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Abstract: Despite significant interest and past work to elucidate the phylogeny and photochemistry of
species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one
published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here
we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta
str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an
Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a
GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations
and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes
from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta.
A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of
a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its
close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and
the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino
acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment.
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bacteriochlorophyll g

Microorganisms 2020, 8, 313; doi:10.3390/microorganisms8030313 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0003-1363-1525
https://orcid.org/0000-0003-3643-281X
https://orcid.org/0000-0001-7628-5565
https://orcid.org/0000-0001-6712-2836
http://dx.doi.org/10.3390/microorganisms8030313
http://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/2076-2607/8/3/313?type=check_update&version=2


Microorganisms 2020, 8, 313 2 of 24

1. Introduction

Heliobacteria comprise a unique group of strictly anaerobic, anoxygenic phototrophs that have
been isolated from a wide diversity of soil and aquatic habitats [1–4]. Unlike all other phototrophic
bacteria, heliobacteria use bacteriochlorophyll (Bchl) g as the chief chlorophyll pigment for phototrophic
growth [5], but despite their ability to use light as an energy source, heliobacteria are apparently
incapable of autotrophic growth and, thus, are obligate heterotrophs [4,6]. Heliobacteria are the
only phototrophs of the large bacterial phylum Firmicutes [4,7,8], and although they typically
stain Gram-negatively, thin sections of cells of heliobacteria exhibit a Gram-positive cell wall
morphology [9,10]. In addition to these distinctive properties, cells of heliobacteria are able to
differentiate into heat-resistant endospores [4,11], and some heliobacteria have also demonstrated
the ability to reduce toxic metals, such as Hg2+, and therefore may be useful for applications in
bioremediation [12,13].

Species of Heliobacteriaceae can be divided into two physiological groups—neutrophiles and
alkaliphiles—that track closely with their phylogeny [7] (Figure 1). Included in the neutrophilic
clade, the moderate thermophile Hbt. modesticaldum was the first heliobacterium to have its genome
sequenced and, with its simple phototrophic machinery consisting of a type I reaction center (RC) and
no peripheral antenna photocomplex, has been a model organism for studies of photosynthesis and
related photochemistry [6,14]. Like other neutrophilic heliobacteria, Hbt. modesticaldum exhibits both
phototrophic growth in the light and chemotrophic growth in the dark [3,15–17].
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Figure 1. Phylogenetic (16S rRNA) tree of Heliorestis convoluta and related Firmicutes. Heliobacteria, 
the only phototrophic Firmicutes, are divided into alkaliphilic and neutrophilic species. Heliobacterium 
modesticaldum (boxed) is the model organism for physiological and biochemical studies of the 
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heliobacteria, as previously discussed by Sattley and Swingley [7]. The weighted neighbor-joining 
method [18] and Jukes-Cantor corrected distance model were used for tree construction. Nodes 
represent bootstrap values (≥50%) based on 100 replicates, and Escherichia coli was used to root the 
tree. GenBank accession numbers for each sequence used in the analysis are shown in parentheses, 
adapted from Sattley and Swingley [7], Adv. Bot. Res. 2013, 66, 67–97, Copyright 2013 Elsevier Ltd. 

Figure 1. Phylogenetic (16S rRNA) tree of Heliorestis convoluta and related Firmicutes. Heliobacteria,
the only phototrophic Firmicutes, are divided into alkaliphilic and neutrophilic species. Heliobacterium
modesticaldum (boxed) is the model organism for physiological and biochemical studies of the
heliobacteria; Hrs. convoluta (boxed) is the first alkaliphilic heliobacterium to have a described
genome. Note that the branching pattern shown here suggests a possible alkaliphilic origin to the
heliobacteria, as previously discussed by Sattley and Swingley [7]. The weighted neighbor-joining
method [18] and Jukes-Cantor corrected distance model were used for tree construction. Nodes
represent bootstrap values (≥50%) based on 100 replicates, and Escherichia coli was used to root the tree.
GenBank accession numbers for each sequence used in the analysis are shown in parentheses, adapted
from Sattley and Swingley [7], Adv. Bot. Res. 2013, 66, 67–97, Copyright 2013 Elsevier Ltd.
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Species of alkaliphilic heliobacteria grow optimally between pH 8–9.5 and, unlike neutrophilic
heliobacteria, are obligate photoheterotrophs, using light and organic compounds for growth but
incapable of chemotrophic growth in darkness [19–22]. Consistent with other alkaliphilic heliobacteria
originating from the soils and waters of soda lakes [19,20,22], Hrs. convoluta str. HHT was isolated from
the shore of the alkaline (pH 10) Lake El Hamra (Figure 2A), located in the Wadi El Natroun region of
northern Egypt [21]. In the past, the saline lakes of the Wadi El Natroun have also been a fertile source
of alkaliphilic purple bacteria, yielding many extremely alkaliphilic (and in some cases also extremely
halophilic) species, including in particular, new species of the genus Halorhodospira [23–25]. However,
Hrs. convoluta is the first heliobacterium to originate from these unusual lakes. Experimental work
with Hrs. convoluta revealed motile cells having an unusual tightly coiled morphology (Figure 2B)
and displaying a mesophilic (optimal growth at 33 ◦C) and alkaliphilic (optimal growth at pH 8.5–9)
physiology [21].
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Figure 2. Habitat and cells of Heliorestis convoluta strain HHT. (A) Red bloom of alkaliphilic Bacteria
and Archaea on the shore of Lake El Hamra, Wadi Natroun, Egypt. M.T.M. sampled this bloom in May
2001, and enrichments for heliobacteria yielded Hrs. convoluta. The bloom is about 2 m in diameter.;
(B) Scanning electron micrograph of cells of Hrs. convoluta strain HHT. A cell of Hrs. convoluta is about
0.5 µm in diameter and coils are of variable length. Scale bar = 1 µm.

To complement the analysis of the genome sequence of Hbt. modesticaldum [6,26], we present
here a comparative analysis of the genome of Hrs. convoluta. Although a number of highly conserved
genes encoding proteins that coordinate key processes in the cell (e.g., phototrophy and central carbon
metabolism) are shared between these species, a close comparison of the two heliobacterial genomes
revealed several genes encoding functions in carbon metabolism, biotin biosynthesis, nitrogen and
sulfur assimilation, and carotenoid biosynthesis that are not held in common by these heliobacteria,
which inhabit vastly different extreme environments. In addition, a comparative analysis of selected
cytochrome and ATP synthase proteins in Hrs. convoluta revealed adaptations that likely facilitate
its alkaliphilic lifestyle. The availability of a second heliobacterial genome, as well as the recent
development of a genetic system in Hbt. modesticaldum [14], paves the way for increasing our
understanding of the unique metabolism and physiology of heliobacteria.

2. Materials and Methods

Total genomic DNA from Hrs. convoluta str. HHT (ATCC BAA-1281 and DSMZ 19787) [21]
was isolated through proteinase K treatment and subsequent phenol extraction. Complete genome
sequencing was performed using a random shotgun approach, and reads were assembled using
Velvet v. 2010 [27]. Pyrosequencing on a Roche-454 GS20 sequencer (Hoffman-La Roche AG, Basel,
Switzerland) provided 14-fold genome coverage, and an additional 35-fold coverage was generated by
the Illumina GAIIx platform.
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Annotation of the Hrs. convoluta genome was performed in accordance with the Prokaryotic
Annotation Pipeline of the University of Maryland School of Medicine’s Institute for Genome
Sciences [28]. This pipeline employs Glimmer for gene identification and then searches the protein
sequences with BLAST-extend-repraze (BER; a combination of BLAST and Smith–Waterman algorithms)
to generate pairwise alignments, Hidden Markov Model (HMM), transmembrane (Tm) HMM, and
SignalP predictions. An automated process employing the Pfunc evidence hierarchy is used to assign
functional annotations. Manual verification of automated annotations was facilitated through the
online tool Manatee [29] in conjunction with online databases including the Kyoto Encyclopedia of
Genes and Genomes (KEGG), the Braunschweig Enzyme Database (BRENDA), MetaCyc, and Uniprot.
The National Center for Biotechnology Information (NCBI) database was accessed to retrieve gene
and protein sequences from related species for comparative analyses with corresponding genes in the
genome of Hrs. convoluta.

The phylogenetic tree was generated as described in the legend to Figure 1. Genome statistics
were compiled using the Pfam database v. 30.0 [30], the SignalP database v. 4.1 [31], the TMHMM
database v. 2.0 [32], and CRISPRFinder v. 2.0 [33]. This complete genome sequence project has been
deposited at DDBJ/EMBL/GenBank under accession number CP045875.

3. Results and Discussion

3.1. Genome Properties

The 3,218,981 base-pair (bp) genome of Heliorestis convoluta str. HHT is organized into a single
circular chromosome with no plasmids (Table 1). The 43.1% GC content of Hrs. convoluta is among
the lowest of all heliobacteria (41%–57.7%) and is typical of alkaliphilic species of this group of
phototrophs [4]. Nearly 87% of the Hrs. convoluta genome content is protein-encoding, with a total of
3263 protein coding genes at an average length of 855 nucleotides (Table 1). The genome contains nine
ribosomal RNA (rRNA) genes, including multiple copies each of 5S, 16S (two full and one partial),
and 23S rRNA, which are distributed randomly on the chromosome. Nearly 11% of the open reading
frames (ORFs) were of unknown enzyme specificity or function, and 28% of genes were annotated as
hypothetical. The role category breakdown of protein-encoding genes of Hrs. convoluta is shown in
Table 2.

Table 1. Comparison of genome features of Heliorestis convoluta str. HHT and Heliobacterium
modesticaldum str. Ice1T [6].

Characteristic Hrs. convoluta Hbt. modesticaldum

Chromosome size (bp) 3,218,981 3,075,407
G + C content (%) 43.1 56.0
Coding DNA (%) 86.9 87

Protein-encoding genes (no.) 3,263 3,138
Average gene length (bp) 855 882
ATG initiation codons (%) 63.5 62.1
GTG initiation codons (%) 15.7 19.1
TTG initiation codons (%) 20.8 18.8

rRNAs (no.) 9 24
tRNAs (no.) 105 104

Transposases (no.) 18 70
Putative pseudogenes (no.) 22 8

CRISPR repeats (no.) 1 Not determined

Genes encoding a total of 105 transfer RNAs (tRNAs) were identified in the Hrs. convoluta genome,
as well as genes encoding all twenty common aminoacyl-tRNA synthetases except asparaginyl-tRNA
synthetase, which could not be confirmed. However, genes encoding aspartyl/glutamyl-tRNA
amidotransferase (gatABC) were identified in Hrs. convoluta and, as proposed for Hbt. modesticaldum [6],
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may encode a protein that compensates for the missing asparaginyl-tRNA synthetase by converting
aspartyl-tRNA to asparaginyl-tRNA [34,35].

Table 2. Functional role categories of Heliorestis convoluta str. HHT genes.

Characteristic Genes % of Genome Content *

Amino acid biosynthesis 119 3.64
Biosynthesis of cofactors, prosthetic groups, and carriers 142 4.35

Cell envelope and surface features 216 6.61
Cellular processes (cell division, motility, sporulation, etc.) 477 14.6

DNA metabolism 225 6.88
Energy and central intermediary metabolism 512 15.94

Fatty acid and phospholipid metabolism 66 2.02
Mobile and extrachromosomal element functions 76 2.33

Protein synthesis and fate 338 10.34
Purines, pyrimidines, nucleosides, and nucleotides 59 1.81

Regulatory functions 137 4.19
Signal transduction 80 2.45

Transcription 142 4.35
Transport and binding proteins 342 10.47

Hypothetical proteins 899 27.51

* Total exceeds 100%, as some genes are assigned to more than one role category.

3.2. Central Carbon Metabolism

Analysis of the Hrs. convoluta genome confirmed culture-based observations of the limited set of
carbon sources able to support light-driven growth of this species [21]. As an obligate photoheterotroph,
Hrs. convoluta grows only in anoxic, light conditions when supplied with mineral media containing
CO2 plus acetate, pyruvate, propionate, or butyrate as organic carbon sources [21]. Of the 12 described
species of heliobacteria (Figure 1), only Heliorestis acidaminivorans, Heliorestis daurensis, and Hrs.
convoluta are capable of propionate photoassimilation [4,19,21,22]. Genes encoding enzymes of the
methylmalonyl pathway, which converts propionyl-coenzyme A (CoA) to succinyl-CoA for propionate
assimilation, were identified in the Hrs. convoluta genome (Figure 3). Although a gene encoding
propionyl-CoA carboxylase, which is thought to catalyze the first step in the proposed pathway [36,37],
was not identified in the Hrs. convoluta genome, a gene predicted to encode methylmalonyl-CoA
carboxyltransferase (FTV88_3237), which could circumvent this deficiency, was identified.

Unlike other Heliorestis species, Hrs. convoluta and a few other heliobacteria can use butyrate
as a carbon source [19–21,38]. Analysis of the Hrs. convoluta genome revealed genes encoding
enzymes that catabolize butyrate to acetyl-CoA for incorporation into the citric acid cycle (CAC) [39]
(Figure 3). Genes encoding butyryl-CoA:acetate CoA transferase, which catalyzes the conversion of
butyrate to butyryl-CoA in butyrate catabolism [39], and propionyl-CoA synthetase, which converts
propionate to propionyl-CoA in propionate catabolism [37], were not identified in the genome of
Hrs. convoluta. However, an experimentally characterized butyryl-CoA:acetate CoA transferase
from Desulfosarcina cetonica [39] showed 47% amino acid sequence identity with 4-hydroxybutyrate
CoA-transferase (FTV88_0224) from Hrs. convoluta. In addition, the product of a gene annotated as
acetyl-coenzyme A synthetase (FTV88_0994) in Hrs. convoluta showed 37% sequence identity with
propionyl-CoA synthetase from Salmonella enterica and contained the conserved lysine residue (Lys592)
required in the initial reaction of propionate catabolism [40]. These findings suggest possible roles for
4-hydroxybutyrate CoA-transferase and acetyl-coenzyme A synthetase in butyrate and propionate
catabolism, respectively, in Hrs. convoluta.
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enzymes identified in the genome of Hrs. convoluta, whereas question marks indicate unidentified but anticipated enzymes catalyzing the respective reaction. Enzymes 
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Figure 3. Overview of the proposed metabolic pathways and membrane transporters in Heliorestis convoluta. Carbon (blue), nitrogen (red), and sulfur (purple)
sources are catabolized or assimilated for phototrophic growth of Hrs. convoluta. The predicted dominant direction of metabolic flow is shown by bolded arrows.
Numbers signify enzymes identified in the genome of Hrs. convoluta, whereas question marks indicate unidentified but anticipated enzymes catalyzing the respective
reaction. Enzymes involved in glycolysis or gluconeogenesis include (1) glucokinase, (2) glucose-6-phosphate isomerase, (3) 6-phosphofructokinase, (4) fructose
1,6-bisphosphatase, (5) fructose-1,6-bisphosphate aldolase, (6) glyceraldehyde-3-phosphate dehydrogenase, (7) phosphoglycerate kinase, (8) phosphoglycerate mutase,



Microorganisms 2020, 8, 313 7 of 24

(9) enolase, and (10) pyruvate-phosphate dikinase. CAC enzymes are (11) pyruvate:ferredoxin oxidoreductase, (12) pyruvate carboxylase, (13) phosphoenolpyruvate
carboxylase, (14) citrate (re)-synthase, (15) aconitate hydratase, (16) NADP+-dependent isocitrate dehydrogenase, (17) 2-oxoglutarate synthase/2-oxoglutarate:ferredoxin
oxidoreductase, (18) succinyl-CoA synthetase, (19) succinate dehydrogenase/fumarate reductase, (20) fumarate hydratase, and (21) NAD+-dependent malate
dehydrogenase. Acetyl-CoA metabolism is carried out by (22) acetyl-CoA carboxylase and (23) acetyl-CoA synthetase. Butyrate metabolism enzymes include (24) CoA
transferase, (25) acyl-CoA dehydrogenase, (26) enoyl-CoA hydratase, (27) 3-hydroxybutyryl-CoA dehydrogenase, and (28) acetyl-CoA C-acetyltransferase. Propionate
metabolism is catabolized by (29) CoA transferase, (30) methylmalonyl-CoA carboxytransferase, (31) methylmalonyl-CoA epimerase, and (32) methylmalonyl-CoA
mutase. Amino acid metabolism enzymes are (33) NADP+-specific glutamate dehydrogenase, (34) glutamine synthetase, (35) NADPH-dependent glutamate
synthase, (36) pyridoxal phosphate-dependent aminotransferase, and (37) asparagine synthase. The enzymes (38) nitrogenase and (39) uptake [NiFe] hydrogenase
catalyze nitrogen fixation and H2 oxidation, respectively, and sulfur assimilation is performed by (40) sulfate adenyltransferase, (41) adenylyl-sulfate kinase, (42)
phosophoadenylyl-sulfate reductase, (43) bifunctional oligoribonuclease and PAP phosphatase, and (44) adenylate kinase. Finally, the electron transport chain
includes (45) ferredoxin:NADP+ reductase, (46) NADH:quinone oxidoreductase, (47) cytochrome bc complex, and the (48) light-harvesting reaction center. Membrane
proteins include ABC transporters (yellow), P-type ATPases (black), ATP synthase (pink), flagellar and motor proteins (brown), other transporters (orange), and other
membrane proteins (green).
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Although capable of growth on pyruvate, Hrs. convoluta str. HHT is unable to grow
photoheterotrophically on lactate [21], a phenotype distinct from that of most other heliobacteria
and the result of an underlying genetic deficiency. In this connection, a gene encoding a putative
L-lactate dehydrogenase in Hbt. modesticaldum [6] showed no meaningful similarity to any genes in
Hrs. convoluta. In addition to lactate, no growth was detected when alcohols of any kind were used as
sole carbon source in cultures of strain HHT [21]. Despite this observation, genes encoding alcohol
dehydrogenase and aldehyde dehydrogenase were annotated in the Hrs. convoluta genome and, thus,
could potentially play a role in non-energetic processes, such as detoxification.

Although a full complement of genes encoding enzymes of the glycolytic and nonoxidative
pentose phosphate pathways was present in the Hrs. convoluta genome (Figure 3), various common
sugars did not support photoheterotrophic growth of strain HHT [21]. An inability to use sugars
was also originally reported for Hbt. modesticaldum [16], but later experimentation showed that
Hbt. modesticaldum utilized the glycolytic pathway when D-ribose, D-glucose, or D-fructose were
supplied with low levels of yeast extract [41]. Although no gene encoding a hexose transporter was
annotated in the Hrs. convoluta genome, a putative ribose ABC transporter complex (FTV88_0053,
FTV88_0054, FTV88_0055) was identified and may allow for carbohydrate transport [41]. As genes
encoding glycolytic pathway enzymes are present in the Hrs. convoluta genome, it is tempting to
speculate that the alkaliphile can utilize sugars in a manner similar to Hbt. modesticaldum. The absence
of genes encoding glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase suggest
incomplete Entner-Doudoroff and oxidative pentose phosphate pathways, which was also the case for
Hbt. modesticaldum [6].

It is likely that Hrs. convoluta can catalyze many of the steps in the CAC based on biochemical
studies of Hbt. modesticaldum [42] and high sequence similarity of key CAC enzymes between the
two species (Figure 3). However, since both Hrs. convoluta and Hbt. modesticaldum lack a gene
encoding pyruvate dehydrogenase for oxidizing pyruvate to acetyl-CoA, this reaction in heliobacteria
is likely catalyzed by the enzyme pyruvate:ferredoxin oxidoreductase (PFOR); the gene encoding
PFOR in Hrs. convoluta (FTV88_3370) shares 61% sequence identity to an orthologous gene in Hbt.
modesticaldum [6]. Furthermore, an unusual citrate synthase, citrate (re)-synthase, which specifically
catalyzes the addition of the acetyl moiety from acetyl-CoA to the re face of the ketone carbon of
oxaloacetate [a stereospecificity opposite to that of citrate (si)-synthase], has been identified in several
clostridia and other strictly anaerobic Firmicutes, including Hbt. modesticaldum [42]. In Hrs. convoluta,
a gene (FTV88_1447) having high amino acid sequence identity (81%) to the gene encoding citrate
(re)-synthase (HM1_2993) in Hbt. modesticaldum supports the presence of citrate (re)-synthase in Hrs.
convoluta and suggests this unusual form of citrate synthase is common to all heliobacteria.

In regards to photoautotrophic capacity, no genes encoding enzymes of any form of the
Calvin-Benson cycle, including ribulose 1,5-bisphosphate carboxylase and phosphoribulokinase,
were identified in the Hrs. convoluta genome. In addition, the lack of genes encoding key enzymes
of other autotrophic pathways, such as malyl-CoA lyase (3-hydroxypropionate/4-hydroxybutyrate
pathway) and acetyl-CoA synthase (Wood-Ljungdahl pathway), also prevents Hrs. convoluta from
assimilating CO2 into organic carbon molecules for growth. The capacity for CO2 fixation by the
reverse CAC, as observed in green sulfur bacteria [43], is apparently disrupted by the absence of a gene
encoding ATP-citrate lyase. Although an ORF identified as a citrate lyase family protein (FTV88_0308)
was annotated in the Hrs. convoluta genome based on sequence identities of approximately 50% with
corresponding genes from other Firmicutes (but having no similarity to genes in Hbt. modesticaldum),
biochemical analysis of this gene product would be required to assess its activity and role, if any, in
metabolic pathways of Hrs. convoluta. Although anapleurotic CO2 assimilation has been shown in
heliobacteria supplied with usable organic carbon sources [44], cultures of Hrs. convoluta strain HHT,
like all other cultured heliobacteria, were unable to grow using CO2 as sole carbon source [21], thus
supporting the premise that heliobacteria require an organic carbon source during phototrophic growth.
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In addition to phototrophy, neutrophilic heliobacteria are able to grow chemotrophically in the dark
by pyruvate fermentation [4]. Interestingly, however, the capacity for pyruvate fermentation has not been
observed in any alkaliphilic heliobacterial isolate to date, including Hrs. convoluta [4,15,17,21]. Studies
have suggested that the neutrophile Hbt. modesticaldum carries out substrate-level phosphorylation
via acetyl-CoA conversion to acetate in dark, anoxic (fermentative) conditions through the activity of
phosphotransacetylase (PTA) and acetate kinase (ACK) [15,17,41]. A gene encoding ACK (FTV88_2009)
was annotated in the genome of Hrs. convoluta and has 67% sequence identity to a corresponding gene
in Hbt. modesticaldum. However, a gene encoding PTA could not be identified in either Hrs. convoluta
or Hbt. modesticaldum. Therefore, the genetic determinants that coordinate pyruvate fermentation in
neutrophilic heliobacteria but are apparently absent from alkaliphilic heliobacteria remain unidentified.

Three Hrs. convoluta genes encoding acetyl-CoA synthetase (ACS) were identified in the
genome, one of which showed 87% amino acid sequence identity with the corresponding gene
in Hbt. modesticaldum. Activity of ACS in Hbt. modesticaldum cell extracts was detected only under
phototrophic (light/anoxic) conditions, and expression levels of the ACS gene decreased when the
bacterium was cultured in darkness [41], thus indicating that, although technically reversible, ACS
activity is predominately skewed toward the production of acetyl-CoA from acetate (Figure 3). Activity
of ACS therefore allows both Hbt. modesticaldum and Hrs. convoluta to grow photoheterotrophically
using acetate as sole carbon source [16,21].

In contrast to all other heliobacteria, which require biotin for growth, Hrs. convoluta and close
relative Hrs. acidaminivorans (Figure 1) have no growth factor requirements [21,22]. The presence of a
full complement of genes (bioABCDF) encoding enzymes for biotin biosynthesis allows Hrs. convoluta
to synthesize biotin, thereby supporting culture-based observations [21]. By contrast, analysis of the
Hbt. modesticaldum genome revealed the absence of two key genes for biotin biosynthesis, bioC and
bioF, thus explaining the absolute requirement for biotin in that species [16].

3.3. Nitrogen Metabolism

Hrs. convoluta is strongly diazotrophic [21], and as in Hbt. modesticaldum, genes for nitrogen
fixation are grouped into a single nif gene cluster containing nifI1, nifI2, nifH, nifD, nifK, nifE, nifN,
nifX, fdxB, nifB, and nifV [6]. Each of these genes shows between 63% and 93% sequence identity and
analogous gene synteny to corresponding genes in Hbt. modesticaldum. A study with Paenibacillus sp.
WLY78—also an endospore-former within the phylum Firmicutes—concluded that nine genes (nifB,
nifH, nifD, nifK, nifE, nifN, nifX, hesA, nifV), which were grouped into a single gene cluster, are essential
to synthesize a catalytically-active nitrogenase for dinitrogen assimilation [45]. All of these nitrogen
fixation genes, except for hesA, were identified in the Hrs. convoluta and Hbt. modesticaldum genomes.
Since HesA is proposed to play a role in metallocluster biosynthesis [45], it is possible that a gene
(FTV88_2056) located outside of the nif gene cluster and encoding a putative dinitrogenase Fe/Mo
cofactor biosynthesis protein fills this role in Hrs. convoluta. This encoded protein showed high (~64%)
sequence identity to a corresponding protein in Hrs. acidaminivorans and over 50% sequence similarity
to that from a variety of nonphototrophic Firmicutes, but it showed no significant similarity to proteins
encoded by Hbt. modesticaldum.

Research on Hbt. modesticaldum revealed changes in expression levels of numerous genes essential
for various metabolic, biosynthetic, and other cellular pathways when the organism was grown under
N2-fixing conditions [46]. This diazotrophic effect likely exists in other heliobacteria as well, including
Hrs. convoluta. In terms of regulation of nitrogen fixation genes, however, it is interesting that neither
orf1 nor nifA, which encode regulatory proteins for the expression of nif structural genes [47,48], could
be identified in the Hrs. convoluta genome. In Hbt. modesticaldum, the orf1 gene product likely regulates
the expression of nif genes when levels of fixed nitrogen are too low to support non-diazotrophic
growth of the organism [16,48]. It is possible that Hrs. convoluta lacks the orf1 and nifA regulatory genes
and instead employs only nifI1 (FTV88_2453) and nifI2 (FTV88_2454) to coordinate post-translational
regulation of nitrogenase [49].
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Hrs. convoluta and Hbt. modesticaldum both contain gene clusters (hypABCDEF and hupCDLS)
that encode an uptake [NiFe] hydrogenase that can putatively catalyze the oxidation of H2 produced
during nitrogen fixation [6] (Figure 3). The arrangement of these genes in Hrs. convoluta is identical
to that reported for Hbt. modesticaldum [6], being organized into a single cluster instead of dispersed
throughout different regions of the chromosome, as has been observed in the genomes of other
Firmicutes (Figure 4).
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In addition to performing N2 fixation, cells of Hrs. convoluta strain HHT could assimilate ammonia,
glutamine, and asparagine as nitrogen sources [21]. Accordingly, genes encoding the ammonium
transporter protein Amt (FTV88_2595) and enzymes of the glutamine synthetase-glutamate synthase
pathway, which incorporates ammonia in the formation of glutamine from glutamate [50,51] (Figure 3),
were identified in the Hrs. convoluta genome. Following transport, glutamine can then be used for purine
biosynthesis or, through the activity of NADPH-dependent glutamate synthase, can be condensed
with α-ketoglutarate to yield two molecules of glutamate for other biosynthetic pathways [50,51].
In addition, a gene encoding NADP-specific glutamate dehydrogenase (FTV88_2506) enables Hrs.
convoluta to assimilate ammonia when synthesizing glutamate directly from α-ketoglutarate (Figure 3).
Finally, genes encoding a glutamine-hydrolyzing asparagine synthetase (FTV88_1161 and FTV88_3319),
which converts asparagine and glutamate into aspartate and glutamine, respectively (Figure 3), allow
for the use of asparagine as a nitrogen source. In contrast, aspartate and glutamate cannot serve as
nitrogen sources for strain HHT [21]. Taken together, these findings suggest that, although the reactions
are generally considered reversible, the enzymes catalyzing the conversion of asparagine to aspartate
and glutamine to glutamate are physiologically unidirectional, strongly favoring the formation of
aspartate and glutamate, respectively (shown as bolded arrows in Figure 3).

3.4. Assimilation of Sulfur

Growth studies indicate Hrs. convoluta is capable of assimilatory sulfate reduction [21]. Consistent
with these observations, genomic analyses revealed that the pathway of assimilatory sulfate reduction
in Hrs. convoluta begins with sulfate uptake using a sulfate/thiosulfate ABC transporter (cysAWTP).
Typically, an enzyme encoded by cysD and cysN, sulfate adenyltransferase, catalyzes the assimilation
of sulfate as adenosine phosphosulfate (APS) [52,53]. Hrs. convoluta lacks cysD, but genes encoding
the bifunctional enzyme CysN/CysC (FTV88_1460 and FTV88_1458, respectively), which can also
perform this function [54], are present. As shown in Figure 3, adenylyl-sulfate kinase (cysC) and
phosphoadenylyl-sulfate reductase (cysH, FTV88_1461) catalyze the subsequent reaction to yield
sulfite [52,53].

To produce sulfide for amino acid biosynthesis, sulfite must undergo further reduction through
sulfite reductase [53]. However, a gene encoding sulfite reductase could not be identified, suggesting
that Hrs. convoluta may employ an unusual reductase or an alternative mechanism to perform this
reaction. Genes encoding all successive enzymes necessary to synthesize cysteine, homocysteine,
and methionine from hydrogen sulfide were identified (data not shown). By comparison, the Hbt.
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modesticaldum genome lacked cysN, cysH, and sulfite reductase, supporting physiological studies
indicating that Hbt. modesticaldum requires a reduced sulfur source for biosynthetic purposes [16].

Interestingly, cultures of Hrs. convoluta strain HHT were able to grow well in the presence of
high levels of sulfide (10mM), with sulfide oxidation accompanied by the production of elemental
sulfur globules during growth [21]. However, the pathway for this reaction remains unclear, as
the Hrs. convoluta genome appears to lack genes encoding traditional sulfide oxidoreductases,
such as the sulfide:quinone oxidoreductase (SQR) from the green sulfur bacterium Chlorobaculum
(Chlorobium) tepidum that oxidizes H2S to S0 and reduces quinone [55], or sulfide:flavocytochrome c
oxidoreductase from the purple sulfur bacterium Allochromatium vinosum that oxidizes sulfide to sulfur
or polysulfides [56]. Thus, it is possible that Hrs. convoluta contains a novel sulfide oxidoreductase for
this purpose.

3.5. Photosynthesis Genes and Pigment Biosynthesis

Heliobacteria synthesize bacteriochlorophyll (BChl) g, a pigment absorbing light maximally
between 785 and 790 nm, for phototrophic growth [4]. Accordingly, genes encoding enzymes that
catalyze the conversion of glutamic acid to divinyl protochlorophyllide (gltX, hemALBCDEN, and
bchIDHME) for pigment biosynthesis (Figure 5) were annotated in Hrs. convoluta. However, as for
Hbt. modesticaldum, neither of the genes encoding protoporphyrinogen oxidase (hemY or hemG), which
catalyzes the oxidation of protoporphyrinogen to protoporphyrin, was identified in the Hrs. convoluta
genome. Moreover, comparisons with hemG from Escherichia coli and hemY from Bacillus subtilis yielded
no significant sequence identity to genes in the Hrs. convoluta genome. Due to the anaerobic nature of
Hrs. convoluta, an alternative and unidentified enzyme likely acts as a dehydrogenase rather than an
oxidase in this step of pigment biosynthesis. Studies with Desulfovibrio gigas, also a strict anaerobe,
suggest that electron carriers, such as flavins and pyridine nucleotides, or electron-transport complexes,
such as nitrite and fumarate reductases, do not use O2 as the electron acceptor in the conversion of
protoporphyrinogen to protoporphyrin [57,58]. More recently, however, an alternative pathway that
does not use protoporphyrin to synthesize heme has been described in Hbt. modesticaldum [59], and a
similar mechanism likely exists in Hrs. convoluta.

Following the synthesis of divinyl protochlorophyllide in Hrs. convoluta, genes encoding
protochlorophyllide reductase (bchLNB), chlorophyllide reductase (bchXYZ), and bacteriochlorophyll
synthase (bchG) are present to facilitate catalysis of subsequent reactions and produce BChl g. Previous
work with Hbt. modesticaldum suggested the need for an isomerase in the interconversion between
8-vinyl bacteriochlorophyllide a and bacteriochlorophyllide g [6], but more recent experimental work
with this species revealed the ability of chlorophyllide reductase to perform both reduction and
isomerization of divinyl chlorophyllide a and circumvent the need for a separate isomerase in the
biosynthesis of bacteriochlorophyllide g [60,61].

Heliobacteria also contain an alternative form of chlorophyll (Chl) a, 81-OH-Chl a, which was
observed as a smaller absorption peak at 672 nm in spectrophotometric studies of Hrs. convoluta [21].
Whereas BChl g, a bacteriochlorin-type chlorophyll, is reduced at the C-7 and C-8 bond and has an
ethylidene functional group at C-8 [5], 81-OH-Chl a, a chlorin, has a double bond connecting C-7 and
C-8 with a hydroxyethyl group at C-8 [44]. BChl g and 81-OH-Chl a are putatively synthesized from a
common precursor, divinyl chlorophyllide a [7,60].

Hydration of the C-8 vinyl group of divinyl chlorophyllide a is catalyzed by 8-vinyl chlorophyllide
hydratase, and bacteriochlorophyll synthase catalyzes the addition of a farnesyl group to produce
the mature 81-OH-Chl a [7,60]. However, a gene encoding chlorophyllide hydratase or an analogous
enzyme was not identified in the genomes of Hrs. convoluta or Hbt. modesticaldum [6]. Hence, a possible
alternative mechanism for 81-OH-Chl a synthesis includes steps of dehydrogenation and subsequent
hydroxygenation of bacteriochlorophyllide g to produce 81-OH-chlorophyllide a [60], but genes
encoding enzymes for this reaction were not identified in either Hrs. convoluta or Hbt. modesticaldum.
Yet another possible mechanism for 81-OH-Chl a synthesis would require the irreversible conversion of
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BChl g into 81-OH-Chl a upon exposure to O2 and light [62]. However, as strict anaerobes, the viability
of heliobacteria is compromised upon exposure to O2, and therefore this mechanism is unlikely as the
major pathway for 81-OH-Chl a production [3,62].Microorganisms 2020, 8, 313 12 of 23 

 

 

Figure 5. Predicted biosynthetic pathway of major pigments in Heliorestis convoluta. The non-
mevalonate pathway shows the synthesis of farnesyl diphosphate for either conversion into 
carotenoids (orange) or incorporation into the final chlorophyll (green) structures. The enzymes that 
catalyze each individual numbered reaction are (1) 1-deoxy-D-xylulose-5-P synthase, (2) 1-deoxy-D-
xylulose-5-P reductoisomerase, (3) 4-(CDP)-2-C-methyl-D-erythritol synthase, (4) 4-(CDP)-2-C-
methyl-D-erythritol kinase, (5) 2-C-methyl-D-erythritol 2,4-cyclo-PP synthase, (6) 4-hydroxy-3-
methylbut-2-enyl-PP synthase, (7) 4-hydroxy-3-methylbut-2-enyl-PP reductase, (8) isomerase, (9) 
geranyl diphosphate synthase, (10) farnesyl diphosphate synthase, (11) 4,4’-diapophytoene synthase, 
(12) diapophytoene dehydrogenase, (13) hydratase, (14) glucosyl transferase, (15) esterase, (16) 
enzymes encoded by gltx and hemALBCDENYG genes, (17) enzymes encoded by bchIDHME genes, 
(18) protochlorophyllide reductase (bchLNB), (19) chlorophyllide reductase (bchXYZ), and (20) 
bacteriochlorophyll synthase (bchG). Red, boxed numbers represent enzymes not yet identified in the 
Hrs. convoluta genome but are proposed based on the predicted pathway. Adapted from Takaichi et 
al. [63], Arch. Microbiol. 2003, 179, 95–100. Copyright 2002 Springer Nature; Dubey et al. [64] J. Biosci. 
2003, 28, 637–646. Copyright 2003 Springer Nature; Sattley et al. [6] J. Bacteriol. 2008, 190, 4687–4696. 
Copyright 2008 American Society for Microbiology; Sattley and Swingley [7], Adv. Bot. Res. 2013, 66, 
67–97, Copyright 2013 Elsevier Ltd.; and Tsukatani et al. [60], Biochim. Biophys. Acta 2013, 1827, 1200–
1204. Copyright 2013 Elsevier Ltd. 

Figure 5. Predicted biosynthetic pathway of major pigments in Heliorestis convoluta. The non-mevalonate
pathway shows the synthesis of farnesyl diphosphate for either conversion into carotenoids (orange)
or incorporation into the final chlorophyll (green) structures. The enzymes that catalyze each
individual numbered reaction are (1) 1-deoxy-d-xylulose-5-P synthase, (2) 1-deoxy-d-xylulose-5-P
reductoisomerase, (3) 4-(CDP)-2-C-methyl-d-erythritol synthase, (4) 4-(CDP)-2-C-methyl-d-erythritol
kinase, (5) 2-C-methyl-d-erythritol 2,4-cyclo-PP synthase, (6) 4-hydroxy-3-methylbut-2-enyl-PP
synthase, (7) 4-hydroxy-3-methylbut-2-enyl-PP reductase, (8) isomerase, (9) geranyl diphosphate
synthase, (10) farnesyl diphosphate synthase, (11) 4,4′-diapophytoene synthase, (12) diapophytoene
dehydrogenase, (13) hydratase, (14) glucosyl transferase, (15) esterase, (16) enzymes encoded by gltx
and hemALBCDENYG genes, (17) enzymes encoded by bchIDHME genes, (18) protochlorophyllide
reductase (bchLNB), (19) chlorophyllide reductase (bchXYZ), and (20) bacteriochlorophyll synthase
(bchG). Red, boxed numbers represent enzymes not yet identified in the Hrs. convoluta genome but are
proposed based on the predicted pathway. Adapted from Takaichi et al. [63], Arch. Microbiol. 2003, 179,
95–100. Copyright 2002 Springer Nature; Dubey et al. [64] J. Biosci. 2003, 28, 637–646. Copyright 2003
Springer Nature; Sattley et al. [6] J. Bacteriol. 2008, 190, 4687–4696. Copyright 2008 American Society
for Microbiology; Sattley and Swingley [7], Adv. Bot. Res. 2013, 66, 67–97, Copyright 2013 Elsevier Ltd.;
and Tsukatani et al. [60], Biochim. Biophys. Acta 2013, 1827, 1200–1204. Copyright 2013 Elsevier Ltd.
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Due to high sequence identity between genes allowing for phototrophic growth (data not shown),
a mechanism similar to BChl g and 81-OH-Chl a biosynthesis in Hbt. modesticaldum [6,7,60] is predicted
for Hrs. convoluta (Figure 5). Many of the genes encoding enzymes required for pigment biosynthesis
are grouped into a single photosynthesis gene cluster (PGC) in heliobacteria. The PGCs of Hrs.
convoluta and Hbt. modesticaldum were nearly identical and displayed a shared gene synteny in all key
genes, including those associated with pigment and cofactor biosynthesis, electron transport, and light
harvesting, suggesting that a common genetic architecture—one that differs substantially from the
PGCs present in the genomes of purple bacteria—defines the heliobacterial PGC (Figure 6).
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capsulatus. Shared genes are outlined in bold. Lines indicate gene synteny: black, single gene
rearrangements; red, inverted genes; and blue, inverted genes with a gene insertion. Dashed boxes show
Rba. capsulatus photosynthesis genes absent from Hrs. convoluta. Colors: green, bacteriochlorophyll
biosynthesis (bch); orange, carotenoid biosynthesis (crt); pink, proteobacterial reaction centers (puf) and
light harvesting complexes (puh); olive, heliobacterial reaction center (psh); teal, regulatory proteins;
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uncharacterized genes. Adapted from Sattley et al. [6]. J. Bacteriol. 2008, 190, 4687–4696. Copyright
2008 American Society for Microbiology.

Like BChls c, d, and e of green sulfur bacteria, both BChl g and 81-OH-Chl a of heliobacteria are
esterified with farnesol [63]. A non-mevalonate pathway is employed to synthesize the esterifying
alcohol, farnesyl diphosphate, of heliobacterial pigments [64]. As was noted for Hbt. modesticaldum,
Hrs. convoluta contained the complete complement of genes for this pathway, beginning with pyruvate
and glyceraldehyde-3-phosphate and proceeding to an unidentified but predicted isomerase that could
catalyze the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate [6,64] (Figure 5).
Following this, farnesyl diphosphate can either be incorporated into the final structures of BChl g and
81-OH-Chl a or further transformed into the major carotenoids found in Hrs. convoluta [63] (Figure 5).
The high specificity of BchG for incorporation of a farnesol moiety over longer alcohol groups, such
as phytol, has been demonstrated in studies of pigment biosynthesis in Hbt. modesticaldum [61], and
the high sequence identity (68%) of BchG from Hrs. convoluta to that of Hbt. modesticaldum suggests a
similar activity in the alkaliphile.

Experimental work and pigment extraction from Hrs. convoluta, Hrs. daurensis, and Hrs. baculata
revealed that the major carotenoid in alkaliphilic heliobacteria is OH-diaponeurosporene glucoside
C16:0 ester, followed by 4,4′-diaponeurosporene, OH-diaponeurosporene glucoside C16:1 ester, and
8,8′-zeta-carotene [21,63]. These novel glucoside esters in alkaliphilic heliobacteria were not found
in neutrophilic heliobacteria, in which 4,4′-diaponeurosporene was the major carotenoid [63,65].
The synthesis of these C30 carotenoids [66] is complicated by the apparent absence of a gene (crtM)
encoding 4,4′-diapophytoene synthase in both Hbt. modesticaldum [6] and Hrs. convoluta. Presumably,
the presence of an enzyme with 4,4′-diapophytoene synthase activity is essential in the proposed
biosynthetic pathway for each of the carotenoids found in heliobacteria [63] (Figure 5). Although crtM
was not identified, two nonidentical copies of crtN (FTV88_2648 and FTV88_3059) having a sequence
identity of 71% were annotated in the Hrs. convoluta genome, and it is possible that one of their gene
products exhibits CrtM-like activity.
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In alkaliphilic heliobacteria, a proposed CrtC-like hydratase catalyzes the formation of
OH-diaponeurosporene from 4,4′-diaponeurosporene, followed by synthesis of OH-diaponeurosporene
glucoside by a CrtX-like glucosyl transferase, with a putative esterase making the final conversion
to the mature glucoside ester [63]. Genes encoding the enzymes catalyzing the final three steps of
OH-diaponeurosporene glucoside ester synthesis were not identified in Hrs. convoluta (Figure 5), but
genes encoding two carotenoid biosynthesis proteins (FTV88_0301 and FTV88_0302) were annotated.
These genes showed no significant sequence similarity to genes of the neutrophilic Hbt. modesticaldum,
and they may be candidates for encoding proteins to perform the final steps of carotenoid biosynthesis
in alkaliphilic heliobacteria.

3.6. Reaction Center and Electron Transport Chain

Heliobacteria possess a type I (Fe–S type) photosynthetic reaction center (RC) imbedded in
the cytoplasmic membrane [4,67,68]. As the simplest known and perhaps most ancient extant
(bacterio)chlorophyll-binding photochemical apparatus [69], the heliobacterial RC is a symmetrical
homodimer consisting of the PshA polypeptide and the novel, single-transmembrane helix PshX
polypeptide [70]. PshA of Hrs. convoluta (encoded by pshA, FTV88_2638) showed 71% sequence identity
to PshA of Hbt. modesticaldum but nearly 96% identity to PshA of Hrs. acidaminivorans (GenBank
accession WBXO01000000, unpublished). As is the case in Hbt. modesticaldum, pshX (FTV88_2551) is
situated outside of the PGC in Hrs. convoluta and encodes a protein consisting of just 31 amino acids.
The PshX RC subunit from Hrs. convoluta showed a 74% sequence identity to that of Hbt. modesticaldum.

The crystal structure of the Hbt. modesticaldum RC revealed the presence of 54 BChl g molecules,
two 81-OH-Chl a molecules, two carotenoids (4,4′-diaponeurosporene), four BChl g′ molecules (a C-13
epimer of BChl g that functions as the primary electron donor, P800) [68,71,72], two lipids, and one
[4Fe–4S] cluster [70]. Experimental data on the structure of the Hrs. convoluta RC are not yet available.
However, with their highly similar PshA and PshX proteins, the geometry and pigment composition of
the Hrs. convoluta RC should closely resemble that of the Hbt. modesticaldum RC [69]. Nevertheless,
some distinctions may materialize considering the alternative carotenoids produced by alkaliphilic
heliobacteria and their inherently alkaline habitat [63].

Proteins of the electron transport chain (ETC) of Hrs. convoluta exhibited high sequence similarity to
those from Hbt. modesticaldum, and thus the overarching mechanism of light-driven energy conservation
is likely to be highly conserved across all heliobacterial taxa. Although not experimentally confirmed,
it is likely that electrons first enter the chain by the activity of either NADH:quinone oxidoreductase
(Figure 3), a 14-subunit protein complex embedded in the cytoplasmic membrane and encoded by
nuoABCDEFGHIJKLMN, or perhaps a complex having ferredoxin:menaquinone oxidoreductase activity.
As observed in Hbt. modesticaldum, the nuoEFG genes in Hrs. convoluta are not co-localized within the
same operon as the other nuo genes. However, unlike in Hbt. modesticaldum, in which nuoEF are fused,
nuoE and nuoF exist as individual genes (present in duplicate copies) in Hrs. convoluta (Figure 7). With
the exception of this distinction, all nuo genes show high sequence identity (62–79%) between the two
species. As for Hbt. modesticaldum, menaquinone is predicted to shuttle electrons from Complex I to the
cytochrome bc complex (PetABCD), and electron transfer through these complexes drives translocation
of H+ to the periplasmic space (Figure 3), forming a proton motive force (PMF) [6,73].

Cytochrome bc1 complexes, which are found in a variety of anoxygenic phototrophs and also in
eukaryotic mitochondria, consist of a minimum of three protein subunits: cytochrome b, cytochrome
c1, and the Rieske iron-sulfur protein [74]. In contrast, the related cytochrome b6f complex, which is
present in cyanobacteria and chloroplasts, is comprised of cytochrome f (PetA), cytochrome b6 (PetB),
the Rieske iron-sulfur protein (PetC), and subunit IV (PetD) [74]. Having similar functions but distinct
structural properties, cytochrome b contains eight transmembrane helices, whereas cytochrome b6 and
its associated subunit IV contain four and three transmembrane helices, respectively [74]. Cytochrome
b6 shows homology to the N-terminal half of cytochrome b, and subunit IV is homologous to the
C-terminal half of cytochrome b [74].
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independent in Hrs. convoluta. In both species, however, nuoEFG are separated from other nuo genes
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nuoEFG, as well as the hydEFG maturase genes (FTV88_1003–1005) that may impart [FeFe] hydrogenase
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An analysis of the cytochrome bc complex of Hrs. convoluta indicated that it resembles a hybrid of
the cytochrome b6f complex and the cytochrome bc1 complex. A comparison of cytochrome b6 and
subunit IV proteins from Hrs. convoluta and the model cyanobacterium Synechocystis PCC 6803 showed
48% and 42% amino acid sequence identity, respectively. However, cytochrome b6 and subunit IV
from Hrs. convoluta also showed 36% and 30% amino acid identity, respectively, to the N-terminal and
C-terminal halves of cytochrome b from the purple bacterium Rhodobacter sphaeroides. Furthermore,
whereas subunit IV from Hrs. convoluta is predicted to contain the usual three transmembrane helices,
cytochrome b6 from Hrs. convoluta contained a predicted five transmembrane regions instead of
the four typically observed in the b6f complex. Notably, cytochrome b6 from Hbt. modesticaldum is
predicted to contain the conventional four transmembrane helices. Therefore, considering the above
sequence analyses and their total of eight predicted transmembrane helices, the PetB and PetD proteins
of Hrs. convoluta may represent a structural and evolutionary intermediate between cytochrome b and
cytochrome b6/subunit IV proteins, a distinction perhaps not shared with neutrophilic heliobacteria.

The PetA protein in heliobacteria is also of interest because it functions as a diheme cytochrome
c (as opposed to the typical monoheme protein) and shows no sequence or structural similarity
to cytochrome f [74]. Although unusual among the Firmicutes, the diheme cytochrome c has been
identified in all heliobacteria studied thus far and is likely a universal feature of these phototrophs.
PetA from Hrs. convoluta showed high sequence identity with PetA from Hrs. acidaminivorans (79%),
and sequence identities to PetA from neutrophilic heliobacteria (e.g., Hbt. modesticaldum, Hbt. gestii,
Heliobacillus mobilis, and Heliophilum fasciatum) were all near 50%. Based on similarities in its N- and
C-terminal domains, the heliobacterial diheme cytochrome c may have been the result of a past gene
duplication and subsequent fusion [75].

A single operon containing all eight genes encoding the subunits of ATP synthase (atpABCDEFGH)
was identified in the genome of Hbt. modesticaldum [6,26], and the encoded ATP synthase
itself has since been biochemically characterized [76]. The composition and arrangement of ATP
synthase genes in Hrs. convoluta was identical to that in the Hbt. modesticaldum genome. Kinetic
studies with Hba. mobilis and Hbt. modesticaldum and physiological similarity to photosystem I of
cyanobacteria suggest that a PMF established by cyclic electron flow drives photophosphorylation in
heliobacteria [73,77,78]. For overviews of electron transfer reactions in heliobacteria, see Sattley and
Swingley [7], Kondo et al. [79], and, more recently, Kashey et al. [73].

3.7. Endosporulation

A likely universal trait of heliobacteria is the ability to form endospores [11], differentiated and
largely dormant cells that are highly resistant to environmental extremes, such as heat and desiccation.
Genomic comparisons of Hrs. convoluta and Hbt. modesticaldum revealed high similarity between
endosporulation genes in each species. For example, genes encoding key sporulation sigma factors
(σH, σE, σF, σG, σK) in Hbt. modesticaldum were also identified in the Hrs. convoluta genome. Like Hbt.
modesticaldum, Hrs. convoluta lacked the spo0M gene functioning to regulate stage 0 development of
endosporulation [80] and the spoIIB gene necessary for robust sporulation in B. subtilis [81]. This may
help explain the sporadic (as opposed to consistent) production of endospores in serially subcultured
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cells of Hrs. convoluta strain HHT [21], as the deletion of either spo0M or spoIIB in B. subtilis results in
impairment of endosporulation [80,81]. Additionally, the 20 cot genes encoding proteins that comprise
the protective spore coat for B. subtilis, including cotH required for spore coat assembly [82], did
not show significant similarity to genes in Hbt. modesticaldum [6] or Hrs. convoluta. Likewise, key
proteins that coordinate spore coat assembly and composition in Clostridioides (Clostridium) difficile,
including CotA and CotB [83], showed no sequence similarity to genes in Hrs. convoluta. Despite these
deficiencies, cells of Hrs. convoluta strain HHT were still capable of forming heat-resistant endospores,
even if sporadically [21]. These findings suggest shared biosynthetic and regulatory mechanisms
governing endosporulation in Hbt. modesticaldum and Hrs. convoluta that differ in some respects from
those that govern endosporulation in species of Bacillus and Clostridium.

3.8. Molecular Adaptations to Alkaliphily in Heliorestis convoluta

Alkaliphilic bacteria employ several mechanisms to maintain intracellular pH homeostasis in
their highly alkaline environments. Experimental work conducted with alkaliphiles revealed that
these organisms maintain a lower cytoplasmic pH than their external environment—up to a 2.3 pH
unit difference—for optimal enzyme activity and cellular functioning [84,85]. Despite its optimal
growth pH of 8.5–9 and ability to grow slowly at pH 10 [21], it is likely that Hrs. convoluta maintains a
cytoplasmic pH at or below pH 8, as is true from studies of several alkaliphilic strains of Bacillus [84,86].

Cytoplasmic pH homeostasis in Hrs. convoluta is likely supported by the presence of a Na+/H+

antiporter encoded by nhaA (FTV88_0116). To maintain cytoplasmic pH at homeostatic levels, the
Na+/H+ antiporter operates in an electrogenic manner, facilitating the import of twice as many H+ as
Na+ exported [87,88]. The inward movement of protons through the antiporter acidifies the cytoplasm
to maintain a pH closer to neutral [87–89]. The NhaA protein from Hrs. convoluta was found to be 87%
identical in amino acid sequence to NhaA from Heliorestis acidaminivorans—also an alkaliphile—but
only 50% identical to NhaA from the neutrophile Hbt. modesticaldum. The NhaA enzyme may, therefore,
be a good candidate to study which amino acid residues facilitate antiporter activity in alkaline versus
neutral environments.

In addition to its role in cytoplasmic pH maintenance, the Na+/H+ antiporter generates a sodium
motive force (SMF) that has been shown to be important for secondary active transport of various
substrates [89–91] (see Figure 3 for examples in Hrs. convoluta). The use of Na+-coupling for transport
is potentially more important in Hrs. convoluta than in its neutrophilic relative, Hbt. modesticaldum, as
genes encoding multiple Na+-dependent transporters (FTV88_2418 and FTV88_1400) and a Na+/Ca+

antiporter (FTV88_2739) in Hrs. convoluta showed little to no significant similarity with genes in
Hbt. modesticaldum.

The more neutral cytoplasm compared to the alkaline extracellular milieu would seemingly
create an outward-directed bulk PMF rather than the inward-directed PMF needed to drive ATP
synthesis [89–91]. Despite this, most alkaliphiles, including Hrs. convoluta, still employ a PMF rather
than a SMF to power ATP synthase [89,92]. Alkaliphilic bacteria must therefore have mechanisms
in place to prevent H+ equilibration with the external environment so that an effective local PMF
can be established. To this end, carotenoids, which are produced in large quantities by alkaliphilic
heliobacteria [93], have been proposed to play a role in organizing proton pumps close to ATP synthases
in the membrane, thus facilitating more efficient ATP generation [91,94,95]. In addition, cardiolipin,
a glycerophospholipid that assists in membrane domain organization, may also help prevent H+

equilibration by functioning as a proton sink for the H+-coupled ATP synthase [96–98]. By functioning
in this capacity, cardiolipin allows for the retention of H+ near the surface of the cell membrane so
that they are unable to spontaneously diffuse into the alkaline environment. Notably, a gene encoding
cardiolipin synthase was present in Hrs. convoluta (FTV88_2523), but no corresponding homolog was
identified in Hbt. modesticaldum.

In addition to producing proteins and other molecules that counteract the pH difference between
the cytoplasm and environment and the consequences thereof, homologous proteins also have amino
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acid substitutions that optimize the functioning of normal processes for the alkaline environment.
In alkaliphiles, the portions of extracellular enzymes that are exposed to the external environment
tend to have decreased numbers of basic residues (arginine, histidine, or lysine), with acidic amino
acids (aspartate or glutamate) or neutral residues in their place [99–101]. In a noteworthy example, the
amino acid sequence for cytochrome c553 (PetJ) of Hrs. convoluta contained 13 more acidic amino acid
residues and 11 fewer basic residues than PetJ of Hbt. modesticaldum (Figure 8A). In line with previous
discussion, the elevated number of acidic residues and corresponding decrease in basic residues in the
externally-functioning Hrs. convoluta PetJ should contribute to OH− repulsion and H+ attraction near
the membrane surface and help maintain the PMF [89]. Although additional investigation of the cell
surface of Hrs. convoluta is required to confirm its electrochemical nature, genomic data suggest that
this phototroph can sequester H+ near the cell surface to create an effective PMF for ATP synthesis and
flagellar motility.
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Figure 8. Amino acid sequence alignments for cytochrome c553 and ATP synthase Fo alpha subunit
of Heliorestis convoluta with related species. (A) The sequence alignment for cytochrome c553 of
Hrs. convoluta and Heliobacterium modesticaldum. Acidic amino acid residues (red), aspartate (D) and
glutamate (E), and basic amino acid residues (blue), arginine (R) and lysine (K), that differed between
each species were indicated by a colored dash directly above or below the residue. Acidic or basic
amino acids in the gap (–) regions were not marked. (B) Sequence alignment for ATP synthase Fo alpha
subunit of Hrs. convoluta and Bacillus pseudofirmus OF4. The lysine residue of interest at position 180 in
B. pseudofirmus aligns with Lys182 in Hrs. convoluta (red box). (C) Sequence alignment for ATP synthase
Fo alpha subunit of Hrs. convoluta and Hbt. modesticaldum. The lysine residue of interest at position 182
in Hrs. convoluta aligns with Gly179 in Hbt. modesticaldum (red box). All sequence alignments were
generated using the BLAST algorithm.
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In a similar way, several key amino acid residues and motifs in ATP synthase have been found to
contribute to optimal functioning of the enzyme at different pH levels [89,91,102,103]. For example, a
lysine residue found at position 180 in the Fo alpha subunit of ATP synthase in Bacillus pseudofirmus
OF4 was determined to favor H+-powered ATP synthesis at an alkaliphilic pH due to its basic
properties [102,104–106]. As expected, a corresponding Lys182 in the Hrs. convoluta Fo alpha subunit
(Figure 8B) can presumably capture protons optimally from the alkaline environment and release them
into the rotor subunit of ATP synthase at an external basic pH near the high pKa of the side chain [102].
The lysine residue would be detrimental to ATP synthesis in a neutral pH range, as H+ would be
retained on the residue side chain at ~pH 7 (below the side chain pKa). This highlights the significance
of a glycine residue at the corresponding position in the Fo alpha subunit in neutrophilic bacteria,
including Hbt. modesticaldum [102] (Figure 8C).

Several alkaliphilic bacteria use a SMF to power flagellar motor proteins, thus reserving the
valuable and limited PMF for ATP production [107,108]. Research conducted with alkaliphilic Bacillus
spp. concluded that a highly conserved valine residue is present in H+-driven (MotB) flagellar
motor protein sequences, whereas a leucine residue takes the place of this valine in Na+-driven
(MotS) motor protein sequences [107,108]. The alkaliphilic Bacillus spp. contained MotS with the
conserved leucine amino acid, allowing these bacteria to use a SMF to power Na+-coupled flagellar
motility [107,108]. Interestingly, MotB—with its conserved valine—was identified in both Hrs. convoluta
and Hbt. modesticaldum, suggesting that a PMF is used to power motility in both alkaliphilic and
neutrophilic heliobacteria. Genomic analyses confirmed the presence of a core set of 24 genes
(fliCDEFGHIMNPQR, flgBCDEFGKL, motAB, flhAB) in Hrs. convoluta that are essential for PMF-driven
swimming motility in numerous flagellated bacteria [109].

4. Conclusions

The analysis of the complete genome sequence of Hrs. convoluta has provided further insight into
the photoheterotrophic metabolism, nitrogen utilization, sulfur assimilation, and pigment biosynthesis
pathways of heliobacteria, as well as molecular adaptations to an alkaliphilic existence. Further
biochemical and genetic experimentation with alkaliphilic heliobacteria, including Hrs. convoluta, is
necessary to confirm genomics-based predictions regarding the roles of specific genes and the apparent
absence of specific enzyme activities.
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