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Short-chain fatty acids (SCFA) are principal nutrient substrates of intestinal epithelial cells
that regulate the epithelial barrier in yaks. Until now, metagenomics sequencing has not
been reported in diarrheal yaks. Scarce information is available regarding the levels of fecal
SCFA and diarrhea in yaks. So, our study aims to identify the potential pathogens that
cause the emerging diarrhea and explore the potential relationship of short-chain fatty
acids in this issue. We estimated diarrhea rate in yaks after collecting an equal number of
fecal samples from affected animals. Metagenomics sequencing and quantitative analysis
of SCFA were performed, which revealed 15%–25% and 5%–10% prevalence of diarrhea
in yak’s calves and adults, respectively. Violin box plot also showed a higher degree of
dispersion in gene abundance distribution of diarrheal yaks, as compared to normal yaks.
We found 366,163 significant differential abundance genes in diarrheal yaks, with 141,305
upregulated and 224,858 downregulated genes compared with normal yaks via DESeq
analysis. Metagenomics binning analysis indicated the higher significance of bin 33
(Bacteroidales) (p < 0.05) in diarrheal animals, while bin 10 (p < 0.0001), bin 30
(Clostridiales) (p < 0.05), bin 51 (Lactobacillales) (p < 0.05), bin 8 (Lachnospiraceae)
(p < 0.05), and bin 47 (Bacteria) (p < 0.05) were significantly higher in normal yaks. At
different levels, a significant difference in phylum (n = 4), class (n = 8), oder (n = 8), family
(n = 16), genus (n = 17), and species (n = 30) was noticed, respectively. Compared with
healthy yaks, acetic acid (p < 0.01), propionic acid (p < 0.01), butyric acid (p < 0.01),
isobutyric acid (p < 0.01), isovaleric acid (p < 0.05), and caproic acid (p < 0.01) were all
observed significantly at a lower rate in diarrheal yaks. In conclusion, besides the
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increased Staphylococcus aureus, Babesia ovata, Anaplasma phagocytophilum,
Bacteroides fluxus, viruses, Klebsiella pneumonia, and inflammation-related bacteria,
the decrease of SCFA caused by the imbalance of intestinal microbiota was potentially
observed in diarrheal yaks.
Keywords: yak, diarrhea, gut microbiota, metagenomics, SCFA
INTRODUCTION

The long-haired bovine species, i.e., the yak, is an indispensable
economic pillar on the Qing-Tibetan plateau (Li et al., 2014).
There are approximately 15 million yaks in China, accounting
for over 90% of the world’s yak population (Li et al., 2018; Li
et al., 2020). At an average of 3,000–5,000 m above sea level, the
yak is depicted as a symbolic animal dependent on herdsmen’s
lives (Li et al., 2014). Yaks serve as transportations, especially in
the mountainy zigzag areas (Li et al., 2017). Meat, butter, and
milk from yaks are also considered essential food items for local
Tibetans (Li et al., 2018). Its hide is used to make boots, rafts,
aprons, leather bags, and leather harnesses (Li et al., 2020). While
the long hairs and dungs are commonly used for livelihood
purposes (Li et al., 2017).

Hongyuan is located on the eastern edge of the Qinghai-
Tibetan plateau and northwest of Sichuan province, with a
northern latitude of 31°51′–33°33′ and eastern longitude of
101°51′–103°22′. In this continental plateau, the temperature
ranges from −22.8°C to 24.6°C, with an average temperature of
2.9°C and 860.8 mm precipitation annually. According to the
latest reports, animal husbandry is the primary industry with
75,383 yak population in this region. About 7,765 kg of yak’s
meat has also been produced annually, accounting for 96.23% of
the total meat production in Hongyuan (Bureau of Statistics of
Hongyuan County, http://www.hongyuan.gov.cn/hyxrmzf/
c100057/zwgk.shtml). However, an emerging endemic
diarrheal disease in yaks during the past few years (usually
from May to August) has caused deaths to animals and caused
a huge constraint on the development of the local economy.

Bovine diarrhea is a common disease throughout farms with
worldwide distribution. It has been causing a heavy economic
loss concerning fertility rate, milk production, and animal
growth (Han et al., 2017). In yaks, diarrhea-causing pathogens,
i.e., Cryptosporidium parvum, bovine viral diarrhea (BVD) virus,
and Escherichia coli have been reported previously (Deng et al.,
2015; Qi et al., 2015; Li et al., 2018). Although many measures
have been employed to improve hygiene and feeding
management with extensive drugs, the problem is still at its
peak (Cho et al., 2013).

Intestinal tract is colonized by a large and diverse type of
microbial microbiota (Xu et al., 2019). This community produces
extensive metabolic products in the intestine, which interact
intimately with host cells to maintain physiological processes and
functions, i.e., nutrition absorption, host metabolism, and
immunity (Backhed et al., 2012; Xu et al., 2019; Wei et al.,
2020). Mainly, microbiota benefits the host through intestinal
gy | www.frontiersin.org 2
epithelium by protecting it and producing beneficial metabolites,
which helps in food digestion and against pathogenic invasion.
The gut microbiome can convert fermentable dietary fibers into
short-chain fatty acids (SCFA) that provide additional energy to
the host (Blaut, 2015). These SCFA are organic carboxylic acids
with less than 6 carbon atoms of the acetate; propionate and
butyrate are the most abundant extension in the intestine (Alam
et al., 2000). A previous study reported that diets containing
alfalfa meal and commodity-concentrated fiber could drop
diarrhea rate via metabolic interactions between hindgut
microbiota and SCFA in piglets (Liu et al., 2018). These SCFA
act as ligands for G-protein coupled receptors by activating anti-
inflammatory signaling (Parada Venegas et al., 2019).
Metagenomics sequencing is commonly utilized in microbial
organisms, as it provides the accurate classification of microbiota
species and annotation to the bacteria at a functional level rather
than functional prediction (Mukhuba et al., 2019; Luan et al.,
2020; Tian et al., 2020).

It is generally accepted that microbiota composition and
function contribute to the host’s health status (Long et al.,
2020). Previously, dysfunctional gut microbiota was related to
diseases like human inflammatory bowel disease, diabetes, and
cardiovascular disease (Wang et al., 2011; Wei et al., 2020). The
imbalance of such intestinal microbiota may cause diarrhea due
to the growing conditional pathogens, mucosal barrier damage,
immunity dropping, and intestinal permeability (Long et al.,
2020). However, it is still unclear how the changed microbiota
can cause the emerging diarrheal disease in yaks. Hence, this
study was conducted to explore such potential pathogens and
short-chain fatty acid changes in diarrheal yaks.
MATERIALS AND METHODS

Sample Collection
We visited 10 family yak farms with diarrhea outbreaks during
June and July 2019 (Table 1) in Hongyuan, Sichuan, China. The
prevalence of diarrhea in farms was estimated by consulting
animal owners as these bovines were free ranged, having
grasslands without concentrated feed on the plateau. A total of
100 fresh fecal samples were collected from diarrheal (n = 60)
and healthy (n = 40) yak calves in 2~3 months. All the fecal
samples were frozen immediately in liquid nitrogen and then
transported to the laboratory of Huazhong Agricultural
University, Wuhan, China. Samples were kept at −80°C for
further analysis.
March 2022 | Volume 12 | Article 805481
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DNA Extraction and Mixing of Samples
The genomic DNA from fecal samples were extracted by
QIAamp Fast DNA Stool Mini Kit (QIAGEN, Venlo, NL)
following the manufacturer’s instructions. Genomic DNA
samples were stored at −20°C before further assessment. The
quantity and quality of extractions were measured using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA), agarose gel electrophoresis,
and Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen). Every
10 samples from different farms were then mixed and gained 6
diarrheal group samples (D1, D2, D3, D4, D5, D6) and 4 normal
group samples (NA, NB, NC, ND).

Library Construction and Sequencing
Metagenome shotgun sequencing libraries (400 bp) were
constructed using Illumina TruSeq Nano DNA LT Library
Preparation Kit. Each library was sequenced by employing the
Illumina HiSeq X-ten platform (Illumina, USA) with PE150
strategy (Shanghai, China).

Sequence Analysis
Further analysis to achieve quality-filtered reads, the sequencing
adapters were removed from raw sequencing reads by using
Cutadapt (v1.2.1) (Martin, 2011). Low-quality reads were
trimmed by performing a sliding window algorithm. Reads
were aligned to the host genome via BWA (http://bio-bwa.
sourceforge.net/) to remove host gene contamination (Li and
Durbin, 2009). Quality-filtered reads were then de novo
assembled to construct the metagenome for each mixed sample
based on the iterative De Bruijn graph assembler for sequencing
data with highly uneven depth (IDBA-UD) (Peng et al., 2012).
All coding regions (CDS) of metagenomic scaffolds longer than
300 bp were predicted by MetaGeneMark (http://exon.gatech.
edu/GeneMark/metagenome) (Zhu et al., 2010). CDS sequences
samples were clustered by CD-HIT at 90% protein sequence
identity to obtain a nonredundant gene catalog (Fu et al., 2012).
Gene abundance in each sample was estimated (http://soap.
genomics.org.cn/) based on aligned read number. The lowest
common ancestor taxonomy of the nonredundant genes was
obtained by aligning them against the NCBI-NT database by
BLASTN (p-value <0.001). Similarly, the functional profiles of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
the nonredundant genes were obtained and annotated in public
databases including the Golang (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), Evolutionary genealogy of genes
were done through: Non-supervised Orthologous Groups
(EggNOG), and Carbohydrate-Active enZYme (CAZy) by
utilizing DIAMOND (Buchfink) alignment algorithm
(Buchfink. et al., 2015). The normalization of reads per sample
was performed prior to statistical analysis to ensure that bias is
not caused by sampling at different depths.

Comparing the Difference of Intestinal
Microbiota Between Normal and
Diarrheal Yaks
Based on the taxonomic and functional profiles of nonredundant
genes, linear discriminant analysis effect size (LEfSe) was
performed to detect differentially abundant taxa and functions
across the groups using default parameters (Segata et al., 2011).
Beta diversity analysis was performed to investigate microbial
communities’ compositional and functional variations across
diarrheal and healthy yak samples through Bray–Curtis
distance metrics (Bray and Curtis, 1957). Visualization was
done via principal coordinate analysis (PCoA), nonmetric
multidimensional scaling (NMDS), and unweighted pair-group
method with arithmetic mean (UPGMA) hierarchical clustering
(Ramette, 2007). Differential gene (upregulated gene and
downregulated gene) abundance analysis was performed via
DESeq at fold change ≥2 and p-value <0.01 (Backhed et al.,
2015). Metagenomics binning analysis was carried out using
Maxbin2 and Maxbat2 (Sieber et al., 2018) at >50% genome
completeness and <10% contamination rate.

Extraction of Fatty Acids From
Fecal Samples
Firstly, 20 mg from each sample was taken out and combined
with 1 ml phosphoric acid (0.5% v/v) in a sterile 2-ml EP tube
and then mixed thoroughly via vortex and ultrasonication for
10 and 5 min, respectively. Secondly, a 0.1-ml sample was taken
out and then placed in a sterile 1.5-ml EP tube along with 0.5 ml
MTBE (CAS No. 1634-04-4). The final product was mixed
thoroughly via vortex and ultrasonication for 3 and 5 min,
respectively. Thirdly, at 12,000 rpm, the sample was
TABLE 1 | Estimation of the prevalence of diarrhea in yaks in Hongyuan on the plateau.

Farms No. of yak calves (prevalence %) No. of adult yaks (prevalence %) Total No. of yak (prevalence %)

1 20–25 (10%–20%) 40–50 (2%–8%) 60–75 (5%–20%)
2 80–100 (25%–30%) 220–250 (5%–18%) 300–350 (10%–20%)
3 30–40 (5%–8%) 20–25 (0) 50–65 (2%–10%)
4 25–30 (2%–4%) 40–50 (0) 65–80 (0%–4%)
5 150–200 (15%–20%) 200–220 (5%–10%) 350–420 (10%–15%)
6 30–50 (10%–15%) 30–40 (2%–5%) 60–90 (5%–10%)
7 20–30 (5%–10%) 20–25 (2%–4%) 40–55 (4%–10%)
8 20–35 (10%–15%) 30–35 (5%–10%) 50–70 (8%–12%)
9 60–70 (20%–30%) 50–60 (5%–10%) 110–130 (15%–20%)
10 20–25 (10%–15%) 30–40 (3%–5%) 50–65 (8%–10%)
Total 455–605 (15%–25%) 680–795 (5%–10%) 1,135–1,400 (10%–15%)
March 2
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centrifuged at 4°C for 10 min. After taking out 0.2 ml from the
supernatant, 10 extracted samples from the same group were
mixed and vortexed for 1 min. Finally, a 0.2-ml mixture was
taken out and transferred into a vial for sample detection and
further analysis using GC-MS/MS (Agilent).

Qualitative and Quantitative
Analysis of SCFA
Total ion current (TIC) and standard quality of all mixture
samples were detected through GC-MS/MS (Agilent) using the
procedures and parameters shown in Table 2. Quality control
analysis of the samples was carried out to ensure the method’s
validity. The standard quality of the samples was checked thrice
to measure the instrument stability. This standard quality was
tested in every ten samples to monitor the repeatability of the
analysis process. Qualitative and quantitative analyses of SCFA
were performed by Agilent MassHunter. Standard curves for all
SCFA were generated by detecting standard quality control
samples, which were caproic acid (CAS No. 64-19-7), isovaleric
acid (CAS No. 79-09-4), valeric acid (CAS No. 79-31-2), butyric
acid (CAS No. 107-92-6), propionic acid (CAS No. 503-74-2),
acetic acid (CAS No. 109-52-4), isobutyric acid (CAS No. 142-
62-1), 2-methylpentanoic acid (CAS No. 97-61-0), MTBE (CAS
No. 1634-04-4), and phosphoric acid (CAS No. 7664-38-2).

Statistical Analysis
The prevalence of diarrhea in different farms was analyzed
through IBM SPSS Statistics (SPSS 22.0) using Chi-square
(results were followed up as upper and lower limits of
prevalence). Quantitative analyses of SCFA were expressed as
means ± standard deviation (SD). Whereas, the difference of
SCFA among the groups was analyzed viaWilcoxon test and fold
changes through piloting SPSS (IBM, 22.0). p-Values <0.05 were
considered statistically significant. t-Test was also performed to
compare intestinal microbiota differences using IBM SPSS
Statistics. Annotated analysis was performed via MetaPhlAn2
(http://huttenhower.sph.harvard.edu/metaphlan2, Version 2.0)
compared with the database (Kanehisa et al., 2014). Functional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
profile analysis was performed by annotating against the GO,
KEGG, EggNOG, and CAZy databases (Kanehisa et al., 2006;
Cantarel et al., 2009; Kanehisa et al., 2014; Powell et al., 2014).
RESULTS

Data Deposition
The raw sequences data were deposited in the BioSample database
with the accession number: SAMN16091789-SAMN16091798.

Prevalence of Diarrhea in Yaks
Diarrhea in yaks was found in all farms (10/10), especially in calf
farms (100%), while 80% (8/10) of farms reported diarrhea in adult
yaks. The overall prevalence of diarrhea ranged from 0% to 4%
and 15% to 20%.While in calves and adults, the prevalence ranged
from 15% to 25% and 5% to 10%, respectively (Table 1). A
significant difference was observed in both upper (p < 0.001) and
lower limits of prevalence (p < 0.01) (Supplementary Figure S2).

Sequencing Data of Yak Microbiota
Samples and Gene Abundance
Distribution
Overall, 445,199,120 total reads and 445,089,080 clean reads
were obtained from diarrheal yaks, while 285,976,660 and
285,951,940 total and clean reads were obtained from normal
yaks. Moreover, 66.30 and 42.67 Gb clean bases were found in
diarrheal and normal yak groups, respectively. The Q20 and Q30
in both groups was more than 97% and 92%, which confirmed
reliable and accurate base recognitions (Bolger et al., 2014). No
significant difference (p > 0.05) was observed in total reads, clean
reads, Q20, and Q30. However, a significant difference was found
in GC content between diarrheal (44.69%~46.08%) and normal
yaks (46.12%~46.38%) (p < 0.05) (Supplementary Figure S3).
According to the violin box plot, the degree of dispersion in gene
abundance distribution was higher in diarrheal than normal yaks
(Supplementary Figure S4).
TABLE 2 | Parameters employed in GC-MS/MS.

Procedure Parameter

Sample load 2 µl
Front inlet mode Splitless
Carrier gas Helium
Column DB-FFAP (30 m × 0.25 mm × 0.25 mm)
Column flow 1.2 min−1

Oven temperature
ramp

95°C hold on 1 min, raised to 100°C at a rate of 25°C/min, raised to 130°C at a rate of 17°C/min, hold on 0.4 min, raised to 200°C at a rate of
25°C/min, hold on 0.5 min, after running for 3 min

Front injection
temperature

200°C

Transfer line
temperature

230°C

Ion source
temperature

230°C

Quad temperature 150°C
March 2022 | Volume 12 | Article 805481

http://huttenhower.sph.harvard.edu/metaphlan2
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Li et al. SCFA Modulation of Diarrhea-Causing Pathogens
Species Composition and
Abundance Analysis
The abundance of Firmicutes and Proteobacteria was found to be
significantly lower in yaks with diarrhea than in normal yaks
(p < 0.05) (Supplementary Figure S5).

Firmicutes and Bacteroidales were found primarily in both
groups (Supplementary Figure S6). Principal component analysis
(PCA) found the left-side location of D1, D2, D3, D4, D5, and D6
groups. While NA, NB, NC, and ND groups were located on the
right side in two-dimensional graphic representation. Samples in
normal yaks were concentrically distributed as compared with the
diarrheal yaks (Supplementary Figure S7A). Compared with
normal animals, Bacteroidetes (p < 0.01) and Apicomplexa
(p < 0.05) were significantly higher in diarrheal yaks, while
Firmicutes (p < 0.05) and Euryarchaeota (p < 0.001) were
significant at lower levels (Figure 1).

Clostridia and Bacteroidia were observed mainly in normal yaks
at the class level, while Bacteroidia, Clostridia, and Bacilli were
dominated in diarrheal animals (Supplementary Figure S8). PCA
showed that diarrheal and normal yak samples were infrequent and
together, respectively (Supplementary Figure S7B). Compared
with normal animals, Aconoidasida (p < 0.05) was significantly
higher in diarrheal yaks, while Clostridia (p < 0.05),
Methanobacteria (p < 0.001), Flavobacteriia (p < 0.001),
Deltaproteobacteria (p < 0.001), Alphaprotebacteria (p < 0.01),
and Cytophagia (p < 0.001) were significantly lower in number
(Supplementary Figure S9).

At the order level, Clostridiales was higher in normal yaks,
while Bacteroidales was higher in diarrheal animals
(Supplementary Figure S10). PCA showed that the samples in
diarrheal animals were far from each other than normal animals
(Supplementary Figure S7C). In comparison with normal
animals, Bacteroidales (p < 0.01) and Piroplasmida (p < 0.05)
were significantly higher, while Clostridiales (p < 0.05),
Methanobacteriales (p < 0.001), Flavobacteriales (p < 0.001),
Cytophagales (p < 0.001), Spirochaetales (p < 0.001), and
Marinilabiliales (p < 0.001) were significantly lower in
diarrheal yaks (Supplementary Figure S11).

At the family level, Ruminococcaceae and Lachnospiraceae were
found mainly in normal yaks, while Bacteroidaceae was found
in diarrheal yaks with high abundance (Supplementary
Figure S12). PCA showed that samples in diarrheal animals
were located far from each other than normal animals
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(Supplementary Figure S7D). Compared with normal animals,
Bacteroidaceae (p < 0.001), Staphylococcaceae (p < 0.05), and
Babesiidae (p < 0.05) were higher in diarrheal yaks, while
Ruminococcaceae (p < 0.05), Rikenellaceae (p < 0.001),
Clostridiaceae (p < 0.05), Eubacteriaceae (p < 0.001),
Methanobacter iaceae (p < 0.001) , Osci l lospiraceae
(p < 0.001), Paenibacillaceae (p < 0.001), Flavobacteriaceae
(p < 0.001), Muribaculaceae (p < 0.001), Spirochaetaceae
(p < 0.001), Clostridiales Family XIII. Incertae Sedis (p < 0.001),
Erysipelotrichaceae (p < 0.05), and Eggerthellaceae (p < 0.001) were
remarkably lower (Supplementary Figure S13).

Bacteroides and Clostridium were found higher at the genus
level in normal yaks, while Bacteroides was the main genus in
diarrheal yaks (Supplementary Figure S14). PCA indicated that
diarrheal samples were located far from normal animals
(Supplementary Figure S7E). Compared with normal animals,
Bacteroides (p < 0.001), Staphylococcus (p < 0.05), Blautia
(p < 0.05), Babesia (p < 0.05), and Butyricicossus (p < 0.05)
were outstandingly higher in diarrheal yaks, while Clostridium
(p < 0.01), Alistipes (p < 0.001), Ruminococcus (p < 0.001),
Eubacterium (p < 0.001), Methanobrevibacter (p < 0.001),
Oscilllibacter (p < 0.001), Butyrivibrio (p < 0.001), Bacillus
(p < 0.05), Paenibacillus (p < 0.001), Anaerotruncu (p < 0.001),
Roseburia (p < 0.05) , Treponema (p < 0.01) , and
Lachnoclostridium (p < 0.05) were lower (Figure 2).

At the species level, Firmicutes bacterium CAG:110 was found
to be most abundant in normal yaks, while Staphylococcus aureus
was the main species in diarrheal yaks (Supplementary Figure
S15). PCA indicated that samples in diarrheal animals located
separately as compared with normal animals (Supplementary
Figure S7F). Compared with normal animals, Staphylococcus
aureus (p < 0.05), Bacteroides coprophilus (p < 0.01), Bacteroides
plebeius (p < 0.01), Butyricicoccus pullicaecorum (p < 0.01),
Babesia ovata (p < 0.05), Fusobacterium mortiferum (p < 0.05),
[Ruminococcus] gnavus (p < 0.01), Anaplasma phagocytophilum
(p < 0.05), Bacteroides fluxus (p < 0.05), Firmicutes bacterium
CAG:424 (p < 0.05), viruses (p < 0.05), Fournierella massiliensis
(p < 0.05), Bacteroides vulgatus (p < 0.05), and Klebsiella
pneumoniae (p < 0.05) were higher in diarrheal yaks, while
Firmicutes bacterium CAG:110 (p < 0.01), Clostridiales bacterium
(p < 0.001), Ruminococcaceae bacterium (p < 0.001), Clostridium
sp. CAG:413 (p < 0.001), Clostridia bacterium (p < 0.001),
Firmicutes bacterium CAG:137 (p < 0.001), Methanobrevibacter
FIGURE 1 | Comparing intestinal microbiota difference between different yaks at phylum level. D, diarrheal group samples; N, normal group samples.
March 2022 | Volume 12 | Article 805481
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olleyae (p < 0.001), Bacteroidales bacterium WCE2008
(p < 0.001), Ruminococcus flavefaciens (p < 0.001),
Methanobrevibacter ruminantium (p < 0.001), Bacteroidete
bacterium (p < 0.001), Anaerotruncus sp. Cag:390 (p < 0.001),
Clostridium sp. CAG:448 (p < 0.001), Firmicutes bacterium
(p < 0.01), Firmicutes bacterium CAG:124 (p < 0.001), and
Firmicutes bacterium CAG:170 (p < 0.001) were significantly
lower in number (Figure 3).

The statistics of significant compositional species compared
with normal animals are shown in Figure 4. The circus map
indicated that the phylum level of the two groups is mainly
consisted of Firmicutes, while a significant difference was found
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
in the case of Fusobacteria, Bacteroidetes, and Proteobacteria in
both groups. While no significant difference was found in
Bacteroidia, Bacilli, and Gammaproteo at the species
level (Figure 5).
Functional Analysis of Intestinal
Yak Microbiota
Annotated scores of one having HSP >60 bits were selected for
analyzing relative abundance at different functional levels (Qin
et al., 2012; Karlsson et al., 2012; Karlsson et al., 2013; Backhed
et al., 2015). In total, 354,990, 486,219, 778,943, 867,820, 366,984,
and 188,719 nonredundant genes were found in the GO, eggnog,
KEGG, NR, Swissport, and CAZy databases, respectively. In
KEGG, nonredundant genes were related to cellular
community and energy metabolism and 40 more metabolic
pathways in all yaks. Nonsignificantly, lower nervous system,
development, and nucleotide metabolism were found in
diarrheal yaks (Figure 6).

In eggNOG, about 24 cell metabolic pathways, i.e. wall
biogenesis, chromatin structure and dynamics, were reported
in all animals. In secondary metabolites biosynthesis, signal
transduction mechanisms were non significantly higher in
diarrheal animals, while translation, ribosomal structure and
biogenesis were higher in healthy yaks (Figure 7). In CAZy,
carbohydrate-binding modules, glycosyltransferases, glycoside
hydrolases, polysaccharide lyases, auxiliary activities and
carbohydrate esterase were found in both groups. Moreover,
glycoside hydrolases were found higher in normal yaks, while
glycosyltransferases were higher in diarrhea yaks non
significantly (Figure 8).

Among 366,163 significant differential abundance genes,141,305
were upregulated and 224,858 were downregulated in diarrheal yaks
compared with normal yaks via DESeq analysis (Supplementary
Figure S16A). Metagenomics binning analysis with bin 33
(Bacteroidales) (p < 0.05) was significantly higher in diarrheal
FIGURE 2 | Comparing intestinal microbiota difference between different yaks at genus level. D, diarrheal group samples; N, normal group samples.
FIGURE 3 | Comparing intestinal microbiota difference between different
yaks at species level. D, diarrheal group samples; N, normal group samples.
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animals, while bin 10 (p < 0.0001), bin 30 (Clostridiales) (p < 0.05),
bin 51 (Lactobacillales) (p < 0.05), bin 8 (Lachnospiraceae)
(p < 0.05), and bin 47 (Bacteria) (p < 0.05) was significantly
higher in normal animals (Supplementary Figures S17, S18). In
the current study, 6 out of 7 SCFA were uncovered significantly
lower in diarrheal yaks from 100 mixed fecal samples by employing
GC-MS/MS (p < 0.05) (Figure 9). Statistical analysis showed that
SCFA acetic acid (53.8%) accounted for most of the acetate (50%–
70%) in the intestine, which represents the major KEGG signal
pathway (Figure 10).

DESeq analysis was employed to uncover significant
differential abundance genes between two yak groups at fold
change ≥2 and p-value <0.01 (Anders and Huber, 2010). There
were 366,163 significantly essential differential abundance genes
in diarrheal yaks compared with normal yaks, with 141,305
upregulated and 224,858 downregulated (Supplementary
Figure S16A). Differential abundant genes were compared
against the cluster of orthologous protein database. Most of the
genes were related to amino acid metabolism, replication,
recombination, cell wall biogenesis, carbohydrate transportation
and metabolism, translation, ribosomal structure, and biogenesis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Supplementary Figure S16B). Annotation of abundant
differential genes in the KEGG path showed the relationship of
the gene with metabolism (Supplementary Figure S19A).
Enrichment analysis of abundant differential genes in the
KEGG pathway revealed that 24 genes showed a significant
performance, such as carbohydrate metabolism gene, the global
and overview map gene, the amino acid metabolism gene, etc.
The enrichment factor in the x-axis represented the significant
enrichment level of differentially expressed abundant genes.
Lipopolysaccharide biosynthesis was at the highest level of
differentially expressed abundant genes (Supplementary Figure
S19B). Most significantly, different genes were related to the
ribosomes (p < 0.001), peptidoglycan biosynthesis (p < 0.001),
and homologous recombination (p < 0.001).
Binning Analysis of the Metagenome of
Intestinal Microbiota in Yaks
Metagenomics binning analysis revealed 9 bins with genome
completeness >50% and contamination rate <10% in yaks
(Table 3). The genome completeness was 93.10% to 99.31%
FIGURE 4 | Statistics of significant species composition of diarrheal animals in different levels compared with normal animals (x-axis: difference numbers; y-axis:
different levels).
FIGURE 5 | The relationship map of circus related to yaks' different species.
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containing Bacteria, Selenomonadales, Clostridiales, Firmicutes,
Lactobacillus, and Bacteroidetes. Through heat map of 76 bins,
bin 33 (p < 0.05) was significantly higher in the diarrheal group,
while bin 10 (p < 0.0001), bin 30 (p < 0.05), bin 51 (p < 0.05), bin
8 (p < 0.05), and bin 47 (p < 0.05) was significantly higher in the
normal group (Figure 5; Supplementary Figure S20).
The genomics of those bins were Bacteroidales (bin 33),
Clostridiales (bin 30), Lactobacillales (bin 51), Lachnospiraceae
(bin 8), and Bacteria (bin 47).

Quantitative Analysis of SCFA in Yaks
Sample quality control analysis showed that the TIC from
different samples nearly overlapped completely, which
indicated that the current data were repeatable and reliable
(Supplementary Figure S20A). The TIC from yak mixture
samples showed several single waves without overlapping,
which revealed valid results of SCFA (Supplementary Figure
S20B). In the present study, all the correlation coefficients (R2) of
each equation of linear regressions were over 0.994≈1.000, which
ensured the accuracy of SCFA values (Table 4).
DISCUSSION

In Norway, about US$10 million loss was noted due to calves
death affected by diarrhea in 2006 (Østerås et al., 2007). As an
agricultural country, the development of animal husbandry is
important, especially in Hongyuan (China), like plateau areas. In
our study, the prevalence of diarrhea in yaks was estimated at
about 15%–25% and 5%–10% in calves and adults, respectively
(Table 1). Diarrhea in yaks was significantly higher in yak calves
(Supplementary Figure S2), which was in line with the widely
accepted knowledge that morbidity of diarrhea in calves is more
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
serious (Dore et al., 2019). Therefore, discovering the potential
causes of this emerging diarrhea is urgent and meaningful,
especially on the remote plateau.

The intestinal microbiota is also considered an additional
organ, which comprises billions of microorganisms. The
intestinal microbiota is important in the synthesis and
metabolism of nutrients, hormones, and vitamins, playing a
role in drug utilization, pathogen fortification, and immune
system maturation (Blaut, 2015; Mangiola et al., 2016;
Rinninella et al., 2019). Therefore, the imbalance of intestinal
microbiota may lead to serious diseases. Previously, we
performed high-throughput sequencing of intestinal microflora
from diarrheal yaks. Our study found 41 genera of bacteria in
perinatal healthy yaks, while 145 genera of bacteria were only
tested in healthy perinatal yaks (Han et al., 2017). Moreover, 212
genera of fungus were found in healthy yaks, and 373 and 208
genera of fungus were found in calves and diarrheal adult yaks,
respectively (Li et al., 2018). However, 16s RNA sequencing was
limited to the genus level. In the current study, metagenomics
sequencing was employed to explore the potential pathogens of
diarrhea in yaks. Violin box plot also showed the higher gene
abundance in diarrhea yaks in concern with the degree of
dispersion than normal yaks (Supplementary Figure S4). Such
results may predict the different microbiota compositions in
diarrheal and normal animals. We found more significantly
lower species composition in diarrheal yaks (Supplementary
Figure S5).

Staphylococcus aureus is a commonly known bacterium
related to human and animal foodborne diseases (Kroning
et al., 2020). This pathogen also causes orthopedic implant-
associated infection, especially methicillin-resistant bacteria
(Czuban et al., 2020). As infected animals are commonly
treated with antimicrobial agents, thus serious antimicrobial
resistance is becoming a public health concern worldwide
FIGURE 6 | The relative functional abundance analysis. KEGG. D1, D2, D3, D4, D5, and D6 represent the diarrheal samples; N_A, N_B, N_C, and N_D represent
the normal samples.
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(Kroning et al., 2020). Diseases such as gastroenteritis, nausea,
vomiting, abdominal cramps, etc., are usually seen in infected
individuals (Wang et al., 2020). The increase of Staphylococcus
aureus in diarrheal yaks may indicate a potential threat for local
herdsmen. Bacteroides coprophilus was previously reported as
proinflammatory in ankylosing spondylitis (Zhou et al., 2020),
which may infer with an inflammatory status of diarrhea yaks.
Bacteroides plebeius was previously found significantly higher in
type 2 diabetes mellitus patients (Wang et al., 2020), also
regarded as a biomarker of this disease. Thus, the increase of
Bacteroides plebeius in diarrhea animals means the abnormal
glucose metabolism in yaks.

The butyrate-producing bacteria Butyricicoccus pullicaecorum is
commonly linked with inflammatory conditions of the intestinal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
ecosystem (Andrade et al., 2020), which may cause inferred
inflammatory response during diarrhea in yaks. Though Babesia
ovata is a low pathogenic species, its infection may lead to severe
damage in cattle when coinfected with Theileria orientalis (Nguyen
et al., 2019). A previous study reported that the prevalence of T.
orientalis in yaks was 9.7% on the plateau (Li et al., 2017). The
infection of T. orientalismay be themain reason for bloody diarrhea
in yaks (Supplementary Figure S1). Fusobacteriummortiferumwas
usually isolated from Crohn’s and Behcet’s patients (Garcia-Saura
et al., 2019). Also, Ruminococcus gnavus is a Crohn’s disease-
associated pathobiont (Yu et al., 2020), which was in line with the
diarrhea symptoms in yaks. Anaplasma phagocytophilum is a
commonly reported emerging tick-borne zoonotic pathogen
causing anaplasmosis (Adamska, 2020). This bacterium primarily
FIGURE 7 | The functional relative abundance analysis. eggNOG. D1, D2, D3, D4, D5, and D6 represent the diarrheal samples; N_A, N_B, N_C, and N_D represent
the normal samples.
FIGURE 8 | The functional relative abundance analysis. CAZy. D1, D2, D3, D4, D5, and D6 represent the diarrheal samples; N_A, N_B, N_C, and N_D represent the
normal samples.
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infects host neutrophils, which break the first-line immune
defensive barrier in mammalians (Tang et al., 2020). The infected
animals show typically anemia (Langenwalder et al., 2020), which
reveal that A. phagocytophilum may contribute to diarrhea in yaks.
Bacteroides fluxus is a pathogenic species of Bacteroides that displays
numerous and high rates of antibiotic resistance. Higher abundance
of Bacteroides fluxus means this bacterium plays a potential role in
diarrhea. Firmicutes bacterium was associated with lipogenesis
metabolism in animals with nonalcoholic fatty liver disease (Paul
et al., 2019). The increased Firmicutes bacterium (CAG:424) in
diarrheal yaks may cause dyslipidemia. Bovine viral diarrhea and
Rotavirus were also reported in yaks (Li et al., 2018; Yan et al., 2020),
which could infer that the increased abundance of these viruses may
cause diarrhea in yaks.

Fournierella massiliensis is a new human-associated member of
the family Ruminococcaceae (Togo et al., 2017), which may have
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
little relationship with diarrhea. Bacteroides vulgatus was the main
cause of polycystic ovary syndrome through disrupted ovarian
functions and aggravated insulin resistance (Qi et al., 2019). This
means increment of Bacteroides vulgatus in yaks may cause diarrhea
via affecting glycol metabolism. Klebsiella pneumonia causes many
infections, i.e., pneumonia, urinary tract infection, meningitis, and
bacteremia (Furlan et al., 2020), which indicates the infection status
of diarrheal yaks. While Firmicutes bacterium CAG:110 (p < 0.01),
Clostridiales bacterium (p < 0.001), Ruminococcaceae bacterium
(p < 0.001), Clostridium sp. CAG:413 (p < 0.001), Clostridia
bacterium (p < 0.001), Firmicutes bacterium CAG:137 (p < 0.001),
Methanobrevibacter olleyae (p < 0.001), Bacteroidales bacterium
WCE2008 (p < 0.001), Ruminococcus flavefaciens (p < 0.001),
Methanobrevibacter ruminantium (p < 0.001), Bacteroidete
bacterium (p < 0.001), Anaerotruncus sp. Cag:390 (p < 0.001),
Clostridium sp. CAG:448 (p < 0.001), Firmicutes bacterium
FIGURE 9 | Comparing the concentrations of SCFA in normal and diarrhea groups. The x-axis corresponds to SCFA, and the y-axis corresponds to the
concentration of SCFA.
FIGURE 10 | Statistic analysis of SCFA-relevant KEGG signal pathways in the intestinal metabolism through kanehisa laboratories.
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(p < 0.01), Firmicutes bacterium CAG:124 (p < 0.001), and
Firmicutes bacterium CAG:170 (p < 0.001) were significantly
lower (Figure 8C). Firmicutes bacterium CAG:110 was found to
be potentially associated with swine feed efficiency variation in
cecum microbiota via the utilization of dietary polysaccharides and
dietary protein (Quan et al., 2020). It means the dropped abundance
of Firmicutes bacterium CAG:110 decreases feed efficiency.
Firmicutes bacterium CAG:137, Firmicutes bacterium (p < 0.01),
Firmicutes bacterium CAG:124 (p < 0.001), and Firmicutes
bacterium CAG:170 (p < 0.001) belong to host energy uptake or
storage-limiting related Firmicutes, which are one of the most
abundant bacteria in animals and human beings (Ley et al.,
2005). The lower of Firmicutes bacteria may linked to glycol
metabolism, which may further cause diarrhea.

Butyrate-producing Clostridiales bacterium is associated with
protecting the host from colorectal cancer, immune, and metabolic
disorders (Pichler et al., 2020). It means dropped Clostridiales
bacterium in yaks may contribute to diarrhea. Ruminococcus
flavefaciens works with noncellulolytic Treponema or Butyrivibrio
species that can accelerate cellulose digestion (Cheng et al., 1991).
The lower Ruminococcus flavefaciens in diarrheal yaks may decrease
the cellulose efficiency. Previously, more deficient Ruminococcaceae
bacterium was found in hospitalized patients, cirrhosis (Paul et al.,
2019), and diarrhea foals (Schoster et al., 2017). The deceased of this
bacterium may provide an insight that Ruminococcaceae bacterium
has a relationship with diarrhea in yaks. CAG:413, CAG:448 and
Clostridia bacterium belonged to the Clostridium genus, recognized
as a beneficial bacteria to the host (Guo et al., 2020). The lower of this
three Clostridium spp. may promote diarrhea in yaks.
Methanobrevibacter olleyae and Methanobrevibacter ruminantium
composed the M. ruminantium clade, which belongs to the
ruminant Methanobrevibacter genus (Kelly et al., 2016). These two
bacteria with other Methanobrevibacter spp. compose the rumen
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
methanogenic community (Danielsson et al., 2012), which indicates
that diarrheal yaks also have decreased methane production.
Bacteroidales bacterium WCE2008 is a Bacteroidales species
accepted as “beneficial” microbes (Anderson, 1996). A previously
dropped abundance of Bacteroidales was found in pediatric patients
with CD (Anderson, 1996), which may infer that the imbalance of
this bacterium is related to diarrhea in yaks. Higher abundance of
Bacteroidete bacterium is related to healthy lean of host, as it can
generate three main SCFA, butyrate, acetate, and propionate (Davis,
2018). The decreased Bacteroidete bacterium in animals contribute to
diarrhea. Anaerotruncus can utilize cheese whey to produce acetic
and butyric acids (Gao et al., 2016). The decreasedAnaerotruncus sp.
CAG:390 in diarrhea may affect fatty acid metabolism in ruminants.

Microbiota is a key regulator of digestion, extraction, synthesis,
and absorption of many nutrients and metabolites, i.e., bile acids,
lipids, amino acids, vitamins, and SCFA (Rinninella et al., 2019).
The SCFA are not only principal nutrient substrates of intestinal
epithelial cells but also can regulate the epithelial barrier (Mazzawi
et al., 2019). Previously, concentrations of SCFA was related with
diarrhea-predominant irritable bowel syndrome patients (Mazzawi
et al., 2019). SCFA could mitigate adenine-induced chronic kidney
disease (Mikami et al., 2020); preoperative fecal levels of SCFA had
an important impact on the occurrence of postoperative infectious
complications in patients with esophageal cancer (Motoori et al.,
2020). SCFA in fecal samples was commonly used to approximate
gut levels, which can infer the relationship between intestinal SCFA
production and fecal levels (Haenen et al., 2013). It reveals that the
imbalance of gut microbiota dropped the levels of SCFA in diarrhea,
so it can be supposed that SCFA has immunological and regulatory
functions (Farup et al., 2016), activating anti-inflammatory
signaling via acting as ligands of G-protein-coupled receptors, e.g.,
GPR109A, GPR41, and GPR43 (Parada Venegas et al., 2019). The
current results are in line with diarrhea-dominant IBS with lower
TABLE 3 | Metagenomics binning analysis of yak intestine microbiota via Maxbin2 and Maxbat2.

Binner Bin Completeness (%) Contamination (%) GC Lineage N50 Size (bp)

Metabat2 bin.17 99.31 1.284 0.348 Bacteria 54,875 2,180,769
bin.34 95.48 3.347 0.451 Selenomonadales 8,117 1,893,381
bin.64 93.03 2.369 0.419 Clostridiales 11,985 1,727,329

Maxbin2 bin.44 97.13 0.692 0.429 Clostridiales 18,616 1,834,347
bin.38 96.84 0.693 0.394 Selenomonadales 37,174 1,818,504
bin.21 96.81 2.259 0.318 Firmicutes 11,181 2,115,861
bin.2 95.04 1.436 0.384 Lactobacillus 18,617 1,934,486
bin.41 93.85 6.704 0.489 Bacteroidetes 11,868 1,965,257
bin.58 93.10 1.006 0.450 Clostridiales 21,746 1,436,082
March 2022 |
 Volume 12 | Arti
TABLE 4 | Equation of linear regressions detected by standard samples via GC-MS.

SCFA Equation R2 Linearity range (mg/L)

Acetic acid y = 10.001982 * x − 3.631493 0.998242 0.1–20
Propionic acid y = 4.991172 * x − 1.707163 0.995486 0.1–9.5
Isobutyric acid y = 9.838497 * x − 1.317041 0.998669 0.1–8
Butyric acid y = 69.122314 * x-21.545157 0.997229 0.1–20
Isovaleric acid y = 72.284002 * x − 14.156633 0.998779 0.1–20
Valeric acid y = 43.669973 * x − 11.692827 0.998961 0.1–20
Caproic acid y = 34.683801 * x − 7.396451 0.994521 0.1–8
A significant difference of the seven SCFA except valeric acid was found between normal and diarrheal yaks. Acetic acid, propionic acid, butyric acid, isobutyric acid, and caproic acid were
found in normal yaks, significantly higher than diarrheal yaks (p-value <0.01). Isovaleric acid in normal yaks was also significantly higher than diarrhea yaks (p-value <0.05) (Figure 9).
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levels of SCFA (Huda-Faujan et al., 2010). Among the common
SCFA, acetate (C2), propionate (C3), and butyrate (C4) are themost
in number, produced by anaerobic fermentation of dietary fibers in
the intestine (Parada Venegas et al., 2019). Those three SCFA
accounted for 90% of SCFA produced by gut microbiota, which
depict the beneficial effects on intestinal epithelial cells and immune
cells in the intestinal mucosa (Rechkemmer and Vonengelhardt,
1988; Chen et al., 2020).

Acetate was reported to mediate joint inflammation in a murine
gout model via inflammasome assembly and IL-1b (Vieira et al.,
2015). Propionic acid was found to be increased in gut-associated
Treg cells (relates to systemic immune reaction and disease
amelioration) (Duscha et al., 2020). Butyrate is a primary energy
source for colonocytes and can maintain intestinal homeostasis
through anti-inflammatory actions via inhibiting nuclear factor-
kappa b and histone deacetylation by promoting epithelial barrier
function (Morrison and Preston, 2016; Parada Venegas et al., 2019).
Previously, a lower abundance of butyrate-producing bacteria and
fecal butyrate were found in stroke patients as higher risk factors
(Zeng et al., 2019). Bacteroidetes from Firmicutes mainly produce
acetate and propionate, while butyrate is mainly produced by
phylum Firmicutes, i.e., Faecalibacterium prausnitzii, Clostridium
leptum, Eubacterium rectale, and Roseburia spp (Louis et al., 2010)..
In a previous study, Firmicutes phylum was found clearly lower in
diarrheal yaks (p < 0.05) (Han et al., 2017). Genus of
Clostridium_IV (p < 0.01) and Clostridium_XI (p < 0.05) were
found significantly lower in diarrheal yaks except Clostridium XVIII
(p < 0.01). The genera of Bacteroides (p < 0.05) and
Faecalibacterium (p < 0.05) were found significantly higher in
diarrhea yaks, while no significant difference was found in the
genera of Eubacterium, Eubacterium, and Roseburia (Han et al.,
2017). However, among all those genera, Clostridium_IV and
Clostridium_XI were the dominant (Han et al., 2017), which may
uncover that the decreasing of clostridium may cause the drop of
SCFA (C2-C4). In the current study, isobutyric acid, isovaleric acid,
and caproic acid were found significantly lower in diarrheal animals
(p < 0.05), which was in line with patients suffering from cirrhosis
and neuromyelitis optica spectrum disorders (Gong et al., 2019; Jin
et al., 2019). As SCFA plays a critical role in mucosal integrity and
immune response (Wang et al., 2019). So, the dropping of SCFA
(C4-C6) may damage mucosal and inflammation response. SCFA
generation bacteria of Anaerotruncus sp. CAG:390, Clostridiales
bacterium and Butyricicoccus pullicaecorum are lower in number in
diarrheal yaks. Although Fusobacterium mortiferum producing
butyric and acetic acids increase significantly (Thompson et al.,
1992). However, it could not affect the dropping trend of SCFA in
diarrheal animals. Moreover, the abundance of SCFA acetic acid
(53.85%) in the current study was the primary level of acetate (50%–
70%) in the intestine (Lavelle and Sokol, 2020).
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CONCLUSION

In conclusion, we estimated the prevalence of emerging diarrhea
in yak calves was 15%–25% and 5%–10% in adult yaks. Besides
the high prevalence of Staphylococcus aureus, Babesia ovata,
Anaplasma phagocytophilum, Bacteroides fluxus, viruses,
Klebsiella pneumonia, and inflammation-related bacteria, the
decrease of SCFA was observed in diarrheal yaks. Our results
will give insights into the prevention and treatment of emerging
diarrhea issue in yaks on the plateau.
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