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Hippocampal place-cell sequences observed during awake immobility often represent

previous experience, suggesting a role in memory processes. However, recent reports

of goals being overrepresented in sequential activity suggest a role in short-term

planning, although a detailed understanding of the origins of hippocampal sequential

activity and of its functional role is still lacking. In particular, it is unknown which

mechanism could support efficient planning by generating place-cell sequences biased

toward known goal locations, in an adaptive and constructive fashion. To address

these questions, we propose a model of spatial learning and sequence generation as

interdependent processes, integrating cortical contextual coding, synaptic plasticity and

neuromodulatory mechanisms into a map-based approach. Following goal learning,

sequential activity emerges from continuous attractor network dynamics biased by goal

memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a

direct comparison with experimental data. Simulations show that this model (1) explains

the generation of never-experienced sequence trajectories in familiar environments,

without requiring virtual self-motion signals, (2) accounts for the bias in place-cell

sequences toward goal locations, (3) highlights their utility in flexible route planning, and

(4) provides specific testable predictions.

Keywords: sequential activity, reward-based learning, goal memory, contextual bias, memory recall, continuous

attractor network, Bayesian decoding

1. INTRODUCTION

By their remarkable spatial selectivity, hippocampal place cells have qualified as a model system for
studying neural coding in relation to behavior (O’Keefe and Nadel, 1978; Burgess, 2014). Place cells
fire when the animal traverses a certain location known as the place field, accompanied by 4–8Hz
theta oscillations in the local field potential (LFP). However, during states of slow-wave sleep and
awake resting, hippocampal activity displays brief periods of fast (150–250 Hz) oscillations termed
sharp wave-ripple episodes (SWRs). According to the “two-stage” model of memory, SWR events
are involved inmemory consolidation, facilitating the transfer of labile hippocampalmemory traces
to neocortical areas (Marr, 1971; Buzsáki, 1989). During these events, place cell activity displays
sequential patterns termed forward replay and reverse replay: Time-compressed, and sometimes
time-reversed, replicas of place cell activity during previous runs (Skaggs and McNaughton, 1996;
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Kudrimoti et al., 1999; Diba and Buzsáki, 2007), potentially
reflecting the recall of spatial experiences stored in the
hippocampus during behavior (Jensen and Lisman, 1996).

Recent research, however, has highlighted several key aspects
of SWR-associated sequential hippocampal activity which suggest
additional functional roles. It has been demonstrated that the
disruption of SWR activity not only impairs spatial learning
(Girardeau et al., 2009; Jadhav et al., 2012), but also hinders
performance of learned spatial tasks (Jadhav et al., 2012). The
depicted trajectories need not be replicas of paths previously
traveled (Gupta et al., 2010), and multiple trajectory options
can be signaled across SWR episodes (Singer et al., 2013).
Furthermore, goal locations are over-represented in place cell
activity during SWRs in open-field tasks (Dupret et al., 2010),
even in the form of trajectories which predict immediate future
behavior (Pfeiffer and Foster, 2013). Consequently, it has been
proposed that awake place-cell sequences can guide ongoing
behavior by planning future trajectories, particularly toward goal
locations (Diba and Buzsáki, 2007; Dupret et al., 2010; Pfeiffer
and Foster, 2013; Olafsdóttir et al., 2015) or by evaluating options
and decision-making (Carr et al., 2011; Jadhav et al., 2012).

The hypothesis that certain forms of sequential activity can
guide behavior implies specific properties of the sequence-
generating mechanism. First, for efficient behavioral guidance,
sequence trajectories should be task-dependent, depicting
currently relevant trajectories preferentially (Singer et al., 2013).
Second, trajectories should include novel combinations of start
and end points when necessary (Pfeiffer and Foster, 2013). These
conditions are not easily met by most existing computational
models of sequential hippocampal activity. First, sequence
learningmodels assume that experience-dependent plasticity acts
on recurrent synaptic connections in hippoampal area CA3,
producing asymmetric, “chain-like” connectivity motifs (Jensen
and Lisman, 1996; Redish and Touretzky, 1998; Molter et al.,
2007; Bush et al., 2010). In these models, recall sequences
emerge which replicate previous experience at a compressed
time scale, provided that recurrent synaptic transmission is
sufficiently strong (but see Jahnke et al., 2015). A second
class of models posits that place-selective subthreshold inputs
bias hippocampal place cell activity. Here, a gradual release
of inhibition during SWR states causes place cells to activate
in the order of the distance between their place field and the
current location, generating reverse replay sequences (Foster
and Wilson, 2006; Csicsvari et al., 2007; Diba and Buzsáki,
2007). Third, models assuming continuous attractor network
dynamics have shown that the incorporation of spike-frequency
adaptation or short-term synaptic plasticity leads to a random
drift of activity through a spatial map (Hopfield, 2010; Itskov
et al., 2011; Azizi et al., 2013; Romani and Tsodyks, 2014). In
addition to these phenomenological models, a few approaches
have explicitly aimed at generating place-cell sequences with
a functional role in goal-directed behavior. A recent proposal
is based on linear “look-ahead probe” activity driven by grid
cells (Erdem and Hasselmo, 2012; see also Bush et al., 2015;
Sanders et al., 2015; Stemmler et al., 2015). While look-ahead
models specify how certain possible directions can be evaluated
using sequential activity, they do not provide an a priori bias

for specific preferred directions. In tasks with a high number
of options, such as in open-field navigation, this may result in
excessive processing demands (Dolan and Dayan, 2013), unless
an additional mechanism specifies the direction toward the goal
prior to sequence generation (e.g., Burgess et al., 1994). Using
a probabilistic approach, Penny et al. (2013) have shown that
goal-predictive sequential activity emerges in a formal model
of statistical inference processes. Finally, Corneil and Gerstner
(2015) have proposed a model in which a theoretically derived
“successor representation” is approximated by a continuous
attractor network of non-spiking cells to generate goal-directed
sequential activity. However, to the best of our knowledge, there
exists as yet no neural-level model that generates sequential
activity with a bias toward learned goal locations, with a
functional role in guiding behavior, and which is formulated at
a sufficient level of detail to allow a quantitative comparison
between simulated sequence trajectories and experimental data.

To fill this gap, we present a model of place-cell
sequences, implemented in a large-scale spiking network with
physiologically interpretable parameters, in which goal learning
by reward-based plasticity shapes the sequence generation
process, and in which sequential activity guides spatial behavior.
In our model, following reward-based potentiation of cortico-
hippocampal synapses, prefrontal contextual representations
bias hippocampal recall activity, which progresses sequentially
across the cognitive map-like network structure toward a
context-specific goal location. Importantly, sequence trajectories
neither replicate previous experiences nor follow virtual
directional signals, but rather emerge as an effect of intrinsic
network dynamics biased by goal-specific inputs. The resulting
place-cell sequences, in particular their end points, are used
to guide the behavior of a virtual rat in a memory-guided
decision-making task. Furthermore, the implementation as a
large spiking network showing ripple-band oscillations allows to
employ a Bayesian decoding approach, as used in experimental
studies, and to analyse the dynamics of emerging sequential
place representations in detail.

2. MATERIALS AND METHODS

2.1. Model Architecture
We implemented a network-level model of context-dependent
learning and recall of goal locations, capable of guiding a
virtual rat in a memory-guided decision-making task in which
navigation toward a familiar reward location alternates with
random foraging (Pfeiffer and Foster, 2013, see Figure 1). Two
key properties of the model are that (1) following the learning
of a reward location, goal-directed place-cell sequences will be
generated, and (2) the end points of these sequences guide
subsequent navigational behavior, in a manner sensitive to the
current behavioral context. Conceptually, our model network
consists of a contextual layer, inspired by prefrontal cortical
areas, and a simplified hippocampus model, whose populations
represent the dentate gyrus (DG) and subfield CA3. The
contextual layer contains two separate populations to reflect the
two-phase structure of the simulated task, which we assume has
been learned already, as the experimental data reported from
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FIGURE 1 | Task setup as described by Pfeiffer and Foster (2013). A square

arena (2 m × 2m) is equipped with 36 potential reward locations. The location

first baited with reward is called Home. When the Home location is discovered,

the next reward will be placed at a random location, followed by the Home

location, etc. A trial consists of the rat approaching the Home location and

then foraging until the next random reward is found.

this task were recorded from well-trained animals. The activity
of these two populations, termed “Home” and “Away” context,
indicates whether the current task is to find the familiar reward
location called “Home” or to forage randomly for reward. Note
that contextual coding has been observed in prefrontal cortical
areas (Hyman et al., 2012;Waskom et al., 2014; Long and Kahana,
2015; Rossato et al., 2015; Ma et al., 2016; see also Benoit et al.,
2014). The hippocampus model consists of place cells in DG and
CA3, as well as inhibitory interneurons in CA3 (see Figure 2; for
an anatomical review of the hippocampal formation, see Amaral
and Lavenex, 2006). Reward-based plasticity is implemented
at context-to-DG synapses to implement learning of context-
specific goal locations.

In short, the functioning of our model relies on recall activity
in CA3 place cells, biased by the cortico-DG pathway, at which
information about goal locations and context (in the sense of
task phase) converge. CA3 is configured as a continuous attractor
network model, displaying “bump” activity states which will
either persist at one location, move to neighboring locations
gradually, or transition to a distant location abruptly, depending
on the spatial activity profile of its inputs relative to its current
activity peak (Ben-Yishai et al., 1995; Degris et al., 2004; Song and
Wang, 2005; Fung et al., 2008).

In our simulations, we distinguish between two dynamical
states of neural activity during behavior of a virtual rat
in a 2 m × 2 m square environment. Our simulations
encompassed place field activity during movement and “off-
line” activity of place cells during brief pauses in behavior,
assumed to occur at the beginning of each run. When the
simulated animal is stationary (i.e., at the start of the trial and
following discovery of reward), CA3 recurrent transmission is

FIGURE 2 | Network architecture. Two context populations of cortical cells

project onto model DG granule cells, with connections modifiable by

reward-dependent Hebbian plasticity. DG and CA3 cells are spatially arranged

on a regular lattice, ordered by the position of place field centers. Connection

weights between DG and CA3 place cells and between CA3 cells follow a

Gaussian function of distance. CA3 place cells project to an inhibitory

population featuring recurrent inhibitory connections and projecting back to

CA3 place cells. During movement, place field activity in DG and CA3 cells is

generated by external stimulation, and recurrent synaptic transmission is

inactivated. Cortical “Home” context population, 6,400 neurons; cortical

“Away” context population, 6,400 neurons; DG population, 6,400 neurons;

CA3 excitatory population, 6,400 neurons; CA3 inhibitory population, 259

neurons.

activated, with synaptic weights forming a pattern of short-
range excitation and global inhibition, to produce continuous
attractor dynamics. During movement, we generate place field
activity in DG and CA3 place cells by injecting an external
current that varies as a function of the location of the
simulated animal. To speed up simulations, and in accord
with several previous models, we assume that CA3 recurrent
transmission during movement phases is negligible (Molter
et al., 2007; Bush et al., 2010; Gupta, 2011). We refer to
these two network states as sequence generation and movement
states.

2.2. Neuron Model
DG and CA3 cells are represented by a leaky integrate-and-fire
model with parameters similar to a standard excitatory neuron
(Brette and Gerstner, 2005). Context cell firing is modeled as a
Poisson process, with firing rates during active epochs at either
10 Hz (during simulated movement) or 200 Hz (during sequence
generation). The membrane potential uDG of DG granule cells is
subject to excitatory currents Iexc from context cell inputs and a
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place-specific current injection Iext (see below):

C
duDG

dt
= −gL(uDG − EL)+ Iexc + Iext.

CA3 excitatory and inhibitory cells contain an additional
inhibitory synaptic current Iinh:

C
duCA3

dt
= −gL(uCA3 − EL)+ Iexc − Iinh + Iext + C · ξ .

Here, ξ is a random variable drawn from a Gaussian distribution
with zero mean and 2mV/ms standard deviation, which serves as
background input to the CA3 attractor network, gL = 30 nS, and
C = 300 pF. CA3 excitatory and inhibitory cells have an absolute
refractory period of trefr, exc = 3 ms and trefr, inh = 4 ms. The
after-spike reset value is EL = −70.6 mV for all populations.

2.3. Network Layout, Topology, and
Connectivity
The 6,400 DG cells and 6,400 CA3 cells were arranged on a
regular 80 × 80 grid, ordered by their place field centers. To
facilitate display of weight matrices, each of the 6,400 neurons
of the “Home” and the “Away” context population projected
to a single DG neuron. The strength of synapses from DG to
CA3 excitatory cells and at CA3 recurrent excitatory synapses
follows a Gaussian connectivity pattern, resulting in strong
local connectivity. The projections to, from, and among CA3
inhibitory neurons are all-to-all with uniform synaptic strengths
within each projection (for exact values, see Table 1).

For consistency with spatial learning, a bounded network
topology was chosen. To avoid edge effects, the 80× 80 network
grid was identified with a virtual environment extending beyond
the simulated arena. As pilot simulations indicated that smaller
sizes of the attractor bump were accompanied by very high firing
rates of CA3 excitatory cells, less consistent with experimental
data, we chose network parameters that resulted in a broader
bump with lower individual firing rates. Therefore, for the
simulation of the task used by Pfeiffer and Foster (2013), the
entire network was identified with a virtual environment size of
4.2m × 4.2m, of which only an interior section of 2m × 2m
could be visited by the simulated rat.

2.4. Synapses
Current-based synapses were used with instantaneous rise and
exponential decay:

τ{exc, inh}
dI{exc, inh}

dt
= −I{exc, inh},

where τexc = 6 ms, and τinh = 2ms. Following recent proposals
for the generation of sharp wave-ripple oscillations by recurrent
inhibition (Schlingloff et al., 2014; Stark et al., 2014), connections
between and within both CA3 populations had a uniform 2.5 ms
delay.

TABLE 1 | Network connectivity.

Synapse group Connectivity Weight type Weight

“Home” context to One-to-one Learnable Initial:

DG Random uniform initialization [0 ... 0.3 nA]

“Away” context to One-to-one Learnable Initial:

DG Random uniform initialization [0 ... 0.3 nA]

DG to CA3 exc. Local, within Gaussian profile, 6.6 nA (max.)

50 cm distance σDG-CA3 = 50 cm, fixed

CA3 exc. recurrent All-to-all, Gaussian profile, 0.82 nA (max.)

no autapses σCA3 = 50 cm,

fixed, inactive during

simulated rat movement

CA3 exc. to CA3 All-to-all Uniform, fixed, inactive 9.75 pA

interneurons during running

CA3 interneurons All-to-all Uniform, fixed 0.468 nA

recurrent

CA3 interneurons All-to-all Uniform, fixed 18.45 pA

to CA3 exc.

2.5. Place Fields
Place-specific firing in DG granule cells and CA3 pyramidal cells
was generated by external stimulation:

Iext,j(t) = Imax exp

(

−
(x− xj)

2

σ 2
PF

)

,

where x is the simulated animal’s current location and xj is the
place field center, Imax = 10 nA and σPF = 25 cm.

2.6. Synaptic Plasticity
Learning at the synapses from context cells onto DG granule
cells requires pre- and postsynaptic activity and the presence of
a reward-related signal such as a transient increase or decrease in
postsynaptic dopamine, which has been shown to modulate the
plasticity of DG input synapses (Manahan-Vaughan and Kulla,
2003). We assumed a simplified phasic reward signal in DG
granule cells. This signal takes a value of 1 immediately when the
simulated rat finds reward, or −1 when it does not find reward
at a position where it searched for it (for details of the behavioral
simulation, see subsection “Simulated Task”). After 100 ms, the
reward signal is reset to zero. The weight change is given by:

dwij

dt
= αL[xi(t)yj(t)− wij]

+ if Rj = 1, and

dwij

dt
= −αLxi(t)yj(t) if Rj = −1,
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where xi and yj denote pre- and postsynaptic activity traces,

which are updated whenever the respective neuron spikes:

τtrace
dx

dt
= −x

x(t) = 1 if t = tspike.

Rj indicates the postsynaptic reward signal, αL = 50 nA/s is the
learning rate, τtrace = 100 ms, and [x]+ = max(x, 0). This form
of learning rule avoids the problem termed “occupancy bias”:
Standard Hebbian learning would lead to repeated potentiation
every time a rewarded location was visited, creating a dependency
of weight strength on the number of visits to that location
(Csizmadia and Muller, 2008). For related approaches, see
Redish and Touretzky (1998); Lisman and Otmakhova (2001);
Csizmadia and Muller (2008); Vitay and Hamker (2010).

2.7. Data Analysis
During sequence generation embedded in behavioral
simulations, the activity bump’s center of mass was computed
in a sliding window of 4 ms length. Additionally, to compare
different network parameter settings under identical conditions,
we generated sequences for all network configurations using
context-to-DG weight matrices obtained during behavioral
simulations. During these analyses, we recorded spiking activity
in time frames of 5 ms length, advanced in increments of 2 ms.
For each frame, we decoded the location represented by spiking
activity using a Bayesian decoding method used in previous
experimental studies (Davidson et al., 2009; Pfeiffer and Foster,
2013). The posterior probability of the location X represented in
neural activity to be a potential location x out of a set of position
bins {xj}

M
j=1, given an observation r = {ri}

N
i=1 of neural activity R,

is:

P[X = x|R = r] =

(

∏N
i=1 fi(x)

ri
)

e−τ
∑N

i=1 fi(x)

∑M
j=1

(

∏N
i=1 fi(xj)

ri

)

e−τ
∑N

i=1 fi(xj)
, (1)

where fi is the spatial tuning curve of unit i, ri is its spike
count, and τ is the length of the decoding window. This
approach assumes that all N units follow independent Poisson
firing statistics, and that occupancy is uniform across locations
(Davidson et al., 2009). Although we have not examined the
degree to which network activity matches the assumption of
independent firing, we verified that the Bayesian estimates were
highly similar to the results obtained from a population vector
decoding scheme (data not shown). The maximum number of
cells from which we could simultaneously decode using Equation
(1) varied between approximately 200 and 500 cells depending
on decoding bin size and activity patterns. Larger sample sizes
resulted in all-zero posterior probability distributions, likely
owing to the numerical inaccuracies caused by multiplying large
numbers of near-zero values in the decoding formula (Leibold,
2011). We therefore subdivided the network randomly into 40
subsets of 160 cells each and performed Bayesian decoding on
each subset independently, with a spatial bin size of 2.625 cm.
For each subset, position estimates per frame were determined as

the center of mass of the posterior probability distribution. For
display, posterior probability distributions were summed across
time. Additionally, for the display in Figure 5, we averaged across
the 40 resulting posterior probability distributions, and obtained
position estimates from the resulting mean values.

To discriminate between jump-like and gradual movement
of the activity bump, we used two different criteria: First, we
determined the bump movement per frame as the Euclidean
distance between the locations decoded from consecutive frames.
Following previous experimental studies, sequential events in
which the maximum movement per frame exceeded a certain
threshold were classified as jump-like (Pfeiffer and Foster, 2013,
2015), with a threshold value of 40 cm. As an additional criterion,
we applied the mean shift clustering algorithm (Comaniciu and
Meer, 2002) to detect the number and locations of local maxima
in the spatial distribution of spiking activity across the network
sheet, with an adaptive bandwidth parameter (default value 52.5
cm). The first 50 ms of each simulated sequence, during which
the attractor bump formed at its initial location, were excluded
from this analysis.

2.8. Simulation Environment
The full model was implemented using the Brian simulator,
version 1.4.1 (Goodman and Brette, 2009). As all differential
equations in the model are linear, exact integration was used,
with an integration step of 0.2 ms. For additional analyses
comparing different network parameter settings, the sequence
generation component of the model was implemented using the
ANNarchy simulator, version 4.5 (Vitay et al., 2015). Code will
be published in the ModelDB database following publication
(http://senselab.med.yale.edu/ModelDB/).

2.9. Simulated Task
We simulate both neural activity and rat behavior during the
spatial learning task described by Pfeiffer and Foster (2013). At
the start of a block of trials, the virtual rat is placed at random
in one of the corners of the 2 m × 2 m simulated square arena
(Figure 1). During the first trial, the rat has to search for the
“Home” reward location, which remains fixed during the entire
block of trials. “Home” locations are counterbalanced across
networks. “Home” trials alternate with “Random” trials, in which
the simulated reward is delivered at a random well.

The time course of simulations during a single trial can be
summarized as follows: At the beginning of each trial, the context
population that corresponds to the trial type is activated, with a
Poisson activity of 10 Hz. A single contextually biased place-cell
sequence is initiated, followed by navigation toward the location
associated with the end point of the sequence (Figures 3A–F).
Generation of a sequence involves activating the CA3 recurrent
excitatory synapses and initializing the attractor network by
injecting a place-specific external current into CA3 place cells, so
that an activity bump representing the current location emerges
within 50 ms. Next, the “context population” firing rates are
increased to 200 Hz, consistent with the hypothesis that cortical
excitatory drive can shape replay activity (Battaglia et al., 2011).
After another 350 ms, the location of the bump center at the end
of the sequence generation phase is taken as the next navigational
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FIGURE 3 | Simulated rat behavior and behavioral performance. (A) The virtual rat’s physical location at the start of the trial. (B) A sequence is generated that

originates at the rat’s current location. (C) The simulated rat navigates toward the location depicted by the sequence end point. (D) A focal search is performed

around the location defined by the sequence end point. (E) Random search until reward is found. (F) A modulatory signal is triggered by reward. (G) Reward latencies

across trials, mean ± s.e.m. Reward latencies in Home trial phases decrease sharply after the first trial, indicating that the simulated rat takes a short path to the

Home location from the second trial on.

goal, which the virtual rat then approaches in a vector-based
fashion.

Movement is executed in steps of 100 ms at a constant speed
of 15 cm/s, with noise drawn from a Gaussian distribution
with zero mean and 0.5 cm variance added to the x and y
components of the movement vector during every motion step.
During navigation, DG and CA3 place cells receive a place-
specific external stimulation current when the rat’s position
overlaps their place field. At the same time, the recurrent
connections between CA3 place cells are inactivated to reduce
the computational load. (Note that this does not affect simulation
results: The reduced activity of context populations ensures that
DG and CA3 activity signals only the current location, but
not the goal, during navigation. Further, synaptic plasticity at
the context-to-DG projection is not affected by CA3 activity
levels. Finally, model CA3 neurons as well as synapses do not
contain any variables depending on spike history, which means
that the model dynamics during sequence generation are fully
determined by the initial bump location and the cortex-to-DG
weight matrices). If the simulated animal moves within 5 cm
of the currently baited location, reward is assumed to be found.
To model the effect of dopaminergic influence, a reward-related
signal in DG granule cells is set to a value of 1 for 100 ms and
then reset to zero to transiently enable long-term plasticity at the
lateral perforant path synapses.

If the virtual rat does not encounter the active reward location
when visiting the place defined by the last sequence’s end point,
it performs a focal search around that place, similar to the search
behavior of mice in theMorris water maze (Ruediger et al., 2012),
visiting the four feeder locations nearest to the location defined
by the sequence end point. Ultimately, random exploration is
performed until the reward location is found, in a form of
directed search that will eventually probe all feeder locations
exactly once. If reward is not found near the location signaled by
the previous sequence end point, the reward signal is immediately
set to a value of−1 for 100 ms.

3. RESULTS

3.1. Behavioral Performance
We first evaluate the model’s behavioral performance in the
simulated memory-guided navigation task described by Pfeiffer

and Foster (2013). Across all trials, reward latencies in Home
trial phases are substantially lower on average than in Away
trial phases (14.8 vs. 74.8 s), demonstrating that the model
learns and uses the spatio-temporal reward contingencies. The
temporal evolution of reward latencies shows that the mean
duration to reach the Home reward location decreases sharply
after initially visiting the Home location in the first trial
(Figure 3G), consistent with the behavioral results reported
by Pfeiffer and Foster (2013). This one-shot learning pattern
is similar to the rapid hippocampus-dependent re-learning of
goal locations within familiar environments after a contingency
switch (Steele andMorris, 1999).We next describe the generation
and development of place-cell sequences, resulting frommemory
recall of learned goal locations, in more detail.

3.2. Goal Encoding by Reward-Based
Plasticity of Context-to-DG Synapses
In our model of spatial learning, the strength of context-
to-DG synapses is modifiable by reward-modulated plasticity,
implementing a form of goal memory (Seidenbecher et al., 1997);
see Figure 4 for illustration. Consequently, lasting changes in
synaptic efficacy will lead to a differentiation of post-synaptic DG
activity during periods of increased context population activity,
potentially biasing hippocampal activity during SWRs.

As a result of reward-based learning, a weight pattern emerges
at context-to-DG synapses that reflects the distance between the
post-synaptic cell’s place field and the reward location. Weights
were initially assigned a low random value. We used a Hebbian
learning rule with an eligibility trace, gated by the presence of
a reward-related signal, so that a positive reward signal led to
long-term potentiation and a negative reward signal induced
long-term depression of weights. Following the first visit to the
Home reward location, synapses between the Home context
population and DG neurons show stronger weights onto DG
neurons with place fields closer to the reward location (Figure 4,
left). Searching for reward at a non-rewarded location caused
weights at synapses onto recently active place cells to decrease
considerably (Figure 5, bottom right), indicating that this type of
plasticity supports rapid relearning.

To summarize, our learning rule led to increased
strengthening of context-to-DG synapses onto DG cells
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FIGURE 4 | Illustration of context-specific spatial learning, based on simulation data. Reward-dependent Hebbian plasticity potentiates synapses between the

currently active context population and DG cells with place fields near the reward location. Left: Movement trajectory and resulting pattern of weights between

“Home” context cells and DG after discovering the reward location in a “Home” trial phase. Right: Movement trajectory and resulting pattern of weights between

Away context cells and DG after discovering the reward location in a Random trial phase. As weight changes in a given trial occur at only one of the two projections

originating at “Home” or “Away” context cells, we used different color maps to emphasize this contextual selectivity in learning. Line width illustrates the accumulated

connection strength schematically.

with place fields closer to a location persistently paired with
reward, and led to rapid weakening of synapses in the case of
unexpected reward omission.

3.3. Generation of Goal-Anticipating
Place-Cell Sequences
We next describe the effect of potentiated context-to-DG weights
on the temporal evolution of network activity. At the beginning
of the first Home and Random trials, when input synapses
remained in the weak, homogeneous initial state before the
onset of contextual goal memory formation, the activity bump
of CA3 neurons persisted at the location where it was initialized,
corresponding to the virtual rat’s current position (Figure 5, top
left). A raster plot of the underlying spiking activity is shown
in Figure 6A. The simulated rat therefore performed a random
search strategy until reward was found, inducing reward-based
potentiation of synapses between the “Home” context population
and DG cells with a place field near the Home location. A similar
pattern is repeated during the first Away trial phase, but with
modifications occurring at the synapses between “Away” context
cells and DG place cells (Figure 5, top right).

From the second “Home” trial on, alterations in synaptic
strength at “Home” context-to-DG synapses caused substantial
heterogeneity in DG firing rates (Figure 6B), sufficient to disrupt
the stability of the initial activity state of the CA3 continuous
attractor network. As a result, the bump center gradually moved
toward those cells receiving maximum input, associated with

place fields near the reward location (Figure 5, bottom left). For
an overview of the first twoHome and Away trial simulations, see
Supplemental Video 1. The development of place-cell sequence
trajectories shows a sudden onset in the second trial, as can
be seen in the time course of distance traveled by the attractor
bump (Figure 7A). The accuracy with which the Home location
is represented in population activity at the end of the sequence
converges rapidly, with a remaining mean error of approx. 10–15
cm (Figure 7B), well sufficient to disambiguate reward locations
separated by approx. 33 cm in the virtual maze.

To illustrate the spatial distribution of sequential activity, we

rotated and scaled sequence trajectories relative to a template

direction corresponding to a straight-line movement from the

simulated rat’s position to the active Home location or the

previous Random location (Pfeiffer and Foster, 2013). This

analysis confirms that place-cell sequences during Home trial
phases have a strong tendency to proceed toward the Home
feeder location (Figures 8A,C,E). During Away trial phases,
place-cell sequences are somewhat biased to proceed toward
the previous Random location, but show a broader spatial
distribution than in Home trial phases (Figures 8B,D,F). In
comparison, Pfeiffer and Foster (2013) have observed a broader
spatial distribution of sequence trajectories during Home trial
phases, with a somewhat weaker bias toward the Home location
than in our model data. Further, the experimental data showed a
tendency of trajectories going away from the previous Random
location during Random trial phases. These differences can
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FIGURE 5 | Development of synaptic weights, sequential activity and goal-directed behavior. Time course of the first two simulated trials showing the evolution of

context-to-DG synaptic weights, place-cell sequences and behavior. From left to right: Context-to-DG weight matrix at the start of the Home trial phase, decoded

sequence trajectory, movement trajectory, context-to-DG weight matrix at the end of the Home trial phase, and same for Away trial phase. Each synaptic weight value

is plotted at the location of its corresponding postsynaptic place field center. In the first Home trial (top left), the activity bump persists at the rat’s starting location

(lower right corner) as no information about the goal location is encoded in Home context-to-DG synapses. The simulated rat therefore performs a random search

until the Home reward location is found, triggering synaptic plasticity. A similar pattern is repeated in the first Random trial phase (top right). At the start of the second

Home trial (left center), Home context-to-DG synapses encode information about the goal location, sufficient to bias the attractor network bump to move toward the

Home location, creating sequential activity. The virtual rat finds reward by navigating toward the location signaled by the sequence end point. Note that the sequence

trajectory is a novel path not previously visited by the virtual rat. In the second Random trial phase (right center), the corresponding place-cell sequence guides the

rat toward the previous Random reward location, which is now inactive, leading to a weight decrease, and followed by random foraging for the next reward.

be attributed to our modeling goal of generating sequential
activity for goal-prediction with high accuracy, as we have

simulated a single place-cell sequence per trial phase formodeling

convenience. Additional analyses showed that the pattern of

relatively straight movement toward the goal changed toward

a broader pattern when spatially correlated noise was added to
the synaptic matrix, introducing local excitability biases (Renart
et al., 2003). In this setting, mean reward latencies increased, as
the goal location was depicted with a lower accuracy (data not
shown). We will return to this point in the Discussion.

3.4. Quantification of Smooth vs.
Jump-Like Activity Transitions
To further test the validity of our continuous attractor
network approach as a model of hippocampal sequential
activity, we examined the conditions under which our model
generated smoothly changing activity patterns rather than abrupt
transitions. This is particularly warranted as continuous attractor
network models are known to give rise to discrete, jump-like
movement of the activity peak whenever external stimulation
is applied at locations far away from the current activity peak
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FIGURE 6 | Spiking activity during sequence generation and subsequent navigation. Prior to sequence onset, recurrent transmission is switched on, and a

place-specific external current is delivered briefly to CA3 place cells. During this period, context cells fire at 10 Hz, and recurrent dynamics are dominant in CA3. After

50 ms, when the current location is reliably represented by the CA3 network activity bump, context firing rates are increased. The resulting increase in feed-forward

excitation via context-to-DG and DG-CA3 synapses causes the onset of sequence generation. Once sequential activity has terminated, navigation continues,

accompanied by place cell activity in DG and CA3. (A) Persistent CA3 activity in the presence of homogeneous input before learning. (B) As a result of increased

context drive, and following reward-dependent learning, model DG cells with place fields near the reward location fire at elevated rates, providing a spatial bias to the

CA3 continuous attractor network. In response to this bias, the CA3 activity bump gradually centers on those cells with place fields near the reward location. As the

activity of cortical context cells is homogeneous across the population, only a subset of 50 cells is shown for clarity of display.

FIGURE 7 | Onset of goal representation. (A) Start-to-end distance of sequences, mean ± s.e.m. Bump movement is negligible in the first Home and Random trial

phases when no information about the reward location has been encoded in context-to-DG synapses. From the second trial on, sequence trajectories span a

considerable distance. (B) Remaining distance between sequence endpoint and reward location during Home trial phases. The Home reward location is represented

with high accuracy from the second Home trial on. Data pooled across 144 networks. Lower end, red line and upper end of the box show lower quartile, median and

upper quartile. Whiskers extend up to 1.5 times the interquartile range (IQR). Crosses denote points extending more than 1.5 times IQR beyond the median.

(Ben-Yishai et al., 1995; Degris et al., 2004; Fung et al., 2008), as in
the present setting. In recent experiments involving high-density
recordings, smooth place-cell sequence trajectories have been
discriminated from jump-like sequential activity patterns via a
maximum jump size criterion applied to the results of Bayesian
decoding: Events in which the distance between the locations
decoded from consecutive time windows exceeded a certain
threshold were classified as “jump-like” and excluded from
further analysis (Pfeiffer and Foster, 2013, 2015). For comparison
with these data, we apply similar criteria to the activity patterns
generated by our network, in a range of parameter settings. In

our model, three main design parameters determine the range at
which the transition between smooth and jump-like movement
occurs: The widths of the Gaussian weight profiles at both the
DG-CA3 and the CA3 recurrent excitatory connections, σDG−CA3

and σCA3, and the strength of DG-CA3 synapses. To analyse
bump movement patterns for different parameter settings, we
generated nine different network setups and used these to
simulate sequential activity with context-to-DG weight matrices
stored during the behavioral simulations described above. We
used data from twelve out of all 144 networks for this analysis,
summing to a total of 480 trials. For an overview of the bump
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FIGURE 8 | Spatial distribution of sequence trajectories. For comparison with Figure 4A,B in Pfeiffer and Foster (2013), we scaled and rotated sequence trajectories

to illustrate their spatial distribution relative to the Home reward location (A,C,E) for Home trials, or relative to the previous Random reward location during Random

trials (B,D,F). (A,B) Posterior probability sums of 480 sequences obtained from 12 networks using Bayesian decoding. (C,D) Corresponding decoded sequence

trajectories. (E,F) Trajectories of 5,760 sequences obtained from all 144 networks using population vector decoding. Sequence trajectories in Home trial phases are

strongly biased to proceed toward the Home location (A,C,E). In Random trials, trajectories are biased to proceed toward the previous Random reward location but

show a broader spatial distribution (B,D,F).
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FIGURE 9 | Network dynamics for different connectivity parameter settings. We varied the width of the Gaussian weight profile at the DG-CA3 projection, σDG−CA3,

and the width of the CA3 recurrent excitatory weight profile, σCA3. To keep weight sums approximately constant for different connectivity widths, we scaled weight

values in proportion to corresponding σ values. Each network configuration was run with initial activation at the top left corner and cortical-DG input near the top right

corner of the sheet of cells. Spiking activity is displayed in non-overlapping windows of 80 ms length. Any cluster centers detected by the mean shift clustering

algorithm are plotted as black dots. For small bump sizes (resulting from narrower CA3 recurrent weight profiles) and narrower DG-CA3 connectivity profiles, jump-like

transitions occur (A,B,D). Gradual transitions are observed for broader DG-CA3 weight profiles (F–I), with broader bumps associated with higher movement speeds.

An intermediate regime is also possible (E). In some cases, a weak secondary bump appears without movement of the major bump (C). The default parameters used

in behavioral simulations are shown in (F).

transitions resulting from these different parameter settings, see
Figure 9. The default parameters are shown in Figure 9F. In
general, broader weight profiles at CA3 recurrent excitatory
synapses lead to broader bump sizes, more likely to overlap
with a larger range of inputs, in which case gradual movement
occurs. On the other hand, broader DG-CA3 weight profiles
increase the spatial extent of external inputs at the DG-CA3
pathway without affecting the bump size, and higher DG-CA3
weights are more likely to cause suprathreshold responses of CA3
cells.

For a quantitative analysis of the parameter settings shown
in Figure 9, we classified sequences as “non-jump” or “jump”

events and determined the range at which the transition between
the two regimes occurs. We defined this transition distance
as the value d which best separated the distributions of start-
to-end distances of non-jump and jump-like sequences, such
that a proportion of 1−α of jump-like sequences had a start-
to-end distance greater than d, and an equal proportion of
non-jump sequences had a start-to-end distance less than d.
Resulting α values ranged between zero and 0.3. Using a
maximum jump size criterion for event classification revealed
transition distances between approx. 90 and 200 cm (a case in
which no jump transitions were detected), with broader DG-
CA3 weight profiles associated with larger transition distances
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FIGURE 10 | Quantitative analysis of bump dynamics for the range of network parameters shown in Figure 9. (A) Transition distances, defined as the start-to-end

distance of sequences at which the transition between smooth and jump-like events occurs, across network parameter settings. Results are shown for event

classification based on either maximum jump size (blue) or maximum number of activity clusters per frame (red). The two criteria are in good agreement for narrower

weight profiles at both the DG-CA3 and the CA3 recurrent connections. For broader weight profiles at both projections, associated with higher average bump speeds,

the maximum-shift criterion diverges more strongly from the cluster-based criterion. Default simulation parameters are printed in boldface. (B) Proportion of jump-like

events across network parameter settings, as determined by the number of activity clusters. Less jump-like events are observed for broader weight profiles at both

the DG-CA3 and the CA3 recurrent excitatory connections. (C) Relation between bump movement speed and total distance traveled. For each network configuration,

a linear fit is shown along with per-trial data. Higher start-to-end distances are associated with faster bump movement for all parameters settings. In addition, larger

bump widths are associated with higher overall speed.

(Figure 10A). This criterion did not indicate a consistent effect
of the width of the CA3 recurrent weight profile, owing to
the different bump speeds associated to broader vs. narrower
bump widths (cf. Figure 9G–I). We therefore considered another
criterion based on a cluster analysis of the spatial distribution
of activity, independent of bump speed: Events in which
more than one activity cluster was detected in any of the
decoding frames were considered as jump-like transitions
(see Methods for details). For narrower profiles at both the
DG-CA3 and the CA3 recurrent connections, the transition
distances specified by this criterion were in good agreement
with those previously determined by the maximum jump size
criterion. For broader weight profiles at both connections, the
cluster-based criterion resulted in higher transition distances
than the maximum jump size criterion (Figure 10A). As
the cluster-based discrimination was more consistent across
different parameters, we determined the proportion of jump-
like relative to smooth trajectory events based on this criterion,
ranging from approx. 40% for narrow weight profiles at
both the DG-CA3 and the CA3 recurrent projections to 0%
for broader profiles at both projections (Figure 10B). For
comparison, Pfeiffer and Foster (2013) have reported percentages
of confirmed non-jump events in the range of 25–44% of
all candidate SWR events. Finally, we found that the speed
of bump movement in non-jump events, as measured by its
mean displacement across decoding frames, is a monotonically
increasing function of the start-to-end distance (Figure 10C).
This prediction may be directly tested experimentally. In
addition, larger bump widths lead to higher velocities in our
simulations.

To summarize, we can quantify the proportion of jump-

like events relative to smooth events and confirm that the vast

majority of the simulated events using our default parameters are
smooth transitions, with a mean speed dependent on the total
distance traveled.

3.5. Temporal Profile of Population
Dynamics
Our continuous attractor network model biased by spatially
localized inputs, which originate from a contextual goal memory
signal, predicts a specific temporal profile of population activity
during single SWR sequences. We first analyzed the spectral
content of the population firing rates of CA3 excitatory cells
and observed strong periodicity in the 100–250 Hz ripple band
(Figure 11A), caused by highly synchronous oscillatory activity
in CA3 inhibitory cells (Figures 6A,B). While CA3 population
firing rates were strongly oscillatory, time-averaging across the
first, second and last third of simulated sequences revealed an
activity increase in trials following reward-based learning, but
not in the initial condition: The activity of CA3 excitatory cells
grows as the attractor bump gradually moves toward those cells
receiving additional subthreshold excitation (Figures 11B,C). A
similar pattern can be observed in the subthreshold membrane
potential dynamics of CA3 place cells. Cells with a place field
near the goal, where the sequence trajectory ends, show a gradual
ramp-like depolarization over the time course of the sequence.
Cells firing early in the sequence show gradual hyperpolarization
once they have stopped firing. Finally, the membrane potential
of place cells that remain silent throughout an SWR event
shows an increasing degree of hyperpolarization over the time
course of a simulated SWR event owing to increasing CA3
population rates (Figure 11D). This prediction can be directly
tested experimentally with intracellular recording techniques. To
our knowledge, available intracellular data from place cells during
SWRs do not address this question (English et al., 2014).

4. DISCUSSION

We have presented a model that explains the learning and recall
of goal locations and the generation of place-cell sequences as
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FIGURE 11 | CA3 population activity and subthreshold membrane potential dynamics during sequence generation. (A) Representative spectrogram of CA3 excitatory

population rates, showing increased power in the 100–250 Hz ripple band. FFT spectra were computed with a Hanning window of size 1024, advanced in increments

of 2 ms. (B) Time course of CA3 excitatory population rates during sequence generation before the first trial, after the first trial, and after the fourth trial. Population

rates were smoothed with a Gaussian kernel of 2 ms width. (C) Time-average (mean ± s.e.m.) of population rates shown in (B) for early, middle, and late phases of

each sequence. Before learning, firing rates remain approximately constant. After the first rewarded trial, higher population rates are observed in the middle and last

third of a sequence relative to the first third. This effect becomes more pronounced after additional trials. (D) Representative membrane potential traces of CA3 place

cells with place field locations near the start and end points of the sequence as well as a silent cell with a place field not overlapping with the sequence trajectory. Cells

participating in the bump trajectory show ramp-like dynamics, with gradual ramping depolarization for cells firing late in the sequence, and gradual ramping

hyperpolarization for cells firing early in the sequence. Silent cells show increasing hyperpolarization across a single sequence.

interdependent processes. The model generates goal-predictive
sequential activity of place cells, including trajectories not
previously visited, as an effect of continuous attractor network
dynamics biased by memory traces at cortico-hippocampal
synapses. Importantly, this account of sequence generation does
not depend on the storage and recall of specific trajectories. The
resulting place-cell sequences support efficient goal navigation in
a memory-guided decision-making task, comparable to animal
performance in the same task (Pfeiffer and Foster, 2013).

4.1. Relation to Experimental Data
Our model uses the memory-guided decision-making task
described by Pfeiffer and Foster (2013) to demonstrate the
utility of goal-directed sequential activity in tasks requiring
high behavioral flexibility. However, Pfeiffer and Foster (2013),
observed a diversity in sequential activity patterns that occurred
in close temporal proximity, whereas we simulated only a
single sequence. While these experimental data show a bias
for sequence trajectories toward the goal location, typically
several place-cell sequences progressing into different directions
were observed prior to navigation toward the remembered goal
location, indicating a less direct involvement in navigation than
we assumed here for simplicity. This aspect is highly relevant
to the functional interpretation of awake sequential activity. A
prominent model suggests that several SWR-associated place-
cell sequences can act as “exploratory” sequences for evaluation
of competing options (Carr et al., 2011; Erdem and Hasselmo,
2012; van der Meer et al., 2012; Pezzulo et al., 2014). In line with
this view, the different trajectories associated with multiple place-
cell sequences may originate from a form of “mental navigation”
along several directions of imagined movement (e.g., Byrne et al.,
2007), potentially caused by grid cell activity driving place-
cell sequences (Erdem and Hasselmo, 2012). However, recent
parallel recordings of hippocampal place cells and grid cells in
themedial entorhinal cortex (MEC) during sleep-associated SWR
sequences have found that grid cell representations from MEC

deep layers were briefly delayed relative to place cells (Olafsdóttir
et al., 2016), and that MEC superficial layers generate replay
sequences independently of the hippocampus (O’Neill et al.,
2017). These results challenge the view that place-cell sequences
are predominantly driven by grid cell activity, highlighting the
need for other mechanisms of sequence generation.

We have departed from the following alternative hypothesis:
Rather than performing a form of mental navigation defined
by a particular direction, our method of sequence generation
requires defining a “recall context,” here defined by the reward
contingency (i.e., reward placed at the Home location vs.
placed at a random location). This approach is inspired by
the suggestion that prefrontal representations, influenced by
context and previous outcomes, may exert a bias on hippocampal
recall activity, potentially signaling optimal responses (Euston
et al., 2012; Preston and Eichenbaum, 2013). In principle, our
model allows to generate a larger number of place-cell sequences
by increasing the number of “recall context” populations,
perhaps corresponding to different hypotheses of where the
goal location may be located. However, modeling a functional
role of different sequence trajectories would require adding an
evaluation component downstream of the hippocampus, such
as the ventral striatum. Addressing the origins of the observed
variability in sequence trajectories remains a key topic for future
studies.

The present study focuses on the generation of forward-

ordered sequential activity originating at the animal’s current

location within an open-field maze, where hippocampal place

cells show no directional selectivity. By contrast, when rats

shuttle between two feeders placed at the ends of a linear track,

place cells in DG and CA1 are typically active only in one

of the two movement directions (Gothard et al., 2001), which

makes it possible to classify place-cell sequences as “forward”

or “reverse” replay. In addition, CA3 place cells tend to fire at
different locations depending on running direction (Miao et al.,
2015). We briefly discuss how our model may be extended to
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generate reverse replay sequences. First, a directional selectivity
of place cells can be obtained by incorporating a multi-chart
network structure, similar to the model by Azizi et al. (2013):
Two “directional charts” can be formed from place cells in
DG and CA3 by independently assigning two place field center
locations to each cell (one for each movement direction). To
ensure that an attractor bump can form in each chart, the
strength of recurrent synapses between CA3 place cells is
configured as a Gaussian function of distance within each chart.
Switching between charts may be based on both visual landmark
cues and proprioceptive signals (e.g., a turn). Activity of the
two cortical context populations will code for approaching a
specific feeder in the linear track setting, and switching between
these representations is likely triggered by reward delivery.
Importantly, reward associations at context-to-DG synapses may
extend to the “new” place cell chart (active after leaving the
reward location) if traces of the dopaminergic reward signal
(or, alternatively, synaptic traces of recent presynaptic cortical
context activity) persist beyond context remapping. Once reward
associations have formed, the temporal order of remapping
determines whether sequential activity will occur in a forward
or reverse direction: Whenever contextual remapping takes place
before the switch in place cell charts occurs, the secondary reward
association will drive SWR-associated place cell activity across the
previously active chart toward the opposite-end feeder, resulting
in reverse replay. However, if contextual remapping takes place
after chart switching, forward replay activity will be generated.

4.2. Relationship to Existing Models
Existing models of place-cell sequences can be broadly grouped
into three categories. First, sequence learning models assume
unidirectional strengthening of CA3 recurrent synapses during
repeated traversals of a maze segment (Jensen and Lisman, 1996;
Redish and Touretzky, 1998; Molter et al., 2007; Bush et al.,
2010; see also Levy, 1996; Chenkov et al., 2017). These models
explain the generation of forward replay sequences by strong
recurrent weights during recall. An exception is the model by
Jahnke et al. (2015) in which synchronous inputs trigger replay of
learned sequences owing to supralinear summation of dendritic
inputs. The main difference with our approach is that specific
trajectories are encoded in CA3 recurrent synapses in these
models. While explaining the generation of replay sequences
replicating trajectories stored during navigation in track-like
mazes, including large environments in which extended replay
across several SWR events has been observed (Davidson et al.,
2009), it is not obvious how these models may generalize to
open-field navigation tasks. Second, continuous attractor models
of place-cell sequences generate spatially random sequence
trajectories in the presence of firing-rate adaptation (Hopfield,
2010; Azizi et al., 2013), spike threshold adaptation (Itskov et al.,
2011), or short-term plasticity (Romani and Tsodyks, 2014).
In these models, contrary to our approach, external input to
the CA3 network serves mainly as background excitation and
is therefore assumed as spatially homogeneous. This class of
models is based on earlier work by Muller et al. (1996) and
Samsonovich and McNaughton (1997). Finally, models based on
“lingering place-cell excitability” (Foster and Wilson, 2006; Diba

and Buzsáki, 2007; Atherton et al., 2015) propose that reverse
replay sequences originate from an interplay between spatially
tuned inputs and a gradually decreasing level of inhibition.
A recent conceptual proposal provides an integrative view by
suggesting that each of the different mechanisms of sequence
generation may operate in a distinct behavioral state, and that
their coordination is mediated by neuromodulators such as
acetylcholine and dopamine (Atherton et al., 2015).

A few computational models account for the generation
of place-cell sequences with a functional role in goal-directed
behavior. The model of Erdem and Hasselmo (2012) is based
on linear exploratory “look-ahead probe” activity driven by grid
cells, and its performance in finding a known goal location
is demonstrated in a variety of open-field and structured
mazes. However, as discussed above, the assumption of grid
cells driving place-cell sequences has been questioned by
recent experimental data (Olafsdóttir et al., 2016; O’Neill
et al., 2017). In another model based on a more abstract
statistical approach, Penny et al. (2013) have shown that goal-
predictive sequential activity can be replicated by probabilistic
inference processes. Moreover, Corneil and Gerstner (2015)
have proposed a model in which a theoretically derived
“successor representation” is approximated by a continuous
attractor network to generate goal-directed sequential activity.
Their model is conceptually similar to our study, but shows
a number of differences worth highlighting. Corneil and
Gerstner (2015) have combined a mathematical analysis with
a relatively abstract network implementation and presented
a qualitative prediction in terms of the effect of place field
sizes, which was directly linked to the attractor bump size in
their network. By contrast, our approach using a large-scale
spiking network with physiologically interpretable parameters
integrates reward-based synaptic plasticity as a model of goal
learning and allows detailed comparisons of the network’s spiking
dynamics to experimental data. In addition, the present study
offers quantitative measures of the transition between smooth
and jump-like activity patterns as a function of the model
parameters.

Previous models of spatial learning differ in the way they
can deal with changing goals. In a number of models, an
association between place cell activity and a direction toward a
goal location is learned. A distinct place cell map representation
for each goal is required both in these models and in another
model in which place cells cluster near a goal location to
create a gradient to be followed (Gerstner and Abbott, 1997;
Vasilaki et al., 2009; Clearwater and Bilkey, 2012). In the
Burgess et al. (1994) model, the direction toward the goal
is represented by a set of “goal cells”. Here, multiple goals
could be represented by different sets of goal cells. Considering
the range of goal-finding, the size of the largest place fields
determines performance in the Burgess et al. (1994) model. In
our model, the range of goal-finding depends on network activity
levels during simulated SWRs, as sequential activity requires
the attractor bump to overlap with potentiated context-to-DG
weights convoluted by the DG-CA3 connectivity pattern. Finally,
the model proposed by Foster et al. (2000) uses a learned spatial
coordinate function to derive abstract “goal coordinates”, which
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can be flexibly updated. Our model, by contrast, implements
the flexible contextual encoding and recall of goal locations as a
neural-level mechanism.

4.3. Physiological Evidence for the Model
Mechanisms
In its essence, the functioning of our model depends on
continuous attractor dynamics combined with external inputs
modifiable by goal learning. We have hypothesized that these
functions may be mapped onto a cortico-DG-CA3 pathway,
and we briefly review relevant experimental evidence. First,
contextual biases in cortical activity are key to the context-specific
learning of goal locations, which in turn allows to bias the content
of place-cell sequences in our model. Representations of task
phase or temporal context have been reported in prefrontal areas
(Hyman et al., 2012; Waskom et al., 2014). Several pathways
may transmit these contextual codes from the prefrontal cortex
to the hippocampus. Recent studies observed projections from
anterior cingulate cortex to terminate in the CA3 and CA1
subfields, but not in the DG (Ito et al., 2015; Rajasethupathy
et al., 2015). However, prefrontal areas project to the perirhinal
and lateral entorhinal cortices (Apergis-Schoute and Paré, 2006),
which innervate the dentate gyrus, and it has been suggested
that this pathway may allow prefrontal control over memory
retrieval (Preston and Eichenbaum, 2013), consistent with our
assumptions.

We have assumed that reward-dependent plasticity is
expressed at cortico-DG synapses, as the dentate gyrus, but
not CA3, receives noradrenergic and dopaminergic innervation
(Amaral and Lavenex, 2006), associated with modulation of
plasticity (Seidenbecher et al., 1997; Manahan-Vaughan and
Kulla, 2003; Straube et al., 2003; Hamilton et al., 2010; Yang
and Dani, 2014; Hansen and Manahan-Vaughan, 2015; Takeuchi
et al., 2016). Noradrenergic and dopaminergic terminals are also
present in area CA1 (Amaral and Lavenex, 2006). Considering
that continuous attractor network dynamics do not require
recurrent synaptic connectivity as found in CA3, but can also be
based on cross-inhibition (Song and Wang, 2005), this suggests
that the functioning of our model may alternatively be mapped
onto the direct PFC-CA1 pathway.

We have hypothesized that DG activity can bias the content
of hippocampal sequential activity, an assumption which, to our
knowledge, has not yet been experimentally tested. Available data
do support an influence of dentate gyrus activity both on the
occurrence probability of SWR episodes and onCA3 slow gamma
activity. During slow-wave sleep, Sullivan et al. (2011) observed
that ripple events occurred more frequently in the 250 ms
following “UP-DOWN” transitions (i.e., from states of average
to high DG activity to states of low DG activity) than in the 250
ms preceding those transitions. However, the same study also
noted that the relative timing of peak SWR activity between CA1
and DG was inconsistent across animals, indicating that caution
must be applied to interpretations regarding causality. During
awake behavior, Hsiao et al. (2016) have investigated the relation
between gamma rhythmic activity in DG and CA3. Their study
reported directional causal influences of DG slow gamma on CA3

slow gamma, measured by Granger causality analysis, and phase-
locking of DG place-cell spikes to CA3 slow gamma, indicating
that the influence of DG on CA3 may rely on direct excitatory
synaptic transmission from DG to CA3. Further, increased levels
of slow gamma activity have been observed during awake SWR
episodes (Carr et al., 2012). Finally, in a radial maze task, Sasaki
et al. (2014) have observed that awake SWR events occurring at
reward sites were absent in DG-lesioned rats, while ripple events
occurring at the maze stem were unaffected. Taken together,
these findings suggest that DG activity can influence CA3 activity
during sharp-wave ripples.

Our proposed role for CA3 in the recall of goal locations
is consistent with the observation of deficits in spatial memory
retrieval following lesions of the CA3 subfield (Brun et al., 2002).
We have further hypothesized that the recall dynamics in CA3
can be modeled by continuous attractor network dynamics.
Although this assumption is shared by a number of previous
models as discussed above, it has been noted that testing
the continuous attractor hypothesis experimentally has proved
challenging (Knierim and Zhang, 2012). Recently, Pfeiffer and
Foster (2015) have argued for the presence of discrete attractor
(or autoassociative) dynamics in place-cell sequences, as they
found the step sizes of decoded sequence trajectories to be
temporally correlated with slow-gamma oscillations, consistent
with step-like transitions between attractor patterns. However,
we note that discrete, pulse-like bursts of oscillatory activity
were also observed in a model in which a graded, rather than
discrete, structure of recurrent connectivity between place cells
emerged by sequence learning (Jahnke et al., 2015), suggesting
that it may prove difficult to accurately discriminate between
a spatially discrete structure of place-cell sequences and a
predominantly temporal discretization resulting from strong
population oscillations.

4.4. Predictions
A key prediction of our model is that DG cells with place
fields near the goal location should display sustained firing
throughout place-cell sequences which proceed toward that goal.
This contrasts with the sequential activity patterns observed in
CA1 place cells and, recently, MEC grid cells (O’Neill et al.,
2017). To our knowledge, the locations represented in DG and
CA3 activity during SWR events have not yet been specifically
examined. Interestingly, sustained representations in perirhinal
neurons were recently observed during a cued spatial decision-
making task (Bos et al., 2017). In addition, our model shares
several predictions with other continuous attractor network
models biased by external inputs. We have shown that the
propagation speed of place-cell sequences is a function of their
start-to-end distance in our model. Furthermore, ramp-like
temporal profiles are observed both in CA3 population rates
and in subthreshold membrane potential dynamics over the time
course of single sequences. These predictions can be directly
tested experimentally.

In addition, our model predicts that both sequence generation
and flexible goal navigation will be impaired if any of its
critical components – contextual coding, reward-based plasticity
and continuous attractor dynamics – are interfered with. This
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relates to experimental studies in which multi-stage synaptic
transmission between prefrontal areas and dentate granule cells
(e.g., via perirhinal and lateral entorhinal cortices) has been
functionally inactivated (Lu et al., 2013), or involving NMDA
receptor deletion in the dentate gyrus (McHugh et al., 2007;
Bannerman et al., 2012). To our knowledge, the potential effect
of these manipulations on SWR-associated place cell sequences
has not yet been investigated. Moreover, Suh et al. (2013)
have studied hippocampal sequential activity in mice lacking
the fCNB1 gene in CA1 and the dentate gyrus. While this
manipulation has been shown to affect plasticity at CA3-CA1
synapses, accompanied by deficits in tasks involving changing
goals (Zeng et al., 2001), it likely causes similar effects at the
lateral perforant path synapses onto DG granule cells. In the
framework of our model, the impairments in SWR-associated
replay reported by Suh et al. (2013) can be explained by
impairments in plasticity at DG inputs.

4.5. Limitations
As this study focuses on the potential role of plasticity at
DG inputs in the generation of place-cell sequences, we
have assumed that CA3 recurrent synapses are non-plastic
and show a symmetric, map-like weight profile. By contrast,
several experimental results obtained in track-like environments
have provided evidence for experience-dependent asymmetric
potentiation of CA3 recurrent synapses, much like a sequence
learning process (Mehta et al., 2000; Ekstrom et al., 2001;
Lee et al., 2004). In our view, these contrasting hypotheses
about the weight structure of CA3 recurrent synapses can be
reconciled in the following way: It has been shown that triplet-
based spike timing-dependent synaptic plasticity (STDP) rules
(Pfister and Gerstner, 2006, see also Sjöström et al., 2001)
are capable of generating asymmetric weight profiles in the
presence of systematic timing differences between neurons,
and a symmetric weight structure in the presence of rate
correlations without a temporal code (Bush et al., 2010; Clopath
et al., 2010). We therefore hypothesize that in open field
navigation, CA3 recurrent weights will be symmetric, reflecting
the rate correlations between overlapping place cells in the
absence of any specific directional bias during running. In
track-based navigation tasks, however, an asymmetric profile
of CA3 recurrent weights is likely to emerge given the highly
sequential structure of the task. In our interpretation, these task-
specific weight profilesmay affect the spatiotemporal dynamics of
sequence trajectories: The finding of an approximately constant
propagation speed of place-cell sequences across a large track-
like environment Davidson et al. (2009) is potentially consistent
with a sequence recall process, while our simulation results
show a distance-dependent speed profile of sequence trajectories.
Further, we hypothesize that our model may be generalized to
episodic memory recall in the non-spatial domain, e.g., odor
sequences (DeVito and Eichenbaum, 2011) or lists of arbitrary
items (Kahana, 1996) if plasticity at CA3 recurrent synapses is
incorporated.

For modeling convenience, we have incorporated several
idealizations: As the focus on this work is on the dynamics
of a recall process biased by contextual input, these context

representations are hard-wired in our model. However, we have
recently demonstrated how prefrontal category representations
can emerge in a rewarded task (Villagrasa et al., 2016), a
mechanism which will be integrated into this model at a
later stage. For simplicity, we have considered DG cells with
a single place field, although multiple place fields have been
reported for DG granule cells (Jung and McNaughton, 1996;
Leutgeb et al., 2007; Neunuebel and Knierim, 2012). Whether
this has any implications for the mechanism proposed here
requires further investigation. Furthermore, we have modeled
hippocampal subfield CA3 but not CA1, from which most
experimental recordings of hippocampal sequential activity are
obtained. Previous studies have shown that sequences in area
CA1 can be inherited from area CA3 (Itskov et al., 2011; Jaramillo
et al., 2014), and we therefore assume that if a CA1 layer was
added to our network model, it would show sequential activity
with a similar structure as in our CA3 layer. We have not
explicitly modeled the mechanism by which the CA3 network is
initialized to represent the animal’s current position. In models
of look-ahead (or “mind-travel”), duringmovement-related theta
rhythm, a hippocampal representation of current position is
generated based on entorhinal grid cell inputs (Sanders et al.,
2015). During SWR-related place-cell sequences, this mechanism
may depend on the CA2 region of the hippocampus (Kay et al.,
2016, see also Oliva et al., 2016). Finally, it has been suggested that
information exchange between hippocampus and mPFC may
take place in both directions (Euston et al., 2012; Jadhav et al.,
2012; Preston and Eichenbaum, 2013). Investigating the influence
of hippocampal output on neocortical representations is a key
challenge for future research.

4.6. Summary
To conclude, we have shown how goal-anticipating place-
cell sequences may originate from the combined effects of
neocortical contextual coding, goalmemory formation at cortico-
hippocampal synapses, and continuous attractor dynamics,
without storage of individual trajectories or drive by virtual
self-motion signals. We have demonstrated the utility of these
sequences, which include novel trajectories across familiar
terrain, in a memory-guided navigation task. In the complex
picture of different patterns of SWR-associated place-cell
sequences which has emerged over the past two decades, this
study adds a piece to the mosaic of multiple mechanisms which
collectively may explain the variety of hippocampal sequential
activity.
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