2

Bindal et al.13 Retrospective single-arm
observational

Bariatric LRRYGB and TRRYGB Single arm 2

Binet et al.14 Retrospective single-arm
observational

Paediatric Robot-assisted
fundoplications

Single arm 2

Boone et al.15 Retrospective single-arm
observational

General RPD Single arm 4

Chang et al.16 Retrospective controlled
observational

Urology RARP RARP (open experience) 1

RARP (open/laparoscopic
experience)

1

RARP (laparoscopic
experience)

1

Ciabatti et al.17 Prospective single-arm
observational

ORL Transaxillary
robot-assisted
thyroid surgery

Single arm n.r.

D’Annibale et al.18 Retrospective single-arm
observational

Urology Robot-assisted
adrenalectomy

Single arm n.r.

Davis et al.19 Retrospective controlled
observational

Urology RARP versus ORP RARP 744

Dhir et al.20 Retrospective single-arm
observational

General Robot-assisted HAI
pump placement

Single arm n.r.

Esposito et al.21 Retrospective single-arm
observational

Paediatric REVUR Single arm 4

Fahim et al.22 Retrospective single-arm
observational

Thoracic RATS Single arm 3

Fossati et al.23 Retrospective single-arm
observational

Urology RARP Single arm 4

Geller et al.24 Retrospective single-arm
observational

Gynaecology RSC Single arm 2

Good et al.25 Retrospective controlled
observational

Urology RARP versus LRP RARP 1

Goodman et al.26 Retrospective single-arm
observational

Cardiovascular Robot-assisted mitral
valve repair

Single arm 2

Guend et al.27 Retrospective single-arm
observational

Colorectal Robotic colorectal
resection

Single arm 4

Kamel et al.28 Retrospective single-arm
observational

Thoracic RAT Single arm 4

Kim et al.29 Retrospective controlled
observational

Colorectal RRS RRS (laparoscopically
inexperienced)

1

RRS (laparoscopically
experienced)

1

Lebeau et al.30 Prospective controlled
observational

Urology RARP RARP (expert
laparoscopic surgeons)

1

RARP (junior surgeons) 1

© 2019 The Authors. www.bjsopen.com BJS Open 2020; 4: 27–44
BJS Open published by John Wiley & Sons Ltd on behalf of BJS Society Ltd



30 N. A. Soomro, D. A. Hashimoto, A. J. Porteous, C. J. A. Ridley, W. J. Marsh, R. Ditto and S. Roy

Table 1 continued

Reference Design
Surgical
specialty

Procedure(s)/
task(s) performed

Study arms
(surgeon experience)*

No. of robotic
surgeons

Linder et al.31 Retrospective single-arm
observational

Gynaecology RSC Single arm 2

Lopez et al.32 Retrospective controlled
observational

Gynaecology Robot-assisted
single-site
laparoscopic
hysterectomy versus
LESS hysterectomy

Robot-assisted single-site
laparoscopic
hysterectomy

3

Lovegrove et al.33 Prospective single-arm
observational

Urology RARP Single arm 15

Luciano et al.34 Retrospective controlled
observational

Gynaecology Robot-assisted versus
laparoscopic versus
vaginal versus
abdominal
hysterectomy

Robot-assisted
hysterectomy

1315

Meyer et al.35 Retrospective single-arm
observational

Thoracic Robotic lobectomy Single arm 2

Myers et al.36 Retrospective single-arm
observational

Gynaecology RSC Single arm 2

Nelson et al.37 Retrospective single-arm
observational

General RC Single arm 8

Odermatt et al.38 Retrospective controlled
observational

Colorectal Robot-assisted TME
versus laparoscopic
TME

Robot-assisted TME 2

Park et al.39 Prospective single-arm
observational

General Less than total
robot-assisted
thyroidectomy

Single arm 2

Park et al.40 Retrospective single-arm
observational

General RAG Single arm 3

Paulucci et al.41 Retrospective single-arm
observational

Urology RAPN Single arm 2

Pietrabissa et al.42 Prospective single-arm
observational

General SSRC Single arm 5

Pulliam et al.43 Retrospective controlled
observational

Gynaecology RSC versus LSC RSC 3

Riikonen et al.44 Retrospective single-arm
observational

Urology RALP Single arm 12

Sarkaria et al.45 Retrospective single-arm
observational

General RA-GPEHR Single arm n.r.

Schatlo et al.46 Retrospective single-arm
observational

Orthopaedic Robot-assisted
placement of
pedicle screws

Single arm 13

Shakir et al.47 Retrospective single-arm
observational

General RDP Single arm 3

Sivaraman et al.48 Retrospective controlled
observational

Urology RARP versus LRP RARP 9

Sood et al.49 Prospective controlled
observational

Urology RKT RKT (extensive RKT
experience, limited OKT
experience)

1

RKT (extensive RKT and
OKT experience)

1

RKT (limited RKT
experience, extensive
OKT experience)

1
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Table 1 continued

Reference Design
Surgical
specialty

Procedure(s)/
task(s) performed

Study arms
(surgeon experience)*

No. of robotic
surgeons

Tasian et al.50 Prospective controlled
observational

Urology Robot-assisted
pyeloplasty

Robot-assisted pyeloplasty
(fellow surgeon)

4

Robot-assisted pyeloplasty
(attending surgeon)

1

Tobis et al.51 Retrospective single-arm
observational

Urology RAPN Single arm 3

van der Poel et al.52 Retrospective single-arm
observational

Urology LND during RARP Single arm 2

Vidovszky et al.53 Prospective single-arm
observational

General SSRC Single arm n.r.

White et al.54 Prospective single-arm
observational

ORL TORS Single arm n.r.

Woelk et al.55 Retrospective single-arm
observational

Gynaecology Robot-assisted
hysterectomy

Single arm 2

Wolanski et al.56 Retrospective controlled
observational

Urology RALP versus LRP RALP 2

Zhou et al.57 Retrospective single-arm
observational

General RAG Single arm 2

Zureikat et al.58 Retrospective single-arm
observational

General Robot-assisted
pancreatic
resections

Single arm n.r.

*Surgeon experience only stated in studies with multiple robotic study arms. ORL, otorhinolaryngology; TORS, transoral robot-assisted surgery; RKT,
robot-assisted kidney transplantation; n.r., not reported; RDP, robot-assisted distal pancreatectomy; LDP, laparoscopic distal pancreatectomy; LRRYGB,
laparoscopic robot-assisted Roux-en-Y gastric bypass; TRRYGB, totally robot-assisted Roux-en-Y gastric bypass; RPD, robot-assisted pancreatoduodenec-
tomy; RARP, robot-assisted radical prostatectomy; ORP, open radical prostatectomy; HAI, hepatic artery infusion; REVUR, robot-assisted extravesi-
cal ureteral reimplantation; RATS, robot-assisted thoracic surgery; RSC, robot-assisted sacrocolpopexy; LRP, laparoscopic radical prostatectomy; RAT,
robot-assisted thymectomy; RRS, robot-assisted rectal cancer surgery; LESS, laparoendoscopic single-site; RC, robot-assisted cholecystectomy; TME,
total mesorectal excision; RAG, robot-assisted gastrectomy; RAPN, robot-assisted partial nephrectomy; SSRC, single-site robot-assisted cholecystectomy;
LSC, laparoscopic sacrocolpopexy; RALP, robot-assisted laparoscopic prostatectomy; RA-GPEHR, robot-assisted giant para-oesophageal hernia repair;
RKT, robot-assisted kidney transplantation; OKT, open kidney transplantation; LND, lymph node dissection.

of robotic technologies. As such, database searches
were limited to the period from 1 January 2012 to 5
February 2018, in order to capture studies investigating
learning curves in the context of training relevant to
current practice. The search terms used are provided
in Tables S1 and S2 (supporting information). The two
most recent abstract books of relevant surgical congresses
were also searched from 1 January 2016 to 14 February
2018. This review considered only primary research, and
excluded review articles. Supplementary hand searches
of the bibliographies of relevant systematic reviews were
conducted to identify any primary studies not identified
elsewhere.

The review process was performed by two indepen-
dent reviewers, who assessed the titles and abstracts of
all search results (stage 1), as well as the full texts of
all potentially eligible studies identified in the first stage
(stage 2). In the event of discrepancies, the two review-
ers came to a consensus for each decision. In the absence
of a consensus, a third independent reviewer resolved any
disagreements.

Eligible publications included any randomized or
non-randomized, comparative or observational studies
involving wet- or dry-lab testing, simulations, patients
or registry/economic analyses that performed a learning
curve analysis (consisting of a graph and/or reported
data for at least 4 time points) of surgeons perform-
ing robot-assisted surgery in any specialty. Studies were
required to report learning curve results from more than
one surgeon alone or as part of a surgical team, of any
specialization (robot-assisted, laparoscopic or open). In
the absence of reporting the number of surgeons involved,
included studies were required to have multiple authors.
Only studies that included at least 20 surgical procedures
in the analysis of the learning curve were considered. At
least one of the following metrics had to be reported: time
to plateau/number of ‘phases’ in the learning curve; statis-
tical differences in metrics assessed over time; or learning
percentages. Detailed eligibility criteria are shown in
Table S3 (supporting information). The studies reported
in this review are restricted to learning curve analyses of
procedures on patients.

© 2019 The Authors. www.bjsopen.com BJS Open 2020; 4: 27–44
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Fig. 2 Bar chart showing the number of surgeons in
robot-assisted study arms per study
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One study enrolled only a single robot-assisted surgeon, but was consid-
ered eligible because the total number of enrolled surgeons was greater
than one (the study also evaluated a surgeon who performed procedures
laparoscopically).

Data extraction and quality assessment

For each eligible study, data were extracted into a prespec-
ified grid by one reviewer, with verification by a second,
independent reviewer. Where there was a discrepancy, the
two reviewers attempted to come to a consensus; a third
reviewer resolved any disagreements in the absence of a
consensus.

Captured data included study design, methodology, sur-
geon experience, robotic technology used and the metric
measured to evaluate the learning curve. Information relat-
ing to the learning curve itself was captured, including the

number of phases of the curve, the number of operations
per phase and the number of procedures to overcome the
learning curve (denoted in this review as the point where
the chosen performance threshold was considered to have
been overcome). Where reported, the specific performance
threshold used was captured. If the learning curve had not
been overcome within the study period, the number of pro-
cedures to overcome the learning curve was reported to be
greater than the total number included in the study period.

The quality of each eligible study was assessed using
either the UK National Institute for Health and Care
Excellence (NICE) RCT checklist8 or a modified version
of the Downs and Black checklist for non-randomized
studies9.

Results

A total of 2316 records from electronic database searches,
conference abstract searches and hand searches were iden-
tified. Of these, 281 full-text articles were assessed for
eligibility, of which 213 were excluded (Table S4, support-
ing information). The remaining 68 records (reporting
on 68 unique studies) were found to meet the eligibility
criteria, 49 of which reported on patient data and are
presented here (Fig. 1).

Characteristics of included articles

Characteristics of the 49 eligible studies presenting learn-
ing curves derived from patient procedures are presented
in Table 110–58. All were observational in design. Data
were analysed retrospectively in 40 of 49 studies (82 per
cent), and the remaining nine studies (18 per cent) were

Fig. 3 Pie chart of surgical specialties captured in the systematic literature review
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Fig. 4 Bar chart of the learning curve metrics assessed across the captured studies
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prospective in design. The majority (35 of 49, 71 per cent)
were single-arm studies, and the remainder (14 of 49, 29
per cent) were comparative. Among the 41 studies that
explicitly defined the number of robotic surgeons per study,
the number of participating robotic surgeons was generally
small. Most studies (33 of 41, 80 per cent) included fewer
than five robotic surgeons, over half of which (18 of 33, 55
per cent) included fewer than three (Fig. 2). The captured
studies spanned ten surgical specialties (Fig. 3). Learning
curves were reported most frequently for urology, general
surgery and gynaecology.

Learning curve metrics

Time-based metrics were the most commonly reported
variables used to assess the learning curve, reported by 42
of the 49 studies (86 per cent). Other measures, including
length of hospital stay, morbidity and mortality rates, and
procedure-specific metrics, were reported less commonly
(Fig. 4). Of the categories of metrics captured, duration
of surgery, length of stay (LOS) and complication rate
were reported most frequently within each category. The
number of procedures required to overcome the learning
curve for these metrics is shown in Table 2.

Duration of surgery
Across 33 studies that investigated the learning curve based
on duration of surgery, 27 reported whether the learning
curve had been overcome. In 21 of these 27 studies (78 per
cent), at least one of the included surgeons was reported
to have overcome the learning curve, with the remaining
six studies (22 per cent) stating that the learning curve had
not been overcome by any surgeon within the number of
procedures in the study period (Table 2).

Among studies where the learning curve was not over-
come by any surgeon, the number of procedures assessed
over the study period varied significantly, with a range
of 6–404 patients12,26,34,37,51,58. Of the studies in which
the learning curve had been overcome, 12–140 patients
were needed for urological procedures16,18,30,50,56, 0–80
for general surgical procedures (where 0 suggests no
apparent learning process required, if the surgeon was
already experienced)15,20,39,40,42,47,57, 0–60 for gynaecolog-
ical procedures31,43, 0–74 for colorectal procedures27,29,38,
15–20 for thoracic procedures28,35 and 7–25 for paediatric
procedures14,21.

Among the 27 studies that reported whether the learn-
ing curve had been overcome, learning curve analyses were
conducted for 22 unique procedures, of which only five
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Table 2 Learning curve results for duration of surgery, length of stay and complication rate

Metric Procedure
No. of robotic

surgeons
Procedures to overcome

learning curve (subgroup)*
Specific threshold in
surgeon performance Reference

Operating time Urology

RARP 2 >15 (expert laparoscopic
surgeon)

No. of procedures to reach
break point

Lebeau et al.30

15 (junior surgeon)

3 140 (open experience) No. of procedures to reach
plateau

Chang et al.16

40 (open/laparoscopic
experience)

>79 (laparoscopic experience)

Robot-assisted
pyeloplasty

4 37 (fellows) No. of procedures to achieve
median operating time of an
attending surgeon

Tasian et al.50

Robot-assisted
adrenalectomy

n.r. 12 No. of procedures to reach
plateau

D’Annibale et al.18

RAPN 3 >100 Identifying a plateau effect Tobis et al.51

RALP 2 20 No. of procedures to approach
median operative duration
of LRP and presence of a
plateau effect

Wolanski et al.56

General surgery

Robot-assisted HAI
pump placement

n.r. 8 No. of procedures to reach a
decline in CUSUM curve

Dhir et al.20

RPD 4 80 No. of procedures to reach a
decline in CUSUM curve

Boone et al.15

n.r. >132 n.r. Zureikat et al.58

Robot-assisted
thyroidectomy

2 19; 20 No. of procedures to reach
plateau

Park et al.39

RDP 2 >11 n.r. Benizri et al.12

3 40 No. of procedures to reach a
decline in CUSUM curve

Shakir et al.47

n.r. >83 n.r. Zureikat et al.58

RAG 3 8⋅2 No. of procedures to reach
stabilization

Park et al.40

2 14; 21 No. of procedures to reach a
decline in CUSUM curve

Zhou et al.57

RC 8 >6 n.r. Nelson et al.37

SSRC 5 0 n.r. Pietrabissa et al.42

Gynaecology

RSC 2 >24; 60 No. of procedures to reach
plateau

Linder et al.31

3 0 Moving block technique to
detect a significant drop-off

Pulliam et al.43

Robot-assisted
hysterectomy

1315 >150 n.r. Luciano et al.34

Colorectal

Robot-assisted
colorectal resection

4 74 (early adapter) No. of procedures to reach a
CUSUM curve phase
change

Guend et al.27

25–30 (later adapters)

Robot-assisted TME 2 7; 15 No. of procedures to achieve
comparable performance to
laparoscopy via CUSUM
analysis

Odermatt et al.38

RRS 2 17 (laparoscopically
inexperienced)

No. of procedures to reach
plateau

Kim et al.29
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Table 2 continued

Metric Procedure
No. of robotic

surgeons
Procedures to overcome

learning curve (subgroup)*
Specific threshold in

surgeon performance Reference

0 (laparoscopically experienced)
Thoracic

RAT 4 15–20 No. of procedures to reach
plateau

Kamel et al.28

Robot-assisted lobectomy 2 15 No. of procedures to reach
plateau

Meyer et al.35

Paediatric
Laparoscopic robot-assisted

fundoplications
2 25 No. of procedures to reach

plateau
Binet et al.14

REVUR 4 7–8 No. of procedures to reach
plateau

Esposito
et al.21

Cardiovascular
Robot-assisted mitral valve

repair
2 >404 No. of procedures to reach

plateau
Goodman
et al.26

Length of stay Colorectal
Robot-assisted TME 2 0; 15 No. of procedures to achieve

comparable performance to
laparoscopy via CUSUM
analysis

Odermatt
et al.38

Thoracic
Robot-assisted lobectomy 2 >185 No. of procedures to reach

plateau
Meyer et al.35

Complications Urology
LND during RALP 2 >400 No. of procedures to reach

plateau
van der Poel
et al.52

General surgery
Robot-assisted pancreatic

resections
n.r. >132 n.r. Zureikat et al.58

Gynaecology
RSC 2 0 Proficiency set at less than

10% complication rate
Myers et al.36

2 >24; 84 Proficiency defined as point
where CUSUM curve
crossed and consistently
stayed below reference line
of 0 (based on expected
complication rate)

Linder et al.31

Robot-assisted hysterectomy 2 12; 14 Proficiency defined as the
point where CUSUM curve
crossed lower control limit
H0

Woelk et al.55

1315 >150 n.r. Luciano et al.34

Colorectal
Robot-assisted TME 2 0; 15 No. of procedures to achieve

comparable performance to
laparoscopy via CUSUM
analysis

Odermatt
et al.38

Cardiovascular
Robot-assisted mitral

valve repair
2 >404 No. of procedures to reach

plateau
Goodman
et al.26

Studies that did not report whether the learning curve had or had not been overcome within the study period were not included in this table. *For
studies that reported a consistent improvement in metrics across the course of the study, it was assumed that the learning curve had not been overcome
within the study period. If the learning curve had not been overcome, the number of procedures to overcome the learning curve was reported to be
greater than (>) the total number of procedures in the study period. If the learning curve was reported to have been overcome (or surgeons were
reported to be proficient/competent) before study initiation, the number of procedures required to overcome the learning curve was recorded as zero.
Where results were reported separately for individual surgeons with no clear differences in previous experience, learning curve estimates are reported
separately, separated by a semicolon; where the experience of surgeons was intentionally different, individual experience is reported as separate rows
and experience level is stated in brackets. RARP, robot-assisted radical prostatectomy; n.r., not reported; RAPN, robot-assisted partial nephrectomy;
RALP, robot-assisted laparoscopic prostatectomy; LRP, laparoscopic radical prostatectomy; HAI, hepatic artery infusion; CUSUM, cumulative sum; RPD,
robot-assisted pancreatoduodenectomy; RDP, robot-assisted distal pancreatectomy; RAG, robot-assisted gastrectomy; RC, robot-assisted cholecystectomy;
SSRC, single-site robot-assisted cholecystectomy; RSC, robot-assisted sacrocolpopexy; TME: total mesorectal excision; RRS, robot-assisted rectal cancer
surgery; RAT, robot-assisted thymectomy; REVUR, robot-assisted extravesical ureteral reimplantation; LND, lymph node dissection.
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Table 3 Learning curve results for clinical metrics

Metric group Specific metric Procedure

No. of
robotic

surgeons

Procedures to
overcome

learning curve
(subgroup)*

Specific
threshold
in surgeon

performance Reference

Urinary continence Probability of UC
recovery after 1 year

RARP 4 >112; >411; >413;
>541

No. of procedures to
reach plateau

Fossati et al.23

Early UC RARP 1 100 No. of procedures to
reach plateau

Good et al.25

Renal function Serum creatinine level RKT 3 0 (extensive RKT,
limited OKT)

No. of procedures to
reach ‘transition
point’ in CUSUM
curve

Sood et al.49

0 (extensive RKT/OKT)

3 (limited RKT,
extensive OKT)

Glomerular filtration
rate

RKT 3 0 (extensive RKT,
limited OKT)

No. of procedures to
reach ‘transition
point’ in CUSUM
curve

Sood et al.49

0 (extensive RKT/OKT)

3 (limited RKT,
extensive OKT)

Biochemical
recurrence

Biochemical
recurrence

RARP 9 100 No. of procedures to
reach ‘transition
point’ in CUSUM
curve

Sivaraman et al.48

Surgical margins Positive surgical
margins

RARP 9 100 No. of procedures to
reach ‘transition
point’ in CUSUM
curve

Sivaraman et al.48

Apical positive surgical
margins

RARP 1 0 No. of procedures to
reach plateau

Good et al.25

Node positivity rate LND during
RALP

2 300 No. of procedures to
reach plateau

van der Poel et al.52

Initial margin status TORS 3 15; 22; >68 No. of procedures to
reach inflection point
in CUSUM curve

Albergotti et al.10

Final positive surgical
margins

TORS 3 25; 27; >37 No. of procedures to
reach inflection point
in CUSUM curve

Albergotti et al.10

Lymph node yield No. of removed nodes LND during
RALP

2 250 No. of procedures to
reach plateau

van der Poel et al.52

Lymph node harvest RPD 4 80 No. of procedures to
reach significant
improvement

Boone et al.15

Lymph node harvest Robot-assisted
TME

2 0 No. of procedures to
achieve comparable
performance to
laparoscopy via
CUSUM analysis

Odermatt et al.38

Studies that did not report whether the learning curve had or had not been overcome within the study period are not included in this table. *For studies
that reported a consistent improvement in metrics across the course of the study, it was assumed that the learning curve had not been overcome within
the study period. If the learning curve had not been overcome, the number of procedures to overcome the learning curve was reported to be greater
than (>) the total number of procedures in the study period. If the learning curve was reported to have been overcome (or surgeons were reported to
be proficient/competent) before study initiation, the number of procedures to overcome the learning curve was recorded as zero. Where results were
reported separately for individual surgeons with no clear differences in previous experience, learning curve estimates are reported separately, separated
by a semicolon; where the experience of surgeons was intentionally different, individual experience is reported as separate rows and experience level is
stated in brackets. UC, urinary continence; RARP, robot-assisted radical prostatectomy; RKT, robot-assisted kidney transplantation; OKT, open kidney
transplantation; CUSUM, cumulative sum; LND, lymph node dissection; RALP, robot-assisted laparoscopic prostatectomy; TORS, transoral robotic
surgery; RPD, robot-assisted pancreatoduodenectomy; TME, total mesorectal excision.
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Table 4 Studies reporting previous surgeon experience

Surgeon’s previous procedure experience

Reference Robot-assisted Laparoscopic Open Approach not defined
Simulated robotic

training before study

Albergotti et al.10 ✘ ✘ ✘ ? ✘
Arora et al.11 ? ✘ ✘ ? ✘
Benizri et al.12 ✘ ✘ ✘ ✘ ?

Bindal et al.13 ✘ ? ✘ ✘ ✘
Binet et al.14 ✘ ? ✘ ✘ ✘
Chang et al.16 ✘ ? ? ✘ ✘
Dhir et al.20 ✘ ✘ ? ✘ ✘
Geller et al.24 ✓ ✘ ✘ ? ?

Good et al.25 ✓ ✓ ✓ ✘ ?

Goodman et al.26 ✓ ✘ ? ✘ ✓
Guend et al.27 ? ? ✘ ✘ ✘
Kamel et al.28 ✘ ? ✘ ✘ ✘
Kim et al.29 ✘ ✓ ✓ ✘ ?

Lebeau et al.30 ✘ ✓ ✓ ✘ ✘
Lopez et al.32 ✓ ✓ ✘ ✘ ✘
Lovegrove et al.33 ? ✘ ✘ ✘ ✘
Meyer et al.35 ✘ ✓ ✘ ✘ ✘
Odermatt et al.38 ✘ ✓ ✘ ✘ ✓
Park et al.40 ✘ ✓ ✘ ✘ ✘
Park et al.39 ✓ ✓ ✓ ✘ ✘
Pietrabissa et al.42 ✓ ✘ ✘ ✘ ✓
Pulliam et al.43 ? ? ✘ ✘ ✘
Riikonen et al.44 ✘ ? ? ✘ ✘
Sarkaria et al.45 ✘ ? ✘ ✘ ✘
Shakir et al.47 ? ? ✘ ✘ ✘
Sivaraman et al.48 ✘ ✓ ✘ ✘ ✘
Sood et al.49 ✓ ✘ ✓ ✘ ✘
Tasian et al.50 ? ✘ ✘ ✘ ✘
Tobis et al.51 ✓ ✓ ✘ ✘ ✘
van der Poel et al.52 ✘ ✓ ✓ ✘ ?

Woelk et al.55 ? ✘ ✘ ? ✘
Wolanski et al.56 ✘ ✓ ? ✘ ✓
Zhou et al.57 ✘ ✓ ✘ ✘ ✘
Zureikat et al.58 ✘ ✘ ✘ ? ✘

✓, Study quantified the amount of previous experience (procedures, days of simulated training); ?, study acknowledged previous experience but did not
quantify it; ✘, study did not acknowledge previous experience.

(23 per cent) were supported by multiple studies. In such
instances, the number of patients required to overcome the
learning curve for these varied substantially between stud-
ies. For example, three studies evaluated the learning curve
for duration of surgery for robot-assisted distal pancreatec-
tomy. In one study47 the learning curve was overcome after
40 patients, whereas in the other two12,58 it had not been
overcome within the study period (of 11 and 83 patients).

Length of stay
Of five studies reporting LOS, two reported on whether
the learning curve had been overcome by at least one

robotic surgeon (Table 2). One study38 estimated that the
number of patients required to overcome the learning
curve was between 0 and 15. In the other study35, the
learning curve was not overcome within a study period of
185 patients.

Complications
Of nine studies assessing complications, eight reported
whether the learning curve was overcome for complication
rate. Of these, five26,31,34,52,58 found that the learning
curve for complications had not been overcome for at
least one robotic surgeon within the study period. With
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Fig. 5 Pie chart of methods used to define the point at which learning curve was overcome

a  Operating time b  Length of stay

c  Complications

Procedures to reach a plateau

Procedures to reach a change in phase

Procedures to achieve a predetermined
skill threshold set by expert surgeon

Procedures to achieve any other predetermined
threshold

Not reported

5

3
12

22

1

3

1 1

7

a Operating time; b length of stay; c complications. Values indicate the number of studies using the method.

the exception of one study31, which included a surgeon
with a study period of only 24 patients, these studies
generally involved large patient numbers (132–404),
and spanned urology, general surgery, gynaecology and
cardiovascular specialties (Table 2). Only four studies
reported that the learning curve for complications had
been overcome. The numbers of procedures were esti-
mated as: 0–84 for robot-assisted sacrocolpopexy31,36,
12–14 for robot-assisted hysterectomy55 and 0–15 for
robot-assisted total mesorectal excision38.

Clinical metrics
Of the 49 studies, eight (16 per cent) evaluated whether
the learning curve for clinical metrics had been over-
come (Table 3). Metrics included oncology-specific metrics
such as surgical margin status and recurrence rate, and
urology-specific metrics such as urinary continence. The
number of procedures to overcome the learning curve var-
ied substantially. Of the two studies assessing urinary con-
tinence after robot-assisted radical prostatectomy, one25

reported that 100 procedures were required to overcome
the learning curve, whereas in the other23 the learn-
ing curve was not overcome by any of the four robotic
surgeons, with study periods ranging from 112 to 541
patients. For all other clinical metrics, the learning curve
was overcome by at least one surgeon during the study
period, with a wide range of 0–300 patients to achieve this
target.

Within-study comparison between metrics
Some studies in the review evaluated the learning curve
using more than one metric. The number of patients to
overcome the learning curve was sometimes inconsistent
between metrics. For example, of the two studies35,38 that
reported whether or not the learning curve was over-
come for both duration of surgery and LOS, one35 indi-
cated that substantially greater procedural experience was
required for LOS, with more than 170 additional patients
required to overcome the learning curve based on this
metric.
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Standards of reporting

The overall standard of reporting and level of detail pro-
vided in the included studies was low, often lacking suf-
ficient information to interpret the learning curve for
robot-assisted procedures. For example, although 34 of
the 49 studies (69 per cent) made some acknowledgement
relating to the previous experience of included surgeons
(Table 4), the detail in the reporting was mixed, with only 17
of 49 studies (35 per cent) quantifying previous experience
of robot-assisted (8 of 49, 16 per cent), laparoscopic (13 of
49, 27 per cent) or open (6 of 49, 12 per cent) operations
completed. Only four of 49 studies (8 per cent) indicated
whether simulation, dry lab or cadaver training had been
completed before patient enrolment.

Variability was observed in the performance thresholds
used to measure the learning curve. For example, among
the 27 studies that defined whether the learning curve for
duration of surgery had been overcome (Table 2), the most
common performance threshold used was the number of
procedures needed to reach a plateau in performance, but
other thresholds included the number of procedures to
reach a change in phase, or the number to achieve a pre-
determined skill threshold set by an expert surgeon, and
some studies did not specify the performance thresholds
used (Fig. 5a). In nine of the 27 studies (33 per cent), no
statistical or quantitative assessment of the learning curve
was reported beyond visual fit or a qualitative description
(data not reported). Similar variation in learning curve def-
initions was observed for analyses of LOS and complication
rates (Fig. 5b,c).

Several studies used these methods to define whether sur-
geons had achieved a high level of performance, character-
ized by terms such as proficiency or competency. However,
these terms were used inconsistently. In 13 of 14 studies
(93 per cent) that employed performance terms, at least
one term was used to describe the point where the learning
curve had been overcome; ‘proficiency’ was used for this
purpose in ten studies22,27,28,31,36,38,39,42,50,55, ‘competency’
in five studies10,27,33,36,49 and ‘expertise’ in one study50. In
the four studies that reported more than one performance
term, the terms were either used interchangeably36,50 or
assigned divergent definitions33,49.

Although quality assessment of included studies (Table S5,
supporting information) revealed a relatively low risk of
bias for several quality assessment items, risk of bias was
unclear for a large proportion of the questions, suggesting
poor reporting of methodology. In particular, the risk of
bias with respect to the blinding of subjects, external valid-
ity of included populations and study centres, and statistical
power was either high or could not be determined (at least
45 of the 49 studies, 92 per cent).

Discussion

This review identified substantial variation in the lengths of
learning curves, included metrics and methods employed
to assess the learning curve, as well as the reporting of the
analyses and terminology used across ten surgical special-
ties. Reported learning curve estimates are therefore sub-
ject to substantial uncertainty, and the generalizability of
these findings is limited.

The results of the 49 eligible studies suggested that sur-
geon learning curves were complex. They varied signif-
icantly between studies, procedures and specific metrics
assessed. A variety of factors could account for much of the
variation in reported learning curve length.

The surgeon’s previous experience may have been a sig-
nificant factor; in three of five studies comparing the oper-
ating time learning curves of robotic surgeons, those with
greater experience required fewer procedures to overcome
their learning curve16,29,38. Although the captured studies
often compared surgeons with different experience levels,
such as trainees versus those who had completed training
or robotic versus laparoscopic surgeons, studies generally
did not report the participants’ specific grade or training
experience.

Robotic training programmes are becoming increasingly
common to enable surgeons to overcome the learning
curve faster59,60. In addition to previous experience, par-
ticipation in specific training programmes may influence
the learning process. Although based on a small sam-
ple size, Guend and colleagues27 reported that a lower
procedure volume was required to overcome the learn-
ing curve for robot-assisted colorectal resections for three
surgeons who had participated in an institutional train-
ing programme (25–30 procedures each), compared with
the volume required for an earlier surgeon who joined the
institution before the programme was established (74 pro-
cedures). Few studies, however, provided details of their
training programmes, where these existed. Recent train-
ing programmes have considered innovations such as feed-
back loops that aim to provide specific recommendations
for improvement, shortening the time required to achieve
adequate performance61.

Differences in procedural complexity may also have con-
tributed to variation in the learning curves observed. In
surgical practice, following initial improvement and sub-
sequent stabilization of performance, a decline in per-
formance is often observed62. This decline is thought
to reflect the point at which, following mastery of sim-
pler procedures, surgeons take on more challenging, tech-
nically complex procedures, that impact on a learning
curve63.
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Some procedures are inherently more complex and chal-
lenging than others. Studies64–66 of simulated robotic
training tasks have observed learning curves of different
duration for tasks of varying complexity. Learning curves
are likely to be influenced by numerous observed and unob-
served confounders. To account better for such differences,
and to permit comparisons between studies, enhanced
reporting of surgeon baseline characteristics, experience
and procedure complexity is required.

This review has highlighted a number of limitations
associated with reporting learning curves for robot-assisted
surgery. Many studies failed to describe the characteristics
of the surgeons, patients or methods of assessment in
sufficient detail to make valid comparisons between studies
or to enable a study to be reproduced.

Although the majority of captured studies were deter-
mined to be of reasonable methodological quality, the stud-
ies were observational and usually included few surgeons.
These study designs are associated with significant draw-
backs, particularly with respect to confounding and selec-
tion bias67,68, although this is expected given that they
are more suited to measuring learning curves. Regarding
sources of bias in the included studies, the risk of bias was
unclear for a large proportion of the quality assessment
items, particularly in relation to blinding, external validity
and statistical power, suggesting poor reporting of method-
ology.

There was little consistency in the performance
thresholds used to measure the learning curve, mak-
ing between-study comparisons challenging. A large
proportion of studies measured the number of proce-
dures required to reach a plateau in surgeon performance.
Although a variety of methods can define quantitatively
the point at which a plateau is reached69–72, there is
currently no widely accepted and validated method, and
some studies used visual fit alone1. The number of pro-
cedures required to overcome learning curves reported
are subject to considerable uncertainty. Several studies
measured the number of procedures to achieve a threshold
set by experts. These were sometimes based on the per-
formance of expert robotic surgeons50, whereas others38,56

included expert laparoscopic surgeons. Many studies did
not report the specific performance thresholds used to
measure the learning curve, precluding any ability to make
comparisons.

These methods were frequently used to define the points
at which surgeons reached ‘proficiency’, ‘competency’ or
other related terms. These terms, however, were used
inconsistently or interchangeably36,50, or used with dis-
tinct definitions33,49. In one study49 competency was used
to describe performance that reached a steady state or

plateau, whereas proficiency described further improve-
ment after plateau and mastery as the achievement of out-
comes better than the set target value. These definitions
are not well aligned with guidelines for assessing surgical
competence73,74, recommended by the US Accreditation
Council for Graduate Medical Education and the American
Board of Medical Specialties, nor the criteria developed for
procedure-based assessment in the Intercollegiate Surgical
Curriculum Programme in the UK.

The mismatch between the performance thresholds used
to measure the learning curve and the terminology used
to describe the results of the analyses can lead to misin-
terpretation. The term ‘overcome’ was commonly used to
describe a point when surgeons reached a given perfor-
mance threshold, implying a high level of performance.
These thresholds, particularly time to plateau, are often
simplistic and may not capture sufficient evidence about
the learning process to support this implication. A plateau
in performance does not always equate with high-quality
performance, as surgeons will not necessarily plateau at
the same level1. Likewise, using thresholds of performance
to define terms such as competence and proficiency could
be considered inappropriate, as these terms also imply a
specific level of performance. A recent study61 investi-
gated proficiency-based progression training programmes
in which residents who failed to show progressive improve-
ment (reached a plateau in performance) were not con-
sidered proficient unless they had achieved predetermined
proficiency benchmarks set by experienced surgeons.

The lack of consistency in methods used to describe sur-
gical performance and the use of simplistic and inappropri-
ate methods adds to the complexity of interpreting learning
curves. Using thresholds that provide meaningful measures
of surgeon performance alongside standardized terminol-
ogy seems vital to realize the full potential of learning curve
analyses for optimization of surgical training programmes.

Time-based variables were the most common metrics
used to assess learning curves, as is the case for other
systematic reviews assessing surgical learning curves in
other contexts63,75. Although common across learning
curve analyses, the present review suggests that variation
can exist between the learning curve profiles of different
metrics for a given procedure, with recovery and safety
metrics (LOS, complications) exhibiting substantially
longer learning curves than those for operating time,
often with continued improvement for extended periods of
time after the learning curve for operating time has been
overcome. Given that improvements in clinical outcomes
may be important drivers for the uptake of robot-assisted
approaches, the value of comparisons based on learning
curves for operating time alone is unclear. In addition, the
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metrics captured may not directly measure surgical perfor-
mance, with surrogate markers, such as operating time and
LOS, reported frequently. Real-time automated perfor-
mance metrics, coupled with machine learning algorithms
to process automatically collected data, may enable more
direct measurement of surgeon performance76.

Several data gaps were identified in the reported data.
Many of the identified studies enrolled fully trained sur-
geons, investigating the transferability of skills for conver-
sion from laparoscopic or open surgery to robot-assisted
procedures. These studies may be of limited value for
informing the design of surgical training programmes. The
limited data investigating the learning curves of trainee
surgeons may result in missed opportunities for the opti-
mization of programmes to accelerate the training of sur-
geons who are novices with robot-assisted devices. No
study reported data related to the economic impact of the
learning curve, such as training costs or financial impacts
of suboptimal outcomes.

This systematic review was a broad, exploratory search
of the literature reporting on the surgeon learning curve
for robot-assisted surgery, with broad search terms and eli-
gibility criteria. Incomplete and variable reporting created
challenges for data synthesis, especially given some of the
exploratory and subjective outcomes this review intended
to identify. The exploratory nature of the review may
have introduced a number of limitations, which may have
resulted in relevant data being overlooked. For example, to
include evidence of suitable quality, studies that involved
fewer than 20 surgical procedures in total (across surgi-
cal approaches or surgeons) were excluded, regardless of
the number of robot-assisted procedures completed by any
one surgeon or included within the learning curve analysis.
Studies were captured only if they reported actual learn-
ing curve data (as a graph or table presenting at least
4 time points), so that studies reporting potentially rele-
vant data (for example the economic impact of the learn-
ing curve) could have been excluded if they did not meet
these criteria. Studies that included just a single surgeon
were also excluded, as the innate differences in technical
ability that may exist between surgeons were anticipated
to limit the reliability of the data reported in these stud-
ies. Only the learning curves of robotic procedures were
considered in this review, and although the review did
not set out to compare robotic-assisted procedures with
other surgical approaches, this prevented any conclusions
to be drawn regarding lengths of the learning curve for
robot-assisted versus non-robotic procedures. Only studies
originally published in English were included, and database
searches were limited to 2012–2018 in order to capture
evidence most relevant to present-day training practices.

Although comparisons between robot-assisted and other
surgical approaches are warranted, studies with appropri-
ate evaluation methods, standardized terminology and nec-
essary context are essential for robust comparisons to be
made. These kinds of study should provide better estimates
of learning curves for robot-assisted procedures, enhance
surgical training programmes and improve patient out-
comes.
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