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Abstract

Computational approaches have shown promise in contextualizing genes of interest with

known molecular interactions. In this work, we evaluate seventeen previously published

algorithms based on characteristics of their output and their performance in three tasks:

cross validation, prediction of drug targets, and behavior with random input. Our work high-

lights strengths and weaknesses of each algorithm and results in a recommendation of algo-

rithms best suited for performing different tasks.

Author summary

In our labs, we aimed to use network algorithms to contextualize hits from functional

genomics screens and gene expression studies. In order to understand how to apply these

algorithms to our data, we characterized seventeen previously published algorithms based

on characteristics of their output and their performance in three tasks: cross validation,

prediction of drug targets, and behavior with random input.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

In 2000, Schwikowski et al. demonstrated the utility of the guilt by association principle to

assign function of yeast genes by examining the function of neighboring genes in a protein-

protein interaction [1]. Since then, the scientific community has launched a massive effort to

determine protein-protein interaction (PPI) networks for model organisms [2–5] and humans

[4, 6]. At the same time, a multitude of computational approaches have been developed for

contextualizing genes of interest with known molecular interactions in order to aide
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interpretation of high throughput data. The promise of these algorithms is to connect genes of

interest into functional networks and extend the findings with additional genes relevant to the

initial list.

In our labs, we aimed to use these algorithms to contextualize hits from functional geno-

mics screens. The hits from a functional genomic screen represent a list of genes that affect a

given cellular phenotype (eg. survival [7], autophagy [8], etc.) and that are hypothesized to

belong to pathways involved in regulating the phenotype. In these screens, false negatives are

also a common concern. In the case of false negatives, genes that affect a given phenotype are

missing from the final gene list due to technical factors (eg. editing efficiency) or biological fac-

tors (eg. gene redundancy). We aimed to use network algorithms in combination with a pro-

tein-protein interaction (PPI) network to both organize hit lists into pathways and extend the

hit list through the identification of potential false negatives (i.e. genes that are connected to

hits through many PPIs but missing from the hit list).

While many of these network contextualization algorithms have been developed in acade-

mia in the context of specific biological questions [9, 10], others are part of commercially avail-

able tools (eg. Metacore, Ingenuity Pathway Analysis). However, despite the growing number

of available algorithms, to our knowledge there has been no systematic effort to benchmark

their ability to return meaningful, actionable hypotheses. In this work, we evaluate network

contextualization algorithms available in the Computational Biology for Drug Discovery

(CBDD) R package developed by Clarivate, Inc. While we were initially interested in applying

these algorithms to hits from functional genomics screens, we appreciated that these algo-

rithms might have utility for other data types with similar interpretation (eg. genes genetically

associated to a disease) or for different tasks altogether (eg. target prediction from gene expres-

sion signatures). Thus, we assessed the algorithms for three data types: genetic associations;

hits from functional genomics CRISPR screens; and gene expression signatures of drug

response. We first characterized the algorithms in terms of the novelty and number of connec-

tions (i.e. degree) of returned output nodes. We then assessed their performance using cross

validation and target prediction, with the ultimate aim of applying appropriate algorithms to

contextualize gene lists from gene expression studies or functional genomics screens.

Results

Overview of benchmarking workflow

This work evaluates the ability of seventeen algorithms to use a protein-protein interaction

(PPI) network to contextualize and extend a list of genes of interest. Fig 1 exemplifies our

workflow with a published pooled CRISPR screen of survival [7]. In this case, the hits from the

screen were provided to the network algorithms as the input “start nodes”. The type of output

depended on the type of algorithm under investigation. In the case of node prioritization and

causal regulator algorithms, the output consisted of a list of ranked network nodes (i.e. the

“output nodes”) while subnetwork ID algorithms returned a sub-network consisting of output

nodes and the connections between them.

In this work, we considered seventeen algorithms (Table 1) implemented as part of the

Computational Biology for Drug Discovery (CBDD) collaboration between Clarivate Analytics

and sixteen pharmaceutical companies. A key deliverable of CBDD is the CBDD R package

which implements published algorithms in a consistent interface. Algorithms chosen were

available in CBDD version 8.2 and had no major performance considerations that would limit

systematic benchmarking efforts. Additionally, the aim of these algorithms was consistent with

our aim: to use the network to contextualize and extend genes of interest.

Benchmarking network algorithms
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When considering these algorithms, we noted they could be divided into three main catego-

ries: (1) node prioritization algorithms that prioritize network nodes that are near input nodes,

where the definition of "near" varies depending on the specific algorithm, (2) causal regulator

algorithms that prioritize network nodes that regulate input start nodes based on their network

connectivity, and (3) subnet identification (ID) algorithms that identify regions of the network

that connect input nodes and include additional nodes for their connection if warranted. In

the case of subnetwork identification algorithms, we wanted to be able to compare to the sim-

plest case of network connections between nodes. Thus, we include output from an algorithm

called “Start Node Links”, which connects input start nodes to each out.

We applied the algorithms to hundreds of datasets from four sources, aiming to test the

algorithms on a large selection of data sets of different types and confidences. Initial characteri-

zation was performed using three types of data meant to capture phenotype- or disease-rele-

vant pathways: (1) KEGG and REACTOME pathway genesets provide high-confidence, well

characterized data sets; (2) DisGeNET provides data sets describing curated disease-gene asso-

ciations [11, 12]; and (3) hits from phenotypic CRISPR screens provide a source of real experi-

mental data most similar to our intended use case. We then turned our attention to

Connectivity Map gene expression response signatures, where the aim of applying the algo-

rithms is to predict the target of a perturbation from the response signature. The network used

in this work was a protein-protein interaction network derived by combining multiple sources:

Fig 1. Overview of network algorithm benchmarking workflow: All algorithms considered in this work required a set of

identified genes of relevant to a disease, pathway, or treatment (i.e. “start nodes”) as inputs while some also required fold

changes and/or p-values. The output of algorithms differed depending on algorithm class, with subnetwork ID algorithms

returning highly connected subnetworks; node prioritization algorithms returning ranked lists of genes; and causal regulator

algorithms returning ranked lists of hypotheses corresponding to a positive or negative effect of a given gene on the observed data.

In the case of node prioritization and causal regulator algorithms, we considered the “output nodes” as the top ranked nodes using

a rank cutoff equal to the number of input start nodes for each data set. Also, we note that subnetworks could be constructed from

the interactions among the most highly ranked genes in the output lists. For illustration purposes for this figure, we have used the

list of top 100 hits (based on p-value) from a CRISPR survival screen in the KBM7 cell line [7]. Each output network contains genes

that were included in the input start node list (blue) as well as genes that were identified by the algorithms (pink).

https://doi.org/10.1371/journal.pcbi.1007403.g001
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the STRING [13, 14] public database, the Metabase (Clarivate) manually curated database, and

interactions from affinity purification mass spectrometry experiments (Bioplex [15]).

Algorithms differ in ranking of start nodes

To determine which algorithms extended the list of interesting genes beyond the input list pro-

vided, we first sought to determine the proportion of output nodes that were contained in the

input start nodes (Fig 2A). Within the node prioritization algorithms, Random Walk, ToppNet

HITS, and GeneMANIA showed clear tendency to include start nodes in their outputs. While

Neighborhood Scoring showed an intermediate behavior, all other node prioritization algo-

rithms did not rank start nodes highly and, rather, tended to include a large number of non-

start nodes in their output. As causal regulator algorithms are intended to identify nodes that

influence the start nodes, possibly from several steps away, they generally did not have a strong

preference for including the start nodes themselves in output lists. Most subnetwork ID

Table 1. Algorithms evaluated.

Algorithm Category Network

Requirment

Brief Description Reference

Node Prioritization Algorithms: ranks nodes in the network based on connectivity or distance from start nodes
Random Walk Node

Prioritization

Models path of a random walker starting from nodes of interest and walking to other

nodes based on edges in the network

[16]

Network

Propagation

Node

Prioritization

Random walk based approach controlled for degree of nodes [17]

ToppNet KM Node

Prioritization

Directed Random walk-based method with limited number of steps [18]

ToppNet HITS Node

Prioritization

Directed Random walk-based method that also takes into account hubness and authority of nodes [18]

Overconnectivity Node

Prioritization

Enrichment of start nodes and gene sets consisting of each network nodes’ neighbors N/A

Interconnectivity Node

Prioritization

Enrichment based method that identifies nodes between other nodes [19]

Hidden Nodes Node

Prioritization

Enrichment based method that uses shortest paths to identify nodes between other nodes [20]

GeneMania Node

Prioritization

Ranks nodes by topological closeness to start nodes in an integrated network [21]

Guilt By Association Node

Prioritization

Fraction of neighbor nodes that appear in the start node list [1]

Neighborhood

Scoring

Node

Prioritization

Guilt-by-association based approach with optional weighting for start nodes [22]

Causal regulator algorithms: ranks nodes based on evidence that a perturbation to the node would result in observed changes in start nodes
Causal Reasoning Causal Regulator Signed and

Directed

Processes network and calculates directional consistency and overconnectivity with start

nodes

[23, 24]

SigNet Causal Regulator Signed and

Directed

Processes network and calculates several metrics to infer relationship with start nodes [25]

Subnetwork ID algorithms: extract a part of the input network containing many start nodes and additional connecting nodes
DIAMOnD Subnetwork ID Evaluates overconnectivity enrichment iteratively until it reaches a user-defined number

of nodes

[26]

Pathway Inference Subnetwork ID Heuristic methods that identifies subnetworks enriched in start nodes [27]

Active Modules Subnetwork ID Memetic algorithm with addition of encoding/decoding scheme and local search operator [28]

CASNet Subnetwork ID Signed Considers edge sign to determine relevance to provided start nodes [29]

HotNet1 Subnetwork ID Diffusion based method accounting for FDR [30]

HotNet2 Subnetwork ID Directed Extension of HotNet1 approach than incorporates insulated diffusion and edge direction [31]

Start Node Links Subnetwork ID Directly extracts connections between start nodes N/A

https://doi.org/10.1371/journal.pcbi.1007403.t001
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algorithms showed a strong tendency to include start nodes in their output with the exception

of DIAMOnD, which employs the overconnectivity node prioritization algorithm iteratively

until it reaches a user-defined number of nodes (in this case 200).

Algorithms differ in preference for node degree

We also sought to understand which algorithms had a tendency to include high degree nodes

in the output (i.e. “hub nodes”). Hub nodes are those with many edges (or connections) to

other nodes. Across all algorithms, several returned extremely high-degree outputs: DIA-

MOnD, Interconnectivity, and Overconnectivity (Fig 2B). We noted that these algorithms

with high-degree outputs are all enrichment-based methods. Other subnetwork ID and node

prioritization algorithms had intermediate but rather variable median degree within the out-

puts. Several of these algorithms (eg. Pathway Inference, CASNet, HotNet, HotNet2, Active

Modules, and GeneMANIA) also ranked start nodes very highly, so the median degree of the

output depended heavily on the degree of the start nodes. Of the remaining algorithms that

showed intermediate behavior by this metric (ToppNet HITS, Hidden Nodes, Random Walk,

and Network Propagation), all are walk-based.

Assessing algorithm performance by cross-validation

In assessment of performance, we performed 10 repeats of 10-fold cross-validation to deter-

mine how well the algorithms were able to recover nodes randomly excluded from the input

lists. The excluded nodes were true positives in that they were related to the remaining input

nodes on the basis of their membership in the original list. Thus, this test determined the abil-

ity of the algorithms to identify nodes biologically related to the input list. To summarize the

results from cross validation, the area under the receiver operator curve (AUROC) is often

evaluated. This metric assumes a perfect gold standard and takes into account both the true

positives with the sensitivity metric and false positives with the specificity metric. However, we

noted that our input lists were not perfect gold standards in that some nodes returned by the

algorithms might appear to be false positives but actually be biologically related to the input

list (i.e. nodes designated as false positives by the specificity calculation might actually be false

negatives in the original input list). Thus, we also computed the fraction of excluded nodes

that were recovered in the top 200 nodes returned by each algorithm (i.e. the fraction recov-

ered). This metric does not take into account false positives and instead asks the question rele-

vant to our intended use of the algorithm: if we were to follow up on the top 200 nodes

returned by the algorithms, would nodes known to be biologically relevant to the initial input

list be recovered? It is equivalent to the true positive rate (i.e. sensitivity) computed when the

top 200 nodes returned by the algorithm are considered the output of the algorithm.

We calculated the AUROC and fraction recovered for each data sets tested. To summarize

across individual data sets, we noted that variability in the metrics across datasets made it diffi-

cult to determine which were performing better than others (S1 Fig). Thus, we used a ranked-

based approach and found the fraction of data sets for which each algorithm appeared in the

top five when ranked by AUROC or fraction recovered (Fig 2C and 2D). While performance

by AUROC varied across data sources, Random Walk, Network Propagation, GeneMANIA,

Fig 2. Characterizing algorithms using average fraction of start nodes in the output to indicate tendency to return start nodes in output (A, top

left) and degree to indicate tendency to return nodes with many edges (B, top right). Cross-validation performance of algorithms as indicated

by the fraction of datasets for which the algorithm appeared in the top five when ranked by AUROC (C, bottom left) or Fraction recovered (D,

bottom right). For the fraction recovered analysis, the top nodes were defined as the 200 top-ranked nodes for node prioritization and causal

regulator algorithms or any node present in a subnetwork for subnetwork ID algorithms.

https://doi.org/10.1371/journal.pcbi.1007403.g002
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Interconnectivity, and ToppNet HITS performed among the top node prioritization algo-

rithms in all datasets tested. Subnetwork ID algorithms could only be quantified by fraction

recovered, and for these algorithms, a node was considered ‘recovered’ if it was returned in

any subnetwork (in contrast to node prioritization outputs, which were limited to the top 200

nodes). While several different algorithms performed better by the fraction recovered metric

than AUC (eg Overconnectivity and Hidden Nodes), the walk-based algorithms Network

Propagation and Random Walk performed well by both metrics in all datatypes considered

here.

Behavior of algorithms with random input lists

In order to determine whether certain nodes, particularly hub nodes, would be highly ranked

by a given algorithm regardless of the input list, we ran the algorithms on 10,000 randomly

selected input start node lists. We then compiled the output and calculated the fraction of

times that each node appeared in most highly ranked nodes. For most algorithms, a few hun-

dred nodes were ranked in the top 200 nodes in more than 5% of randomly generated list

(Table 2). Of greater concern, some algorithms highly ranked a few specific nodes in more

than 50% of the output from random input lists (eg. Causal Reasoning, InterConnectivity, Sig-

Net, Random Walk, and ToppNet—HITs), indicating that these nodes were likely to be

included in the algorithms’ outputs regardless of their importance for the particular pathway

or process of interest. For most algorithms, the tendency of nodes to be highly ranked in the

output even with randomly chosen input nodes was related to the degree of the nodes (S2 Fig).

However, degree of the nodes did not explain the behavior of all randomly included nodes for

all algorithms, and it was clear that other network properties play a role in this finding.

Use of algorithms for target identification using connectivity map

Because causal regulator algorithms were developed to identify upstream regulators of differ-

entially expressed genes, we tested their ability to accomplish this goal using the Connectivity

Map [32]. The Connectivity Map dataset captures gene differential expression after treatment

Table 2. Number of nodes ranked in top 200 when algorithms were run with 200 randomly chosen nodes as input

start nodes.

Algorithm Number of nodes highly ranked in 50%

of random input tests

Number of nodes highly ranked in 5%

of random input tests

Causal Reasoning (Pollard

Rank)

64 1129

InterConnectivity 44 1042

Hidden Nodes 0 559

SigNet 200 375

Network Propagation 0 309

ToppNet–HITs 239 289

Random Walk 4 200

Guilt by Association 0 119

ToppNet–KM 0 56

Causal Reasoning

(Enrichment Rank)

0 0

Overconnectivity 0 0

Neighborhood Scoring 0 0

GeneMania 0 0

https://doi.org/10.1371/journal.pcbi.1007403.t002
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with a drug. Thus, for this analysis, the input start nodes were the differentially expressed

genes, and the gold standard we tested was the ability to of the algorithms to highly rank the

real target(s) of the drugs used for each treatment condition. Our results (Fig 3) indicated that

for this type of data, SigNet appeared in the top ranked algorithms. However, it is important to

note that, in general, the causal regulator algorithms did not outperform several node prioriti-

zation algorithms. We hypothesized that the causal regulator algorithms relied heavily on net-

work information that was not known with sufficient accuracy in the network, which was a

composite of signed, unsigned, directed, and undirected edges from multiple sources. Thus,

we ran the connectivity map benchmarking workflow with a network that only contained high

confidence, signed, and directed edges from the curated Metabase network. With this network,

our conclusions were generally consistent (Fig 3, grey bars) although neighborhood scoring

performed much better with the Metabase network than composite network.

Discussion

Taken together, our results clearly demonstrate the strengths and weaknesses of several algo-

rithms (Table 3). The benchmarking results shown here suggest that certain categories of algo-

rithms may have different applications, and the choice of algorithm(s) may depend on the

specific use case. If the scientist is interested in re-ranking or contextualizing input start nodes,

Fig 3. Connectivity Map target prediction in the composite network or metabase signed+directed. Performance was characterized by the ability of the algorithms to

highly rank known targets of drugs. (A, top left) Fraction of datasets for which the algorithm appeared in the top five when ranked by fraction of drug targets recovered

(B, top right) Fraction of datasets for which the algorithm appeared in the top five when ranked by AUROC.

https://doi.org/10.1371/journal.pcbi.1007403.g003
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Random Walk, GeneMANIA, or subnetwork ID methods perform well. Alternatively, if the

scientist aims to extend an input list to identify new nodes that may be involved in a disease

process or response, Network Propagation or Overconnectivity would be better selections. Of

the causal regulator algorithms, SigNet performed well using one metric for tests of target pre-

diction using connectivity map response signatures. However, we note that several node prior-

itization algorithms also performed well at this task.

In this work, we have characterized the algorithms’ performance using a wide range of data

sources in order to understand the broad behavior of the algorithms. However, it is possible

that a specific dataset of interest will require a different algorithm than that recommended by

these results. For this work, we limited ourselves to algorithms implemented as part of the

CBDD collaboration, since the consistent interface resulting from this effort facilitated well

our benchmarking study. However, we note that many additional network algorithms are have

been developed in the literature (eg. [33–36]), and a comparison of additional algorithms to

those studied here in a future benchmarking effort might further refine our understanding in

what type of algorithms are appropriate for various tasks.

The majority of these results were obtained using a large network containing PPIs from

multiple sources. However, we note that we have run these same characterizations with multi-

ple networks [37] and have included results from a published, undirected network (HumanNet

[38]) for the task of extending an initial gene list to include additional biologically relevant

nodes (S3 Fig). The results for the HumanNet analysis are consistent overall with our previous

results and indicate that network propagation and random walk are top performing algorithms

even with an un-directed network. Our goal with this work was to understand which

Table 3. Summary of Algorithm Characteristics and Performance. “Tunable” indicates that the algorithm contains an tunable parameter directly related to the evalu-

ated aspect. Bold italics are used to indicate algorithms that perform well for the indicated metric with flanking asterisks distinguishing the top performers.

Algorithm Highly ranks

start nodes

Output

Degree

Highly ranks nodes with random

inputs (number of nodes in 50%/

5% of test cases)

Number of datatypes for which

algorithm is top for gene list

extension (AUROC, FR)

Number of networks for which

algorithm is top for target prediction

task (AUROC, FR)

Network

Propagation

tunable 0, 309 � 3, 2 � � 2, 0 �

Random Walk Y, tunable 0, 200 � 3, 2 � � 2, 0 �

GeneMania Y � 0, 0 � 3, 1 1, 0
Interconnectivity High 44, 1042 � 3, 3 � 1, 1
ToppNet–HITS Y, tunable 239, 289 3, 1 � 2, 2 �

Overconnectivity High � 0, 0 � � 2, 3 � 0, 1
DIAMOnD tunable n/a n/a, 2 � n/a, 2 �

ToppNet–KM tunable Low 0, 56 1, 0 0, 0

Hidden Nodes 0, 559 0, 1 � 2, 1 �

Guilt By

Association

Low 0, 119 0, 0 n/a, 0

Neighborhood

Scoring

Y, tunable Low � 0, 0 � 0, 0 0, 1

Pathway Inference Y, tunable n/a n/a, 0 n/a, 0

Active Modules Y, tunable tunable n/a n/a, 0 n/a, 0

CASNet Y n/a n/a, 0 n/a, 0

HotNet1 Y, tunable n/a n/a, 0 n/a, 0

HotNet2 Y, tunable n/a n/a, 0 n/a, 0

Start Node Links Y n/a n/a, 0 n/a, 0

Causal Reasoning Low 64, 1129 (Pollard) 0, 0 n/a, 0

SigNet High 200, 375 0, 0 � 0, 2 �

https://doi.org/10.1371/journal.pcbi.1007403.t003
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algorithms performed well for each data type and task. However, another key component to

the success of our analysis is the influence of network quality on performance. While we have

not undertaken a systematic evaluation of this question with this work, we look forward to

future benchmarking efforts to shed further light into this important aspect as well.

Finally, we did not explore individual algorithm parameters, instead relying on author rec-

ommendations. However, we note in Table 3 that some algorithms (eg. Network Propagation

and Random Walk) contain a parameter meant to alter the number of start nodes included in

the output. While a full exploration of parameter landscape for each individual algorithm is

out of scope for this work, we have noted key parameters in S1 Table and would encourage

developers of novel algorithms to consider the metrics we have explored here as means to char-

acterize their algorithm across its parameter space and as a starting framework for benchmark-

ing a novel algorithm against existing algorithms.

Materials and methods

Network algorithm parameters

For each algorithm, parameters were chosen to moderate the behavior of the algorithms (S1

Table). For example, both random walk and network propagation contain a parameter that

sets the probability that the random walk will restart at the start nodes at each step; this param-

eter was set to 0.5 for both to allow for comparison between the two algorithms. If the value of

the parameter that would result in moderate behavior was not obvious, it was set based on

author recommendations.

Data sets

In the KEGG and Reactome data sets, all sets with 20 or more nodes were included, yielding

165 sets from KEGG and 307 from Reactome. We also used curated gene-disease associations

from DisGeNet [11, 12] (accessed 7 June 2016). Nodes were included in a disease set if they

had at least 2 Pubmed IDs, and disease sets were kept if the number of associated genes was at

least 20, yielding 117 disease sets. For these data sets, where fold changes and p-values are not

available, nodes were assigned a log2 fold change of 1 and p-value of 0.05 to allow input lists to

be run with algorithms that require fold change or p-value.

To test the algorithms using real experimental data, 43 pooled CRISPR screens from Novar-

tis were used as an example set of experimental data with relatively low noise. For CRISPR

experiments, cells were transfected with a GFP-tagged target protein of interest and Cas9, then

exposed to a pooled library of sgRNA. Cells were FACS-sorted into high- and low-GFP popu-

lations, and sgRNA count was used to calculate fold changes and RSA p-values for each tar-

geted gene [8]. Genes were included in start lists if the RSA p-value < 1x10-4 and for each

experiment (which may have included multiple comparisons) the start list with length closest

to 150 genes was used. Experiments were excluded from the benchmarking data if the longest

start list was <20 genes.

The causal regulator algorithms were originally developed to identify proteins upstream of

observed gene expression changes. Since this approach was not specifically relevant to the

pathway and screening data described above, we also used data from the Connectivity Map

[32], with more appropriate parameters for the causal regulator algorithms. Data from the con-

nectivity map (v1) was downloaded from https://portals.broadinstitute.org/cmap/ and genes

were included as start nodes if they were differentially expressed more than 2-fold for the indi-

cated treatment. Because connectivity map includes some compounds in multiple settings, we

ran the algorithms on each data set independently and then used the average for summarizing

algorithm performance.

Benchmarking network algorithms

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007403 December 20, 2019 10 / 14

https://portals.broadinstitute.org/cmap/
https://doi.org/10.1371/journal.pcbi.1007403


Networks

Three different network sources were used for this work: (1) The “Composite network” con-

sisting of high-confidence, PPI or transcription factor-gene interactions from the Metabase

manually curated network, STRING [13, 14] and BioPlex [15]; (2) “MetabaseSD” consisting of

signed and directed high confidence interactions from the Metabase curated network; and (3)

HumanNet a previously published undirected network [38]. The composite network was con-

structed by combining edges from the indicated sources. In the case of the Metabase curated

network, nodes are occasionally mapped to multiple genes. In these cases, multiple edges were

included in the composite network to capture all genes represented by that network node. In

the case of STRING, only the “STRING:actions” network edges were considered high confi-

dent, PPI interactions and included in the composite network. The resultant composite net-

work consisted of 597,538 unique edges. Of these edges, 22.6% were signed and 36.8% were

directed. For algorithms that required direction, any undirected edge was considered in both

directions. For those that required sign, a positive sign was assumed for un-signed edges.

Calculation of start node fraction and median degree

For the purposes of these calculations, “output nodes” were considered to be the top n nodes

ranked by the algorithm, where n was the length of the input start list. To quantify preference

for start nodes, we calculated the proportion of output nodes that were represented in the

input. Thus, an algorithm that ranked all start nodes above all other network nodes would

have a start node fraction of 1. To quantify tendency to return hub nodes, we calculated the

median degree of output nodes where degree was the total number of edges connected to the

node.

Cross-validation and target validation

Ten repeats of 10-fold cross-validation were performed for each data set to calculate the area

under the ROC curve (AUC). Each data set was divided into tenths, with one tenth left out

each time; then that process was repeated ten times for a total of 100 lists each with 90% of the

original input list. Sensitivity and specificity were found using the omitted 10% of nodes as

"true" nodes to be found by the algorithms. We also as examined Fraction Recovered as the

fraction of left out nodes recovered in the top nodes (top 200 nodes for node prioritization or

any node present in a subnet for subnet id algorithms). When omitted input nodes were not

included in the network, they were excluded from the list of "true" nodes, as the use of that net-

work prevented them from being included in the output regardless of the algorithm used.

For connectivity map data, sensitivity, specificity, and fraction recovered were calculated

based on ranking of known drug targets in algorithm outputs where known drug targets were

determined as described previously [25].

Empirical null distributions

To determine whether nodes were highly ranked based on the network properties only (irre-

spective of the input list) we generated lists of randomly selected input nodes. Fold changes

were chosen from a random distribution with mean 0 and standard deviation 1, with corre-

sponding p-values. Fold change and p-value pairs were randomly assigned to all possible

nodes, and the nodes with highest fold change were used as the input list. We generated 10,000

random gene lists each of length 200 and ran the algorithms on these input lists. We were thus

able to determine, for each node and algorithm, the frequency each node was ranked higher

than a chosen output rank.
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Supporting information

S1 Fig. Performance results using standard summary statistics (mean and standard deviation

across datasets) for AUROC (left) and Fraction Recovered (right). Comparison of algorithms

was difficult due to variation across datasets. Thus, a rank-based approach was used to estab-

lish the fraction of datasets for which the algorithm was performing in top five algorithms for

each dataset (Fig 2C and 2D).

(EPS)

S2 Fig. Fraction of times a node was highly ranked using randomly chosen input start

nodes as a function of node degree. Causal regulator algorithms consider each node in two

directions–positive (black points) and negate (red points).

(EPS)

S3 Fig. Characterization and performance results generalize across the HumanNet pub-

lished, undirected network. Average fraction of start nodes in the output (A) and median

degree (B) characterization of each algorithm. Cross-validation performance of algorithms as

indicated by the fraction of datasets for which the algorithm appeared in the top five when

ranked by AUROC (C) or Fraction recovered (D) from the CRISPR screen hits, Genetic Asso-

ciation, and KEGG/REACTOME datasets using HumanNet as the network. Note: Because

HumanNet contains no signed or directed edges, the causal regulator algorithms were not

examined in this analysis.

(EPS)

S1 Table. Algorithm parameters used (missing algorithms did not have adjustable parame-

ters).

(DOCX)

S1 Data. Summary values to create plots in Fig 2 and S1 Fig.

(CSV)

S2 Data. Summary values to create plots in Fig 3.

(CSV)
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