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Abstract: P. aeruginosa is the most common Gram-negative organism causing bacterial keratitis.
Pseudomonas utilizes various virulence mechanisms to adhere and colonize in the host tissue. In the
present study, we examined virulence factors associated with thirty-four clinical P. aeruginosa
isolates collected from keratitis patients seeking care at L V Prasad Eye Institute, Hyderabad. The
virulence-associated genes in all the isolates were genotyped and characteristics such as antibiotic
susceptibility, biofilm formation, swarming motility, pyoverdine production and cell cytotoxicity
were analyzed. All the isolates showed the presence of genes related to biofilm formation, alkaline
proteases and elastases; however, there was a difference in the presence of genes related to the type
III secretion system (T3SS). A higher prevalence of exoU+ genotype was noted in the drug-resistant
isolates. All the isolates were capable of forming biofilms and more than 70% of the isolates showed
good swarming motility. Pyoverdine production was not associated with the T3SS genotype. In the
cytotoxicity assay, the presence of exoS, exoU or both resulted in higher cytotoxicity compared to the
absence of both the genes. Overall, our results suggest that the T3SS profile is a good indicator of
P. aeruginosa virulence characteristics and the isolates lacking the effector genes may have evolved
alternate mechanisms of colonization in the host.

Keywords: type III secretion; antibiotic resistance; Pseudomonas; biofilm; pyoverdine; swarming

1. Introduction

P. aeruginosa, a Gram-negative bacterium, is ubiquitous in nature and a major opportunistic
human pathogen. It is one of the most common causative agents for bacterial keratitis in India and
worldwide [1]. P. aeruginosa adheres to the cell surface and releases toxins that result in recruitment of
inflammatory cells leading to corneal scarring [2,3] that may lead to perforation of the cornea within
48–96 h of infection [4]. Contact lens wearers are at a higher risk of developing keratitis in developed
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countries, while ocular trauma and injury are the major risk factors in developing countries [5].
P. aeruginosa also causes acute or chronic infections in patients with cystic fibrosis, cancer or extensive
burns [6]. It has a repertoire of virulence factors such as presence of flagellin and type IV pili along with
secreted exotoxins, proteases and elastases. A combination of these factors determines the ability of an
isolate to invade the host cell and colonize. One important virulent mechanism is the type III secretion
system (T3SS) which directly injects effector proteins into the host cells [7]. ExoS, ExoT, ExoY and
ExoU are the four effector enzymes that are main focus of research. ExoS and ExoT are closely related
bifunctional enzymes with Rho-GAP and ADP-ribosyltransferase activities [8]. While ExoU is a potent
phospholipase, ExoY functions as adenylate cyclase [9,10]. The T3SS regulon consists of five operons
including pscL and pscU that encodes components of secretion machinery [11]. Another virulence
associated factor is the swarming ability which is attributed to its rotating polar flagellum. A study by
Overhage et al. found that two virulence genes, lasB and pvdQ were required for swarming motility
and also that swarmer cells exhibit increased antibiotic resistance [12]. Swarming also helps to prevent
phagocytosis of the bacteria by host cells [13]. P. aeruginosa also secretes several extracellular proteases
like alkaline protease (AprA), elastase (LasB) and protease IV (PrpL). While both AprA and LasB are
metalloproteases, PrpL is serine protease in nature and all of these proteases has been reported to play
a role in corneal infections [14–16]. AprA has been shown to impede bacterial clearance by host cells
by preventing complement mediated phagocytosis, similarly, LasB degrades mucins and surfactant
proteins that aids in bacterial clearance [17,18]. Protease IV is a key virulence factor of P. aeruginosa and
is induced by quorum sensing. Pseudomonas spp. are also known to form biofilms that prevent the
penetration of antibiotics contributing to its virulence and are notoriously difficult to eradicate [19].
LadS, a calcium-responsive kinase is required for biofilm formation and is responsible for the swirtch in
acute-chronic Pseudomonas infection [20,21]. Pyoverdine, a siderophore produced by Pseudomonas spp.,
is also known to contribute to its virulence. This plays an important role in chelating iron from the
host or the environment and also imparts a green fluorescence [22]. A combination of these virulence
factors facilitates infection and may confer antibiotic resistance to the bacteria. Subedi et al. reported
that levofloxacin, ciprofloxacin and amikacin were the most effective drugs for ocular infections [23].
They found that the antibiotic resistance rates in ocular isolates have been stable [24] however, a recent
report from Das et al. found a significant decrease in susceptibility in Pseudomonas spp. isolated
from keratitis patients to a fourth generation fluoroquinolone, moxifloxacin [25], suggesting a rise in
antibiotic resistance in Pseudomonas spp.

Various studies have investigated the virulence factors in clinical isolates from diseases such
as cystic fibrosis, respiratory infections, septicemia, and keratitis [26–30]. However, with increased
antibiotic resistance in the strains, an update on the virulence factors associated with P. aeruginosa
corneal infections is warranted. In the present study, we examined the clinical features and virulence
factors associated with thirty-four P. aeruginosa isolates from keratitis patients with non contact lens
related ocular infections.

2. Materials and Methods

2.1. Bacterial Culture

Thirty-four clinical isolates were obtained from Jhaveri Microbiology Centre, LV Prasad Eye
Institute, and two laboratory strains, PAO1 and PA14 (a kind gift from Dr. Urs Jenal, University of
Basel, Basel, Switzerland) were used in this study and approved by the Institutional Review Board.
For clinical isolates, corneal ulcer scrapings collected aseptically were investigated for bacterial and
identification, following the Institute protocol as described earlier [31]. Briefly, ulcer scrapings were
placed on two glass slides (Gram stain and 10% potassium hydroxide with 0.1% calcofluor white)
for direct microscopy and also inoculated in different specific media for bacterial cultures. Only
significant isolates as per the defined criteria were included in the study [32]. The pure homogenous
culture was then subjected to VITEK® 2 compact (bioMerieux, France) analysis for identification of
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the bacterium alongside Gram stain and series of biochemical tests. All strains of P. aeruginosa were
grown as described earlier [33]. In brief, bacteria were sub-cultured from overnight culture in Luria
Bertani media (MP Biomedicals, Mumbai, India), washed twice in 1X PBS, centrifuged at 10,000 rpm
for 5 min, and resuspended in 1X PBS. Dilutions of the sample were done with serum-free media for
the final inocula.

2.2. Antibiotic Susceptibility Test

For antibiotic susceptibility testing, minimum inhibitory concentration (MIC) was determined
using Ezy MICTM strips (Himedia Laboratories, Telangana, India) or VITEK® 2 AST cards according to
manufacturer’s protocol following CLSI guidelines [34]. The isolates were screened for susceptibility
towards chloramphenicol, fluoroquinolones such as ciprofloxacin, moxifloxacin, gatifloxacin, ofloxacin
and levofloxacin, aminoglycosides such as gentamycin, amikacin and tobramycin, polymyxins such as
colistin, cephalosporins such as ceftazidime and cefepime, carbepenems such as imipenem, doripenem
and meropenem, glycycline such as tigercycline and ureidopenicillins and β-lactam inhibitors such as
piperacillin/tazobactum, ticarcillin/clavulanic acid and cefoperazone/subalactam. Multi-drug resistance
(MDR) was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial
categories, extensive drug resistance (XDR) was defined as non-susceptibility to at least one agent in
all but two or fewer antimicrobial categories [35].

2.3. Genotyping of Virulence Factors

DNA was extracted from the overnight culture of all the isolates using bacterial genomic DNA
Kit (Sigma Aldrich, St. Louis, MO, USA). All the thirty-four isolates were genotyped for virulence
genes, such as genes involved in T3SS, exoS, exoT, exoU, exoY, pscL, pscU, elastase lasB, proteases like
aprA, and prpL and a gene involved in biofilm formation, ladS. The PCR was performed using KAPA
Taq ReadyMix with dye (KAPA Biosystems, Sigma Aldrich, St. Louis, MO, USA) using the following
conditions for all except pscU and pscL denaturation at 95 ◦C for 30 s, annealing at 60 ◦C for 30 s and
extension at 72 ◦C for 30 s for 30 cycles. pscU and pscL were amplified as previously described [30].
Table 1 lists the sequences of the primer used for amplification of the genes. PAO1 that produces exoS,
exoY and exoT and PA14 strain that expresses all the exotoxins were used as controls.

Table 1. Sequences of primers used for gene amplification.

Virulence Genes (Product Length) Primers (5′-3′)

exoS (235 bp) FWD: AGAGCGAGGTCAGCAGAGTA
REV: GCGGACATACCTTGGTCGAT

exoT (219 bp) FWD: GCATGCGGTAATGGACAAGG
REV: GACCGATTCAGGTGCTGGTA

exoU (134 bp) FWD: CGGTACGTGCTGTATCCCTC
REV: CGTGTAGCGCGATCTGTAGT

exoY (289 bp) FWD: GCTTCTCGGTGAAGGGGAAA
REV: CGAACTCATAGCGTTTGCCG

lasB (202 bp) FWD: ATCGACGTGTCCAAACTCCC
REV: CCTTGACTTCGGTGATGGCT

aprA (176 bp) FWD: CTACAGCGCCAACGTCAATC
REV: AGCTCATCACCGAATAGGCG

ladS (181 bp) FWD: CCCTGATGGTCCTCGGCTAC
REV: GTTCCTGGTTCAGCGCTTCC

pscL FWD: AAAAAAGAATTCGGAGGGCGATGAATGCTTCCATTTGTT
REV: AAAAAAAAGCTTTCAACCGGCGTCCCCTTCCTCCT

pscU FWD: AAAAAATCTAGAGGAGGAGACGCCATGAGCGCCGAGAAGA
REV: AAAAAAAAGCTTGATAGCGATCAGGGCGTATCCGTCTGCT

prpL FWD: ATCGTATTTCGCCGACTCCC
REV: TGAAGACCATCTTCGCCACC
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2.4. Biofilm Assay

Biofilm formation was estimated using the crystal violet assay [36]. Fresh overnight cultures
of the isolates were diluted to 1:100 in a 96-well plate and incubated in a shaker incubator for 24 h.
The absorbance of the bacterial cultures was recorded at 600 nm prior to the start of the assay. For the
assay, the wells were washed with distilled water; the biofilms were fixed using 95% methanol for
15 min followed by staining with 0.5% of crystal violet for 10 min. After washes, the dye was dissolved
in 30% acetic acid and the absorbance was measured at 590 nm. The OD590 values were then normalized
with initial OD600 values to account for differences in bacterial growth. Biofilm was classified as
weak, moderate or strong as previously described [37]. Cut-off OD (ODc) was defined as 3 standard
deviations more than the average OD of the blank. Isolates with OD < ODc were considered as
non-biofilm producers, with ODc < OD < 2ODc as weak biofilm producers, 2ODc < OD < 4ODc as
moderate biofilm producers and OD > 4ODc as strong biofilm producers.

2.5. Swarming Assay

The swarming motility of P. aeruginosa isolates were examined according to the protocol described
earlier [27]. Briefly, a single colony was inoculated on swarming media (Bacteriological agar-0.5%,
Nutrient broth-8g/L, Glucose-5g/L) and incubated overnight at 37 ◦C. The plates were imaged and
analysed using Image J software [38]. The swarming motility was assessed as percentage change with
respect to PA01 as described elsewhere [28]. An isolate showing a change of more than 10% compared
to PA01 was considered as good swarmer while the rest were categorized as poor swarmer.

2.6. Pyoverdine Estimation

Pyoverdine production was estimated as previously described [39]. Briefly, the absorbance
of overnight cultures of each isolate was recorded at 600 nm before the cultures were centrifuged
at 10,000× g for 2 min and the absorbance of the supernatant was recorded at 405 nm. OD405

was normalized using OD600 to account for differences in bacterial growth. The normalized
absorbance reading was used to estimate pyoverdine concentration as follows: Molar concentration =

Absorbance/Extinction coefficient (1.9 × 104 M−1 cm−1) [39]. Isolates showing a change of more than
10% compared to PA01 were considered as good pyoverdine producers, while the rest were categorized
as poor producers of pyoverdine.

2.7. Culture of HCEC

Immortalized human corneal epithelial cells (HCEC) 10.014 pRSV-T [31,40] were maintained
in DMEM-F12 media supplemented with 10% fetal bovine serum, 4 µg/mL recombinant human
insulin (Invitrogen, Waltham, MA, USA) and 20 ng/mL recombinant human epidermal growth factor
(Invitrogen, MA, Waltham, USA) at 37 ◦C and 5% CO2 and cultured as mentioned before [31].

2.8. Cytotoxicity Assay

Cell-based cytotoxicity was examined in four clinical isolates namely LVP3 (exoS+/exoU−), LVP27
(exoS−/exoU+), LVP30 (exoS−/exoU−) and LVP40 (exoS+/exoU+) along with the MDR and XDR isolates.
HCEC (2.5 × 104 cells/well) were seeded in a 96-well plate for lactate dehydrogenase (LDH) cytotoxicity
assay. The cells were infected with each of the clinical isolates, PAO1 and PA14 at multiplicity of
infection 10 (MOI, bacteria: cells 10:1) for 6 h. The culture supernatant was used for LDH estimation [41]
by colorimetric assay using the CytoTox96 kit (Promega, Madison, WI USA).

2.9. Statistical Analysis

Bar graphs and error bars represent the mean and the standard error of mean (SEM) respectively.
Statistical analysis was performed using either Kruskal-Wallis or unpaired t test (Prism; GraphPad
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Software, San Diego, CA, USA). The correlations were calculated using Spearman’s correlation test. p
values less than 0.05 were considered significant.

3. Results

3.1. Clinical Features

Ocular clinical isolates of P. aeruginosa collected from thirty four patients were evaluated in the
current study. The age of the patients ranged from 21 to 84 years (mean, 45.39 ± 3.19 years). There
were 24 male patients and 10 female patients, and 30% of all patients were involved in agriculture,
whereas 20% worked as manual laborers, and the remaining 50% were either office workers, students
or homemakers. None of the patients were currently wearing or had a history of wearing contact
lenses. The size of the hypopyon ranged from <1 mm to 5.8 mm and the size of the epithelial defect
ranged from 2 × 2 mm to 10 × 9.5 mm. However, the size of the epithelial defect was not associated
with the treatment outcome. A total of six patients underwent corneal grafting and three underwent
evisceration. One of the patients who underwent corneal grafting was infected with an MDR strain
and another one who underwent evisceration was infected with an XDR strain.

3.2. Antibiotic Susceptibility of the Clinical Isolates

The antibiotic susceptibility of the isolates was tested by utilizing the minimum inhibitory
concentration (MIC) method. A total of twenty antibiotics were tested on these isolates and details
are shown in Table 2. Three out of the thirty-four isolates were MDR and four isolates were found
to be XDR in nature. Resistance was noted to chloramphenicol (n = 30), ciprofloxacin (n = 6), to
moxifloxacin (n = 28), piperacillin/tazobactum (n = 17), ticarcillin/clavulanic acid (n = 16), levofloxacin
and ceftazidime (n = 13), gatifloxacin (n = 7), ofloxacin (n = 7), gentamicin (n = 6), amikacin (n = 5),
tobramycin (n = 6), cefepime (n = 5), imipenem (n = 5), doripenem (n = 4), meropenem (n = 4), All
isolates were resistant to tigecycline. Intermediate resistance was also noted to chloramphenicol (n = 2),
ciprofloxacin (n = 4), moxifloxacin (n = 2), cefepime (n = 6), doripenem (n = 3), meropenem (n = 1),
piperacillin/tazobactum (n = 5), ticarcillin/clavulanic acid (n = 15) and cefoperazone (n = 15). All
the isolates were however susceptible to colistin. A heat map was constructed depicting the relative
resistance of each isolate (Figure 1).

Table 2. Minimum Inhibitory Concentration based Antibiotic Susceptibility Pattern of Ocular Clinical
Isolates of P. aeruginosa (n = 34).

Antibiotic MIC (µg/mL) % Isolates

Susceptible (S) Intermediate (I) Resistant (R)

Chloramphenicol (CHL) 0.016–256 6 6 88
Ciprofloxacin (CIP) 0.25–4 70 12 18
Moxifloxacin (MXF) 0.002–32 12 6 82
Gatifloxacin (GAT) 0.002–32 79 0 21

Ofloxacin (OFX) 0.002–32 79 0 21
Levofloxacin (LEV) 0.12–8 62 0 38
Gentamycin (GEM) 1–16 82 0 18

Amikacin (AKN) 2–64 85 0 15
Tobramycin (TOB) 0.016–256 82 0 18

Colistin (CS) 0.5–16 100 0 0
Ceftazidime (CAZ) 1–64 62 0 38

Cefepime (CEP) 1–64 67 18 15
Imipenem (IPM) 0.25–16 85 0 15

Doripenem (DOR) 0.12–8 79 9 12
Meropenem (MEM) 0.25–16 85 3 12

Piperacillin/Tazobactam (TZP) 4/4/–128/4 35 15 50
Ticarcillin/Clavulanic Acid (TIM) 8/2–128/2 9 44 47
Cefoperazone/Sublactam (CPZ) 8–64 32 44 24

Tigercycline (TGC) 0.5–8 0 0 100
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Figure 1. Heat map representing antibiotic resistance of ocular clinical isolates of P. aeruginosa. The
antibiotic susceptibility for thirty-four clinical isolates were tested by minimum inhibitory concentration
method against mentioned antibiotics and a heat map was constructed to compare the antibiotic
resistance among the isolates. S denotes susceptible, I denotes intermediate, and R denoted resistance
to antibiotics.

3.3. Differential Expression of T3SS Genes among the Clinical Isolates of P. aeruginosa

P. aeruginosa has a repertoire of toxins secreted by different secretory pathways. T3SS is one of the
major virulence factors that have been shown to subvert host immune responses, including reactive
oxygen species generation, in human corneal epithelial cells [42,43]. In this study, we screened thirty
four ocular clinical isolates causing corneal infections and determined the presence of genes associated
with virulence such as the main T3SS effector genes, exoS, exoT, exoU and exoY, as well as pscU and pscT,
responsible for T3SS machinery [44]. The presence of exoS is associated with increased invasiveness
and presence of exoU is associated with increased cytotoxicity [4]. As shown in Figure 2A, 73% of the
clinical isolates encoding exoS were invasive, whereas about 32% of the isolates were cytotoxic with the
presence of exoU gene. Approximately 85% of the isolates showed presence of exoY. Interestingly, all
the three genes were present in only 12% of the isolates and were completely absent in 9% of the isolates.
exoT, associated with T3SS apparatus, was present in all the isolates while pscU and pscT were present
in all isolates except one each. The presence of exoS and exoU was mutually exclusive, as reported
before, except in four isolates which showed presence of both the genes [45]. Moreover, a majority of
the MDR and XDR strains harbored exoU gene further suggesting an increased cytotoxicity of these
strains. However, 78% of patients that underwent penetrating keratoplasty were infected with isolates
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harboring exoS. Along with the exotoxins, P. aeruginosa also produces several extracellular proteases
of which alkaline proteases (aprA), elastase B (lasB) and protease IV (prpL) are often implicated in
infections and helps the pathogen in immune evasion [46]. All the isolates investigated in this study
were found to be positive for the genes lasB, aprA and prpL. All of these proteases have also been
found to play an important role in corneal damage during Pseudomonas keratitis [15]. Our data are
in concordance with two earlier results carried out on clinical and environmental isolates indicating
these genes to be universally present [45,47]. We also examined the presence of ladS, a calcium binding
kinase that promotes biofilm formation on activation [20], and found it to be present in all the isolates.
A heat map was constructed depicting the presence of all the genes of each isolate (Figure 2B).Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 14 
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Figure 2. Characteristics of ocular clinical isolates of P. aeruginosa. The presence of T3SS effectors
in ocular clinical isolates collected from patients (A). Heat map representing presence of virulence
genes of ocular clinical isolates of P. aeruginosa. P denotes the presence of the gene and N denotes
absence of the specific genes (B). Distribution of ocular clinical isolates forming biofilms; isolates were
divided into weak, moderate and strong according to their biofilm forming abilities (C). Correlation
between swarming and biofilm forming abilities (D), pyoverdine concentration and biofilm formation
(E), and pyoverdine concentration and swarming (F) of the ocular clinical isolates. The experiments
were repeated two times with similar results. * indicates p < 0.05.
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3.4. Biofilm Assay

The resistance of P. aeruginosa against antibiotics also results from its ability to form biofilm;
therefore, we determined the ability of biofilm formation in these isolates. According to the classification
that we followed, all the isolates were capable of forming biofilms at different levels. Sixteen percent of
the isolates formed weak biofilms, 50% formed moderate biofilms and the remaining 35% were strong
biofilm formers (Figure 2C). Biofilms formed by P. aeruginosa are known to be resistant to antibiotics,
and all the multi-drug resistant clinical isolates identified in this study are moderate to strong biofilm
producers. We did not observe an effect of T3SS genotype on biofilm formation; however, around 65%
of the strong-moderate biofilm formers showed the presence of exoS.

3.5. Swarming Motility is Linked to Biofilm Formation

P. aeruginosa swarming is a complex adaptation process influenced by major changes in gene
expression, involves multicellular coordination and exhibits a strong interrelation with biofilm
formation. Several regulatory pathways responsible for swarming also affect the formation of
biofilm [48]. In our study we found that 68% of the isolates that formed moderate to weak biofilm
were good swarmers. The swarming activity and biofilm formation of the isolates were negatively
correlated (Spearman’s correlation coefficient: r = −0.3742, p = 0.0268) (Figure 2D). This also correlates
well with previous studies which have found an inverse relationship between biofilm formation and
swarming motility [28,48]. Another virulence related gene, lasB, is known to play an important role
in swarming [12]. All our isolates were, however, positive for the presence of lasB gene irrespective
of their swarming ability. Enhanced antibiotic resistance has been reported in swarmer cells of P.
aeruginosa [12]; however, we did not see any such association. Interestingly, we found that about 79% of
the good swarmers did not harbor exoU suggesting that environmental cues might facilitate selection
of either swarming motility or cell cytotoxicity.

3.6. Pyoverdine Secretion among Isolates

A recent study by Suzuki et al. demonstrated the importance of pyoverdine production in
Pseudomonas corneal infection using a mouse model of keratitis [49]. We estimated pyoverdine
production in overnight cultures of all the clinical isolates and demonstrated no significant difference
in the concentration of pyoverdine synthesized by these isolates. Sixty nine percent of the isolates were
found to produce more pyoverdine than PAO1, and this was not associated with their T3SS genotype.
Pyoverdine concentration was significantly different among various groups of biofilm forming isolates
(Figure 2E). We found positive correlation between biofilm formation and pyoverdine secretion of
the isolates (Spearman’s correlation coefficient: r = 0.4173, p = 0.0141). No correlation was found in
a recent study between biofilm formation and pyoverdine production among various clinical and
environmental isolates [50]. pvdQ, gene responsible in pyoverdine biosynthesis, has also been shown
to play an important role in swarming. Overhage et al. reported increased expression of pvdQ gene
in PA14 under swarming condition [12]. Although we did not find any direct correlation between
swarming and pyoverdine secretion (Figure 2F), many of the isolates that secreted higher concentration
of pyoverdine were good swarmers.

3.7. T3SS Positive Isolates Caused Increased Cell Death in HCEC

We performed cell-based assays to determine the cytotoxicity towards human corneal epithelial
cells of a few selected isolates. For this purpose, we chose four isolates depending on their genotype,
LVP3, LVP27, LVP30 and LVP40, along with the MDR (LVP29 and LVP39) and XDR (LVP25, LVP33,
LVP35, LVP41) isolates, and laboratory strains PAO1 and PA14 were used as controls. LVP3, LVP27
and LVP40 showed increased cytotoxicity and were comparable to that of PAO1 and PA14 while LVP30
was least cytotoxic to the cells (Figure 3A). We also checked the cytotoxicity of corneal epithelial cells
with the drug resistant isolates and found increased cytotoxicity comparable to PAO1 (Figure 3B). The
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isolates LVP3, 27 and 40 show presence of either exoS or exoU and exhibited increased cytotoxicity,
whereas an XDR isolate, LVP25 (exoS−/exoU+) was comparably less cytotoxic. Out of the ten isolates
tested, three isolates, LVP30, 33, and 39 lack both exoS and exoU, and interestingly while LVP 30
showed reduced cytotoxicity, LVP 33 and 39 were cytotoxic to cells. These results suggest that perhaps
T3SS is not the only determinant of the damage caused by bacteria to cells.
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(exoS−/exoU+), LVP30 (exoS−/exoU−) and LVP40 (exoS+/exoU+) (A) or drug-resistant isolates (B) for
6h and cytotoxicity was measured by release of LDH into the culture media compared to lysed cells
(positive control). The error bars represent three technical replicates and the experiments have been
repeated three times. UT represents untreated cells.

4. Discussion

P. aeruginosa, a versatile, opportunistic pathogen causes corneal infections that are often difficult to
treat due to emergence of antibiotic resistance and multi-drug resistant isolates are often encountered
in the clinic. In this study we examined the different virulent characteristics of ocular clinical isolates
causing infections to understand their role during pathogenesis of disease.

T3SS is a well-established mode of virulence for P. aeruginosa and plays a prominent role in causing
infections. The four effector proteins of T3SS that are involved in virulence include ExoS, ExoU, ExoT
and ExoY. exoS and exoT encode for bifunctional enzymes which comprise of a GTPase activating
domain and an ADP ribosyltransferase domain [51]. exoU encodes for a cytotoxin phospholipaseA2
and exoY encodes for adenylate cyclase [10]. exoT is known to be ubiquitously present in all the
P. aeruginosa strains and is consistent with our study in which we found that all the isolates showed
presence of exoT [52]. We found a higher prevalence of exoS+ isolates than exoU+ isolates in our cohort
of strains. An earlier report on P. aeruginosa clinical isolates from endophthalmitis cases also showed
the predominance of exoS positive isolates [26]. It has been previously reported that exoU+ strains
were more common in contact lens wearers [52,53], whereas our cohort of cases were non-contact lens
wearers. Thus, in contrast to earlier reports [29], our data show the presence of a greater proportion
of exoS harboring P. aeruginosa isolates and remains consistent with reports where they observed
higher prevalence of exoS+ isolates especially in non-contact lens wearers [30,37]. The gene expression
pattern is also consistent with those observed among P. aeruginosa environmental isolates [45]. Sun et al.
previously demonstrated that presence of exoY is not essential for development of keratitis [54].
A previous study comparing the virulence patterns of contact lens and non-contact lens wearers
suggested that strains expressing exoU were stronger biofilm producers [37]. Consistently with this
observation, we found that more than 77% of the isolates producing low to moderate biofilms were
exoU negative and that more than half of the exoU+ isolates were strong biofilm producers. Swarming
ability has also been negatively correlated with biofilm formation [28,48]. Our results also show that
out of all the positive swarmers, 79% were low to moderate biofilm formers. Perhaps the bacteria
require one or the other characteristic for colonization in the host cornea.
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The presence of exoU has also been reported to lead to increased resistance against antibiotics
especially fluoroquinolones [55–57]. Interestingly, out the thirty-four isolates screened in this study,
seven were resistant to fluoroquinolones and 85% were exoU+. In a recent study by Horna et al., out of
189 P. aeruginosa isolates obtained from patients in the intensive care unit, majority of the multi-drug
and extensively-drug resistant strains were exoU positive [58]. In agreement with this, we found that
out of the seven strains which were multi-drug resistant, five were exoU positive. Moreover, these
MDR isolates formed moderate to strong biofilms which is consistent with association of biofilm
formation with antibiotic resistance reported previously [19]. Swarming has also been associated
with increased antibiotic resistance [12]. However, in the present study, we did not observe any such
relationship; more than half of the MDR isolates were poor swarmers. Possibly, the bacteria adapt
to different behavior to confer antibiotic resistance and the MDR isolates in this study were better at
biofilm formation than swarming. Swarming is a complex phenomenon of motility of bacteria over
soft surfaces and swarming cells of P. aeruginosa exhibit different phenotype from planktonic cells
including gene expression [59] and antibiotic resistance [60]. There are several reports regarding the
inverse relationship between biofilm formation and swarming motilities [61,62] and this regulation is
mediated by cyclic diguanylate that induce biofilm formation and suppresses swarming. Murray et al.
observed a similar inverse relationship between swarming and biofilm formation for a large cohort of
237 non-ocular clinical isolates [28]. Inverse regulation of biofilm formation and swarming has also
been reported earlier for PA14 strain [62].

Pyoverdine regulates several virulent factors and plays a critical role in the pathogenesis of host
infection by P. aeruginosa [63]. It removes ferric iron from the host causing mitochondrial damage
and compromise ATP production [64]. Suzuki et al. have shown that a pyoverdine mutant strain is
incapable of invading corneal epithelial cells and fails to cause infection in a murine model of keratitis
compared to PAO1 [49]. Pyoverdine aids in colonization to the host and promotes biofilm formation.
Consistent with this, in the present study we observed a positive association with biofilm formation,
however we did not observe an effect of the T3SS genotype. A recent study by Kang et al. did not
show any correlation between biofilm formation and pyoverdine production among various clinical
and environmental isolates, although they found a positive correlation among low biofilm forming
subsets [50]. pvdQ, gene responsible in pyoverdine biosynthesis, has also been shown to play an
important role in swarming. Overhage et al. reported increased expression of pvdQ gene in PA14
under swarming condition [12]. Although we did not find any direct correlation between swarming
and pyoverdine secretion, many of the isolates that secreted higher concentration of pyoverdine were
also good swarmers.

Isolates from different origins are associated with different virulence factors [37]. To further
examine the cytotoxicity of the isolates we chose four isolates based on their T3SS genotype. The presence
of exoS is associated with increased invasiveness and presence of exoU is associated with increased
cytotoxicity [4]. exoU+ isolates have previously been reported to mediate pathogenicity in an
experimental model of keratitis and induce cell lysis in macrophages and epithelial cells. Seventy eight
percent of patients undergoing corneal transplantation in this cohort were infected with exoS+ isolates.
However, we found from the cytotoxicity assays that the T3SS profile was not the only determinant
of cell cytotoxicity and other virulence factors might also contribute to cell damage. Consistent with
this, Toska et al. reported that few T3SS negative Pseudomonas were still capable of causing infection
in a murine model of keratitis [29]. We examined the presence or absence of the effector genes and a
further investigation of the expression of these effector proteins in culture or in an infection model will
confirm the T3SS expression profile. A recent report by Hwang et al. showed reduced virulence of
multi-drug resistant isolate of P. aeruginosa in a mouse model of lung infection [65], however we found
increased cytotoxicity of MDR and XDR isolates in corneal epithelial cells in vitro. Moreover, even the
strains which do not show presence of exoS and exoU may have developed a novel virulence pathway
which facilitates the colonization in the host and may be a subject for further investigation.
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In conclusion, we extended the understanding of the virulence factors and other characteristics of
ocular clinical isolates obtained from our cohort of patients. Overall, we found that the isolates utilized
different virulence mechanisms for colonization in the host independent of gene expression pattern.
The detailed understanding will perhaps assist in developing alternative therapeutic interventions
to target virulence of P. aeruginosa without affecting its growth and will be helpful in selection of a
treatment strategy.
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