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Abstract: Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major
roadblock to global rice production is persistent loss of crops caused by plant diseases, including
rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases.
Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas
worldwide and cause varying degrees of damage on the rice production. Among them, southern
rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice
yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently
pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral
diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses
and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice
viral diseases.

Keywords: rice viral diseases; disease symptoms; RNA silencing; plant hormones; antiviral defense;
disease prevention and control

1. Introduction

Rice (Oryza sativa L.) is a vital food crop for the world’s human populations [1–3]. Since
1961, the start year of the Green Revolution, rice production has had a great improvement
with the attempts of progressive breeding works and changes in cropping practices involving
increased use of fertilizers, irrigation, machinery, and pesticides. Rice consumption has grown
dramatically in many regions of the world in recent years, and the FAO speculates that by
2035, a 26% increase in rice production must be achieved to feed the growing population [4,5].
However, disease occurrence in rice plants poses a great threat to rice productivity, quality, and
sustainability. Plant pathogens, including viruses, bacteria, fungi, and nematodes, together
with diverse insect pathogens such as planthoppers, leafhoppers and chrysomelid beetles,
caused about total 30% yield losses in staple food crops worldwide [6,7]. Sometimes, complete
regional crop failures directly cause the challenge of plant disease-induced famine [8]. Notably,
insect pathogens such as planthoppers and leafhoppers pose dual damage to rice yield because
of their direct damage to rice growth and development in addition to their high efficiency
in rice viral transmission, by which the food crisis in local or extensive rice-growing areas
always occurs.

This review describes the emergence and impact of vector-borne viruses of rice in
tropical and sub-tropical areas and discusses some of the factors influencing the apparent
increase in prevalence of rice viral diseases. It systematically summarizes the symptomatol-
ogy and transmission biology of rice viruses and the major achievements of the aspects on
antiviral defense and virus counter-defense during the last two decades. It also outlines
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the measures being applied for disease prevention and control and prospects the rice viral
disease management in the foreseeable future.

2. The Emergence and Damage of Various Rice Viruses Worldwide

During the last half century, the improved productivity of rice has greatly alleviated
food crisis caused by population growth, environmental stresses, diseases and pests [9–11].
But, with the development of rice breeding process, diverse vector-borne viral pathogens
frequently emerged in many rice-growing areas and threatened high yield and quality
of rice. There are three primary endemic regions of rice viral diseases: Asia, Africa, and
America (Figure 1). Overall, most of these viruses are distributed in Asia, and only two
have recurrently been reported in Africa and America, i.e., rice yellow mottle virus (RYMV)
in Africa and rice hoja blanca virus (RHBV) in America (Table 1).

Figure 1. Global distribution of rice viral diseases. Three rice viral disease endemic areas are
illustrated by circles with different colors. Green circles represent the main areas of rice viral diseases
in Asia. Red circles represent the main areas of rice viral diseases in Africa. Blue circles represent the
main areas of rice viral diseases in the United States and Latin America.

Table 1. Known rice viruses in rice-growing areas worldwide.

Geographic Range Virus Name Genus and Family Location of First Report Year of First Report Reference

Asia

rice dwarf virus Phytoreovirus,
Sedoreoviridae Japan 1883 [10,11]

rice stripe virus Tenuivirus, Phenuiviridae Japan 1897 [12]

rice black-streaked dwarf virus Fijivirus, Spinareoviridae Japan 1952 [13]

rice grassy stunt virus Tenuivirus, Phenuiviridae Philippines 1963 [14]

rice tungro bacilliform virus Tungrovirus,
Caulimoviridae Philippines 1963 [15,16]

rice tungro spherical virus Waikavirus, Secoviridae

rice yellow stunt virus Alphanucleo-rhabdovirus,
Rhabdoviridae

Guangdong and
Taiwan, China 1965 [17–19]

rice bunchy stunt virus Phytoreovirus,
Sedoreoviridae China 1976 [20]

rice ragged stunt virus Oryzavirus,
Spinareoviridae Philippines 1977 [21]

rice gall dwarf virus Phytoreovirus,
Sedoreoviridae Thailand 1979 [22]
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Table 1. Cont.

Geographic Range Virus Name Genus and Family Location of First Report Year of First Report Reference

rice necrosis mosaic virus Bymovirus, Potyviridae Japan 1977 [23,24]

southern rice black-streaked
dwarf virus Fijivirus, Spinareoviridae China 2008 [25,26]

rice stripe mosaic virus Cytorhabdovirus,
Rhabdoviridae China 2017 [27,28]

rice virus A (tentative name) Unassigned,
Tombusviridae Korea 2017 [29]

rice curl dwarf-associated virus
(tentative name) Unassigned China 2021 [30]

rice dwarf-associated
bunya-like virus (tentative

name)

Unassigned, closed to
Discoviridae China 2022 [31]

Africa rice yellow mottle virus Sobemovirus,
Solemoviridae Kenya 1966 [32]

Africa and America rice stripe necrosis virus Benyvirus, Benyviridae Côte d’Ivoire 1983 [33,34]

America rice hoja blanca virus Tenuivirus, Phenuiviridae Colombia 1935 [10,11]

Note: The genus and family of each virus are portrayed according to the 10th ICTV report.

2.1. Rice Viral Diseases in Asia

The rice region of Asia has the largest variety of viral diseases and the highest fre-
quency of occurrence. Until now, 15 viruses have been isolated from rice plants in Asia.

Records indicate that, before the Green Revolution, three rice viral diseases caused
by rice dwarf virus (RDV), rice stripe virus (RSV), and rice black-streaked dwarf virus
(RBSDV) were noticed and described sequentially in Japan. RDV was the first virus
documented in rice plants in 1883 [10,11]. It causes rice dwarf disease sporadically. RDV-
infected rice plants exhibit severe stunted growth, shorter and fewer roots, and poor
grains [35,36], thus leading to dramatic reduction of rice yields. High local incidence of
RDV was recorded in southern and central Japan during the period 1889–1979 and Zhejiang,
China from 1969–1973 [11,37,38]. The high incidence of RDV was attributable to several
reasons: the application of excess nitrogen fertilizer increased the vector population and the
susceptibility of rice plants to RDV, the increase in areas planted for early rice raised vector
density and the proportion of viruliferous vectors, the increase of rice fields left fallow
during the winter season favored the overwintering of vector on weeds, and the developed
resistance to pesticide of vector populations. RSV was initially discovered in Japan in
1897 [12]. In 1963, viral disease caused by RSV outbroke in the Jiangsu–Zhejiang–Shanghai
(JZS) district of China [12], where rice production had severely suffered from RSV for a
long period. Particularly during 2002–2004, RSV was circulated widely and severely in
Yangtze River region and generally resulted in a 30–40% yield loss in eastern China [39–42].
This epidemic was largely due to the increased winter wheat production, which supports
a large vector population in winter. In 1952, Japanese scientists determined RBSDV to be
the agent for an emerging dwarf-associated rice disease [13]. RBSDV can naturally infect
many Poaceae crops, including the three major stable crops: rice, maize, and wheat. RBSDV
caused several outbreaks in China (1963; 1965–1967), Japan (1957–1961; 1965–1967), and
Korea (1975–1976) [11]. It decimated almost 100% of the rice fields in some areas of Eastern
China in 1997–1998. The high RBSDV incidence was mostly attributed to the promotion of
early rice or increased wheat cultivation.

In 1963, rice grassy stunt virus (RGSV)-causing grassy stunt disease was first observed
in the Philippines [14]. In the beginning, this disease occurred locally, but more than half of
the rice plants were infected by RGSV from 1964–1965 in the Philippines. To date, it has
been reported in many other rice-growing areas of Asia, including Indonesia, China, and
Japan. It has been estimated that the combined effects of virus and vector caused losses
exceeding 3.3 million tons of rice in Indonesia between 1974 and 1977 [43]. In Vietnam in
2009, more than 485,000 ha of paddy field were severely affected by infection with RGSV or
co-infection of RGSV and rice ragged stunt virus (RRSV), resulting in the loss of 828,000
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tons of rice valued at $1.2 × 108 and directly affecting millions of rice farmers [44]. In
1963, rice tungro disease (RTD) in rice plants that simultaneously infected by rice tungro
bacilliform virus (RTBV), a double-stranded DNA virus [15], and rice tungro spherical
virus (RTSV), a single-stranded RNA virus [16] appeared in the countries of Southeast
Asia, including China. RTD caused annual losses of more than $1.5 × 109 in the 1980s [45].
In 1965, rice yellow stunt virus (RYSV), a member of the genus Alphanucleo-rhabdovirus
in the family Rhabdoviridae, was first described in Taiwan and Guangdong provinces of
China [18,19]. Major outbreaks of RYSV occurred in southern and central China, including
Taiwan (1960–1962; 1973–1975; 1977–1980), Guangdong (1964–1966; 1979), Fujian (1966;
1969; 1973), and Zhejiang (1970–1972) provinces. Areas affected by RYSV in Japan and
Thailand were localized with low incidence. Rice bunchy stunt virus (RBSV) caused
disease in Fujian, Guangdong, Guangxi, Hubei, Hunan, Jiangxi, Guizhou, and Yunnan
provinces, China, in the 1970s [20]. Average RBSV incidence reached the highest point
in 1979, but it has disappeared lately in the field. Ragged stunt disease caused by RRSV
was first reported at the International Rice Research Institute (IRRI) and elsewhere in
the Philippines in 1977 [21]. It has since been discovered in many other Asian countries,
including Thailand, China, and Vietnam, and has led to serious disease outbreaks in the
rice-growing areas of these countries. In 1979, rice gall dwarf virus (RGDV), a member
of the genus Phytoreovirus in the family Sedoreoviridae, was found in Thailand [22]. As of
late, RGDV broadly infects rice plants in Southern China, including Fujian, Guangdong,
Guangxi, and Hainan provinces. Rice necrosis mosaic virus (RNMV), a classic fungus-
transmitted virus belonging to the genus Bymovirus in the family Potyviridae, was first
reported in Japan and later in India [23,24]. It also infects some commercially important
crops such as Ludwigia perennis and Corchorus olitorius, leading to an increase in both shoot
growth and leaf size, along with characteristic chlorotic lesions on leaves [46–48].

From then to the year 2000, no novel virus was discovered in Asian rice-planting
regions. However, the present rice viruses RBSDV, RSV, RGSV, and RRSV frequently caused
outbreaks of viral disease in distinct rice-growing areas.

In 2001, a novel rice viral disease emerged in East and Southeast Asia [25,26]. It has
been determined that southern rice black-streaked dwarf virus (SRBSDV), a new Fijivirus
species in the family Spinareoviridae, is the agent of this disease. By 2009, rice fields in
19 provinces in northern Vietnam and 9 provinces in southern China had suffered from
this disease. In 2010, more than 60,000 ha of paddy fields in 29 provinces of Vietnam
and more than 1,300,000 ha in 13 provinces of China were infected, causing crop failure
in many regions [49,50]. As of late, SRBSDV has become a dominant virus species that
causes severe yield losses in many south and southeast Asian countries. In 2015, rice stripe
mosaic disease (RSMD) was first discovered in the southwestern rice region of Guangdong
province in China. The disease is caused by rice stripe mosaic virus (RSMV), a new
cytorhabdovirus in the Rhabdoviridae family [27,28]. In the beginning (2015–2016), RSMD
only occurred in southwestern Guangdong province in China; particularly in Luoding,
where approximately 70% of the rice plants were affected by RSMD. From 2016 to 2018,
this disease spread to Guangxi and Hainan provinces. From 2019 to now, RSMV-infected
rice plants have also occasionally been observed in parts of Jiangxi, Hunan, and Yunnan
provinces. These investigation data indicate that RSMD is gradually spreading throughout
southern China [51]. In 2017, using next-generation sequencing technologies, a novel RNA
virus, tentatively named rice virus A (RVA) was discovered from the collected rice samples
with virus-like symptoms in the fields around South Korea [29]. In the past two years,
a new picornavirus and a bunya-like virus were identified from rice plants exhibiting
dwarfing or curling symptoms by high-throughput RNA-seq, tentatively named rice curl
dwarf-associated virus (RCDaV) and rice dwarf-associated bunya-like virus (RDaBV),
respectively [30,31]. These three tentatively named viruses are discovered from rice samples
with virus-like symptoms in the fields. Whether these three viruses have potential for
outbreaks in the rice-growing areas still warrants further investigation.
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2.2. Rice Viral Diseases in Africa

Rice-growing countries in Africa form another center for viral disease epidemics.
In 1966, yellow mottle disease was first reported in rice plants growing around Lake
Victoria, Kenya. This disease is caused by RYMV, a sobemovirus transmitted by species of
Chrysomelid beetles including Chaetocnema pulla [32]. The disease first appearing in Kenya
was partially due to a new irrigation project, by which the rice cultivation dramatically
increased with the benefit of availability of water for sequential plantings throughout
the year. Later, rice yellow mottle disease spread to many other African countries where
cropping practices were similar with Kenya, including Côte d’Ivoire, Liberia, Republic of
Niger, Nigeria, Sierra Leone, and Tanzania. Since the early 1990s, RYMV had been present
everywhere in sub-Saharan Africa and in Madagascar where rice was grown. It affected
all types of rice cultivation, including lowland, upland, rain-fed, floating, and mangrove
rice. The epidemic of rice yellow mottle disease in Africa is due to a buildup of infection
associated with the introduction of irrigation and year-round cultivation [52]. For instance,
some of the worst epidemics of yellow mottle disease have occurred in the Republic of
Niger where the irrigated area increased from 571 ha in 1974 to 4,803 ha in 1984 and 8,500 ha
in 1986 [53,54]. Aside from the cropping practices, the introduced lowland rice varieties
from Asia also led to the serious outbreaks of rice yellow mottle disease. Because many
upland accessions of the African rice Oryza glaberrima and local upland types of O. sativa
are very tolerant to RYMV, Fomba considered that RYMV is an indigenous one to which
local rice plants have adapted, whereas the apparent equilibrium established between host
and virus seems to have been disrupted by the introduction of exotic varieties and an
intensification of cropping practices [55].

RSNV, a soil-borne benyvirus transmitted by the fungus Polymyxa graminis, is an
important causal agent that causes severe viral disease in rice-growing areas in both Africa
and America. RSNV-causing disease was first described in 1977 as a new virus infecting
rice in Côte d’Ivoire [33] and was subsequently observed in Liberia, Nigeria, and Sierra
Leone [56]. RSNV was initially identified in the Ivory Coast in 1983 and the incidence of
disease ranged locally from 37% to 80% in these African countries [34]. Since then, this
virus was nearly undetected in the fields in Africa. However, it has been episodically
reported in several South and Central American countries, including Colombia, Brazil,
Ecuador, Panama, and Argentina [34,56–60], causing severe epidemics and leading to up
to 40% yield losses [60]. Notably, characteristic symptoms of crinkling yellow color and
deformation of rice leaves were recently observed in West African countries, including
Burkina Faso [61], Benin [62], Mali [63], and Sierra Leone [64], suggesting that RSNV is
re-emerging in Africa.

2.3. Rice Virus Diseases in America

In America, hoja blanca disease is a dominant viral disease in rice-growing regions.
Rice hoja blanca virus (RHBV), a tenuivirus in the family Phenviviridae, is the causal agent
for this disease. It was first noticed and described in Colombia in 1935 [10,11]. Since then,
it has been reported in many other South and Central American countries and occasionally
in the southern United States [65]. Until 1956, it seemed to have been sporadic and of
limited importance, however, serious losses were subsequently reported in Cuba and
Venezuela [66], of which total crop losses were estimated to have been 25% in Cuba and
50% in Venezuela. Severe problems were also encountered at the time in Colombia, Costa
Rica, and Panama. Sometimes, RHBV can cause up to 100% yield losses in Latin American
rice fields. The worst epidemics of hoja blanca disease were associated with three primary
reasons: (1) the introduction and adoption of Bluebonnet 50 and other improved long-
grained varieties [67]; (2) changes in cropping practices and the trend from one to two crops
per year [68]; (3) the greatly increased populations of vectors.



Viruses 2022, 14, 2258 6 of 23

3. Symptomatology

Susceptible rice plants to virus infections are primarily characterized by a set of disease
symptoms such as dwarfism, increased or reduced tillering numbers; leaves being dark
green, yellow, or mosaic; inferior heading; and mostly unfilled grains. Most rice viral
diseases can be readily distinguished by these symptoms. Here, major disease symptoms
including plant height, tillering number, and abnormal leaf morphology exhibited on rice
plants infected by distinct rice viruses are listed in Table 2.

Table 2. Disease symptoms induced by different rice viruses.

Virus Name
Symptoms

The Whole Plant Tillering Number Leaf

RDV Dwarfing Increased Short leaves that are dark green in color
with fine chlorotic specks

RSV Slightly dwarf Normal Faded green stripe or mottling and
necrotic streaks

RBSDV Dwarfing Increased

Darkening of leaves, twisting of leaf tips,
splitting of the leaf margin, and waxy

white-to-black galls along the veins on
the underside of leaf blades

RGSV Stunted Increased Short, erect, and narrow leaves that are
pale green or pale yellow in color

RTBV
Stunted Decreased Yellow or orange discoloration

RTSV

RYSV Mild stunted Reduced Yellow, wilting or dead leaves

RBSV Stunted, bird nest-like Increased Dark green and narrow leaves

RRSV Stunted Increased
Dark green, ragged leaves with vein

swelling or galls on the underside of leaf
blades

RGDV Dwarfing Decreased
Short darker green leaves, and small

galls along the leaf veins on the
undersurface of leaves

RNMV Moderately stunted Reduced Yellow flecks and streaks on lower
leaves

SRBSDV Dwarfing Increased Dark green leaf and small enations on
leaf back

RSMV Slightly dwarfing Increased Twisted leaves exhibiting striped
mosaicism

RVA (tentative name) Not described Not described Not described

RCDaV (tentative name) Dwarfing Not described Leaf curling

RDaBV (tentative name) Dwarfing Decreased Not described

RYMV Stunted Decreased Yellow mottle or orange coloration

RSNV Dwarfing Reduced Chlorotic or yellow stripes on leaves,
which laterbecome necrotic

RHBV Dwarfing Decreased
Chlorotic or yellow striping and

mottling of leaves, and premature
wilting or dead

4. Transmission Biology

Rice viruses are transmitted by distinct insects or fungi, and most of them cannot
be transmitted mechanically or by seeds [69]. RNMV and RSNV are soilborne and is
transmitted by the fungus Polymyxa graminis [11]. RYMV is transmitted in a semi-persistent
manner by various chrysomelid beetles, including Sesselia pussilla, Chaetocnema pulla, and
Trichispa sericea [32,70]. It is also mechanically transmissible by the long-horned grasshopper
Conocephalus merumontanus, as well as by mammals (rats, donkeys and cows) and by
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birds [71,72]. Other known rice viruses can be transmitted by more than one vector
with varying transmission capabilities in rice plants. As to the vector-borne rice viruses,
there exist two main horizontal transmission modes: persistently transmitted or semi-
persistently transmitted. Persistently transmitted plant viruses are further divided into
two groups: propagative and non-propagative viruses, whereas known rice viruses are
mostly propagative. To date, how rice viruses replicate or propagate in the body of vector
insects have been largely described [73–77]. Basically, to achieve propagation, after virus
acquisition from phloem sap of virus-infected rice plants via the stylet, viruses must
overcome multiple tissue or membrane barriers in the insects to infect, replicate and finally
transmit the virions into healthy plants through saliva secretion, or into the female ovary
to be vertically transmitted to offspring [78]. Thereby, for successful virus transmission,
each propagative rice virus needs a circulative period in the corresponding vector body.
For a semi-persistent transmitted virus, a retain time of viruses in the insects has been
evaluated. Here, we summarized the transmission biology of distinct rice viruses in Table 3.
The detailed information was mostly collected from two online websites: Descriptions of
Plant Viruses (www.dpvweb.net (accessed on 10 September 2022)) and CAB International
(www.cabi.org/isc/ (accessed on 10 September 2022)).

Table 3. Transmission biology of distinct rice viruses.

Virus Name Modes of Transmission Circulative Period/Retain Time
(Day) Vector Species

RDV Persistent-propagative, transovarial 12–25 Nephotettix cincticeps, Recilia dorsalis,
Nephotettix virescens, Nephotettix nigropictus

RSV Persistent-propagative, transovarial 5–21 Laodelphax striatellus

RBSDV Persistent-propagative 4–35 Laodelphax striatellus, Nilaparvata lugens,
Unkanodes albifascia, Unkanodes sapporonus

RGSV Persistent-propagative 3–28 (8) Nilaparvata lugens, Nilaparvata bakeri,
Nilaparvata muiri

RTBV Semi-persistent 4–5
Nephotettix cincticeps, Nephotettix malayanus,

Nephotettix nigropictus, Nephotettix virescens,
Recilia dorsalis

RTSV Semi-persistent 2–4
Nephotettix cincticeps, Nephotettix malayanus,

Nephotettix nigropictus, Nephotettix virescens,
Recilia dorsalis

RYSV Persistent-propagative Undetermined Nephotettix cincticeps, Nephotettix
nigropictus, Nephotettix virescens

RBSV Persistent-propagative 11 Nephotettix cincticeps, Nephotettix virescens

RRSV Persistent-propagative 2–33 (9) Nilaparvata lugens

RGDV Persistent-propagative, transovarial 8–18
Nephotettix cincticeps, Nephotettix malayanus,
Nephotettix nigropictus, Nephotettix virescens,

Recilia dorsalis

RNMV / / Polymyxa graminis

SRBSDV Persistent-propagative 6–14 Sogatella furcifera

RSMV Persistent-propagative 8–16 Recilia dorsalis, Nephotettix virescens

RVA (tentative name) Unknown Unknown Unknown

RCDaV (tentative name) Unknown Unknown Unknown

RDaBV (tentative name) Unknown Unknown Unknown

RYMV Semi-persitent, non-circulative 1–8 (2–3) Sesselia pussilla, Chaetocnema pulla, Trichispa
sericea

RSNV / / Polymyxa graminis

RHBV Persistent-propagative, transovarial 4–31 Sogatodes oryzicola, Sogatodes cubanus,
Tagosodes orizicolus

Note: The usual length of the circulative period of certain viruses is indicated in parentheses. The major
transmission vector for each virus is highlighted in bold type.

5. The Complex Interactions between Rice Viruses and Their Hosts

During the last two decades, the devastating damage on rice production by rice viral
diseases has driven a sustained quest for rice viral diseases. Two central points involving

www.dpvweb.net
www.cabi.org/isc/
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rice–virus interactions and vector–virus interactions are explored to comprehensively
understanding the complex biological processes during virus infection, from which vital
insights into disease prevention and control are providing [79–81].

To resist virus infection, plants have evolved several defense pathways such as RNA
silencing, phytohormone, and plant innate immune system [82–85]. To establish infection,
viruses escape from or suppress antiviral defense by viral silencing suppressors (VSRs) or
other viral pathogenic factors [82,85]. These findings indicate an arms race between viruses
and rice plants (Figure 2). Herein, a series of host factors associated with RNA silencing,
phytohormone, antiviral loci or other signal pathways in rice plants are illustrated (Table 4).

Figure 2. The arms race between rice plants and viruses. Viral proteins execute all parts of virus
infection cycle in host cells. They usurp host factors and resources and suppress host defense signals
for virus pathogenesis (proviral). Antiviral resistance consists of host factors that target viral proteins
or nucleic acids to restrict virus infection (antiviral). The dotted lines and question mark mean there
exists uncovered correlations between viral proteins and host factors required for virus pathogenesis
or antiviral defense.

Table 4. Host factors with antiviral activity against rice viruses.

Host Factor Cellular Function Virus Viral Factor Technique Reference

AGO1 Antiviral RNA silencing RSV, RDV Undetermined Genetic analysis [86]

AGO2 Epigenetic regulation RBSDV, SRBSDV Undetermined Genetic analysis [87]

AGO18 Antiviral RNA silencing RSV, RDV Undetermined Genetic analysis [86]

RDR1 Antiviral RNA silencing RSV Undetermined Genetic analysis [88]

RDR6 Antiviral RNA silencing RSV, RDV, RYSV Pns10, P6
Genetic analysis,
protein-protein

interaction
[89–91]

SGS3 Antiviral RNA silencing RYSV, RSV, RSMV P2, P4
Transient expression,

protein-protein
interaction

[92,93]

DRB1 miRNA process RSV NS3 Transgenic method [94]

SPL9 miRNA transcription RSV Undetermined Transgenic method [95]

miR171b-SCLs Gene silencing RSV Undetermined Transgenic method [96]
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Table 4. Cont.

Host Factor Cellular Function Virus Viral Factor Technique Reference

HXK1 ROS RBSDV Undetermined Transgenic method [87]

Pol IV RdDM RGSV P3 Transgenic method,
yeast two-hybrid [97]

KO2, KOL4, KOL5 GA RDV P2 Yeast two-hybrid [98]

IAA10 Aux RDV P2 Transgenic method [36]

SAMS1 Et RDV Pns11 Transgenic method [99]

ARF17 Aux RBSDV, SRBSDV, RSV,
RSMV P8, P2, P4

Transgenic method,
protein-protein

interaction
[100]

CSN5A JA RBSDV P5-1 Protein-protein
interaction [101]

miR319-TCP21 Gene silencing, JA RRSV Undetermined Transgenic method [102]

JAMYB JA RSV Undetermined Transgenic method [103]

GSK2 BR-JA RSV, RBSDV Undetermined Transgenic method [104,105]

RTH2 and EIL2 Et SRBSDV P6
Transgenic method,

protein-protein
interaction

[106]

STV11 SA RSV Undetermined Genetic analysis [107]

Hap1 Amino acid metabolism RBSDV, SRBSDV Undetermined

GWAS, LD decay
analyses,

RNA-sequencing, and
genome editing

[108]

eIF4G Translation initiation RYMV, RTSV, RBSDV RYMV VPg Genetic analysis,
transgenic method [109–111]

CPR5-1 Defense mechanism
regulator RYMV Undetermined Fine mapping [112,113]

RYMV3 Unknown RYMV Undetermined Fine mapping [114]

RLP1 and SOBIR1 PTI response RBSDV Undetermined
High-throughput-

sequencing, genetic
analysis

[115]

HAK5 Potassium transport RGSV P3 Transgenic method [116]

CIPK25 Ca2+ signaling RGSV P5 Protein-protein
interaction [117]

PsbP Photosystem RSV SP Protein-protein
interaction [118]

REM1.4, NbREM1
Plant-specific

membrane-associated
protein

RSV NSvc4
Transgenic method,

Protein-protein
interaction

[119]

Nbfibrillarin Nucleolar functions RSV P2 VIGS, protein-protein
interaction [120]

NbGAPDH-A and
NbPsbQ1 Chloroplast functions RSV NSvc4 VIGS, protein-protein

interaction [121]

NbeIF4A and NbATG5 Autophagy RSV vsiRNA-4A VIGS, protein-protein
interaction [122]

NbbZIP17/28 Unfolded protein
response signaling RSV Undetermined VIGS [123]

5.1. RNA Silencing: The Focus of Rice Defense and Viral Counter-Defense

RNA silencing is one of the most important antiviral pathways for plants to resist virus
infection [83–85]. In the model plant Arabidopsis, the antiviral RNAi has been well-established
through genetic analysis. It relies mainly on the existence of multiple copies of Dicer-like (DCL),
RNA-dependent RNA polymerase (RDR), double-stranded RNA binding (DRB), and Argonaute
(AGO) genes [124]. Thereinto, DCLs are involved in the generation of virus-derived small
interfering RNAs (vsiRNAs) via the cleavage of viral genome-derived dsRNA structures
hierarchically [125]. RDRs are involved in the defense against RNA viruses and production of
viral secondary siRNAs [126–128]. DRBs might act as viral invasion sensors and contribute
to the triggering of various defense responses [129,130]. AGOs can load vsiRNAs to form
RNA-induced silencing complexes (RISCs), by which the viral messenger RNAs are targeted
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with the guiding of vsiRNAs and virus replication is thus limited via a variety of mechanisms
such as transcript degradation and translation inhibition [131].

To date, several RNA silencing-associated components have been verified in rice plants
by genetic analysis or protein-protein interactions. AGO18, a specific Argonaute protein in
monocotyledons, mediates broad-spectrum resistance to virus infections as a molecular
lock to binding miR168, thus leading to the alleviated repression of rice AGO1 [86]. They
further determined the antiviral role of AGO1 by the finding that knockdown of AGO1a/1b
expression increases the susceptibility to RSV. In contrast, AGO2 enhances rice susceptibility
to fijivirus infection through the DNA methylation-controlling transcription inhibition of
OsHXK1, by which the ROS-mediated resistance is inactivated [87]. Up-regulation of
miR444 diminishes the repressive effects of OsMADS23, OsMADS27a, and OsMADS57 on
rice RDR1 transcription, thus activating the RDR1-dependent antiviral RNAi against RSV
infection [88]. Rice plants with down-regulated RDR6 transcripts are more susceptible to
both RSV and RDV, indicating its function in host defense [89,90].

To counter-defend antiviral RNA silencing, rice viruses versatilely impede antiviral
RNA silencing signals by encoding VSRs or other functional proteins. For instance, Pns10,
a VSR encoded by RDV, can inhibit both local and systemic RNA silencing, possibly by
inhibiting the expression of RDR6 [90]. Pns11, the second VSR of RDV, can effectively
suppress local RNA silencing triggered by sense GFP mRNA [132]. NS3, a well-documented
VSR encoded by RSV, suppresses RNA silencing by forming dimeric complexes to bind
long dsRNA [133]. Both P2, a weak VSR of RSV [91] and RSMV P4 [92] can interact with rice
Suppressor of Gene Silencing 3 (SGS3), an essential co-factor function in RDR6-mediated
RNAi signal cascade amplification. In addition, RYSV P6 directly interacts with RDR6 for
blocking vsiRNA amplification [93]. The present findings indicate that inhibition of vsiRNA
generation through sequestering the virus-derived dsRNA or hindering the SGS3/RDR6-
mediated vsiRNA amplification is essential for antiviral defense in rice. Besides, some
virus-encoded proteins can suppress host defense or mediate the induction of disease
symptoms through directly modulating host RNA silencing pathways, particularly miRNA
and DNA methylation. It is a universal response that miRNAs are regulated upon virus
infection. For instance, RSV NS3 regulates the processing of certain resistance-related
miRNAs (i.e., miR168, miR528, miR395, miR398 and miR399) through association with
the miRNA biogenesis factor OsDRB1 [94]. RSV infection reduces the protein level of rice
SQUAMOSA Promoter Binding Protein-like 9 (SPL9), which serves as the transcription
factor to control miR528 transcription, thus the miR528-mediated antiviral defense is
subdued [95]. RSV infection also inhibits the accumulation of miR171b, thus causing
stunting with reduced chlorophyll content in leaves like viral symptoms [96]. RGSV p3
suppresses RNA-dependent DNA methylation (RdDM) through degrading OsNRPD1a,
one of the largest subunits of Pol IV, in a ubiquitination dependent manner, thus facilitating
virus infection [97].

Either antiviral RNA silencing and the counter-defense performed by VSRs or other
viral proteins indicated that the host RNA silencing pathway is indeed a primary way
for rice plants to resist virus infection. While rice genome consists of multiple copies of
AGOs, DCLs, RDRs, and other RNAi-associated proteins, thereby more antiviral RNAi
components in rice need to be determined in the future.

5.2. Plant Hormones: Another Center Target for Various Rice Viruses

Plant hormones exist within plants, contributing to growth and development, but their
biosynthesis and signaling can be disrupted or modulated after virus invasion [134,135]. During
the last decade, plant hormones seem to be rising stars for the studies in rice–virus interaction.

Thus far, the well-known plant hormones, including gibberellic acid (GA), salicylic
acid (SA) [136], jasmonic acid (JA) [137], auxin (Aux) [138], ethylene (Et), abscisic acid
(ABA) [98], brassinosteroid (BR), and strigolactone (SL), have been demonstrated to be
closely related to virus pathogenesis or host defense. Several phytohormone-associated
components were found to be linked to symptom development of various viruses. For
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instance, the RDV-caused dwarf symptom in rice is because RDV-encoded P2 can reduce
biosynthesis of GA through the interaction with rice ent-kaurene oxidases or ent-kaurene
oxidase-like proteins [139]. Further research indicated that P2 also hijacks auxin signaling
by directly targeting the rice OsIAA10 to induce symptom development such as dwarfing,
more tillering number, shorter crown roots, and lower fertility rates [36]. Moreover, RGSV-
induced symptoms, including stuntedness and excessive tillering, are partly because of
the inhibition of SL accumulation or signaling by P3-mediated post-transcriptional gene
silencing of SL-associated genes [97].

Viruses or viral proteins also directly or indirectly target distinct phytohormone-
associated components to promote virus infection [85]. RDV Pns11 promotes host SAMS1
activity and ethylene production for the benefit of virus infection [99]. ARF17, a positive
transcription factor involved in auxin signaling, is targeted by distinct viral proteins, in-
cluding P8 encoded by SRBSDV and RBSDV, P2 encoded by RSV, and P4 encoded by RSMV,
thereby leading to the impairment of OsARF17-mediated antiviral defense [100]. RBSDV P5-
1 can regulate activity of SCF E3 ubiquitin ligases through interaction with OsCSN5A, and
inhibit JA signaling pathway to benefit its infection in rice [101]. To facilitate virus infection,
JA pathway is targeted by RRSV, by which miR319 was highly induced and its targeting
gene TCP21 was down-regulated for suppression of JA biosynthesis and signaling [102].
Recently, JA signaling positively regulated antiviral RNA silencing was uncovered, suggest-
ing a link between phytohormone-mediated antiviral defense and RNA silencing-mediated
antiviral defense. JA signaling is activated upon RSV infection, followed by degradation
of JAZ6 and induction of transcription factor JAMYB, by which the promoter activity of
AGO18 was directly regulated and AGO18 expression was induced [103]. Sometimes, dif-
ferent plant hormone signals cross talk after virus invasion [104]. For instance, both RBSDV
and RSV can induce the expression of the kinase OcGSK2, a key suppressor involving BR
signaling. The induction of OsGSK2 promotes the phosphorylation and degradation of
transcription factor OsMYC2, which leads to the inactivation of JA-responsive genes and
enhances rice susceptibility to RSV infection [105]. However, upon RBSDV infection, the
induction of OsGSK2 positively regulates the JA antiviral response to RBSDV by promoting
the phosphorylation and degradation of OsJAZ4, a repressor of the JA signaling [105].
During the early stage of SRBSDV infection, SRBSDV P6 activates ethylene signaling via
interacting with OsRTH2 in the cytoplasm, thus leading to enhanced SRBSDV prolifera-
tion [106]. These findings imply positive roles of JA and auxin for antiviral defense, but
ethylene contributes to virus proliferation.

5.3. Antiviral Loci from Rice Genome

By forward genetic approaches, a sulfotransferase, STV11, with function in catalyzing
the conversion of SA to sulphonated SA, is identified as an available anti-RSV locus [107]. To
screen RBSDV resistance genes, a diverse global collection comprising 1,953 rice accessions
was evaluated under natural conditions across 3 years [108]. Further haplotype analyses
suggested that a candidate gene LOC_Os06g03150 is mainly associated with the differentiation
of resistance within the Xian subgroup and LOC_Os06g31190 mainly explained the difference in
the resistance between Xian and Geng. Using genome-wide association study (GWAS), linkage
disequilibrium (LD) decay analyses, RNA-sequencing, and genome editing, a highly RBSDV-
resistant variety and its first functional gene, Hap1, was identified [140]. Besides, multiple
recessive resistance loci to RYMV have been mapped [141,142]. For example, mutations in the
eIF(iso)4G translation initiation factor confer high resistance of rice to RYMV [109]. Furthermore,
a second major resistance gene to RYMV, RYMV2, was screened from a large scale African
cultivated rice species, O. glaberrima [112]. Further study indicated that RYMV2-mediated
resistance to RYMV is associated with a rice homolog of the CPR5 gene, a regulator of active
defense mechanisms [113]. Later, a new resistance gene to RYMV from O. glaberrima was
identified through fine mapping method by the same group [114].
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5.4. Other Host Components Involved in Rice-Virus Interactions

Although the primary plant defense is based in this case mainly on RNA silencing and
plant hormones, other cellular pathways are also involved in the rice–virus interactions.
Recently, two proteins associated with plant innate immunity, OsRLP1 and OsSOBIR1, are
proved to positively regulate rice immunity against RBSDV infection, suggesting pathogen-
triggered immunity (PTI)-based innate responses could contribute to antiviral plant de-
fense [115]. Our recent work proved that overexpression of OsHAK5 potassium transporter
improves virus resistance against RGSV infection [116]. Besides, CBL-interacting protein
kinase 25 (OsCIPK25), a member of the plant-specific CBL-CIPK Ca2+ signaling network,
has been proven to interact with RGSV p5 [117]. PsbP, a 23-kDa oxygen-evolving com-
plex protein, can be interacted by RSV-encoded disease-specific protein (SP), thus leading
to enhanced virus symptoms [118]. To overcome remorin-mediated inhibition of virus
movement in host plants, RSV decreases the remorin protein level by interfering with its
S-acylation [119]. These findings suggest that host components involved in plant innate
immunity, plant nutrient, plant photosystem, plant-specific membrane-associated proteins
and other unknown proteins might be associated with rice–virus interactions.

RSV can be mechanically transmitted to Nicotiana benthamiana, thereby a research
model of RSV in N. benthamiana has been developed and applied. To date, several host
factors of N. benthamiana with function in regulating RSV infection have been uncovered.
Viral proteins can manipulate organelle function to benefit virus infection. For instance,
RSV p2 may recruit or manipulate nucleolar functions through an interaction with fibrillarin
to promote virus systemic movement [120]. NSvc4 targets host chloroplasts to suppress
chloroplast-mediated defense [121]. Besides, silencing of NbeIF4A activates autophagy
and inhibits RSV infection by facilitating autophagic degradation of p3. Further study
indicated that overexpression of vsiRNA-4A, a viral siRNA derived from RSV RNA4,
targets eIF4A mRNA for cleavage, thus leading to induced autophagy [122]. Recently, RSV
activates the bZIP17/28 branch of unfolded protein response signaling pathway to promote
viral infection [123]. These findings have promoted the understanding of the infection
mechanism of RSV.

5.5. Complex Interactions between Rice Viruses and Their Vectors

Unlike the huge adverse on rice growth and development by rice viruses, persistent-
propagative infection by rice viruses causes a limited pathogenicity in their vectors. For
example, RDV [143], RGDV [144], RSV [145], and SRBSDV [146] reduce the survival rate,
longevity and fecundity of their offspring or modify the performance and behavior of
their adult vectors. It seems that there exists a balance between the fitness cost of the viral
infection of insects and the persistent transmission of the virus by the insect. The virus
thresholds in insect vectors have been proved as a key factor for further virus transmission.
For example, transmission frequency was correlated with SRBSDV or RBSDV content
in the salivary gland of vector [147]. In contrast, treatment by ribavirin, with function
in specifically inhibiting the expression of sugar transporter 6, a key vector component
for RSV transmission, leads to less RSV accumulation in L. striatellus tissues and thereby
lower transmission efficiency [148]. Then, how to keep the virus at a optimal level in the
body of vector insects? During the last decades, this question has been largely addressed
through investigating replication cycle of rice viruses in their vector insects and the complex
interactions between rice viruses and their vectors [81,149,150].

Persistent transmission by insects firstly needs a successful initiation of viral replication
cycle comprising of virus entry, multiplication, and spread in their insect vector cells [149].
Many virus-encoding proteins involving in the replication cycle have been determined. For
example, RDV P2, protruding from the surface of the outer shell of virions, is essential for
virions entry into insect vector cells in a receptor-mediated, clathrin-dependent endocytosis
manner [151–154]. Nonstructural proteins such as RBSDV P9-1 [155,156], RDV Pns12 [157],
RGDV Pns9 [158], RRSV Pns10 [77,159], and RYSV P6 [160] contribute to the assembly
of viroplasm for viral genome replication and progeny virion assembly. After entry and
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replication, viruses counter two main physical barriers in the insect vectors for spread:
midgut barriers and salivary gland barriers. Nonstructural proteins such as SRBSDV and
RBSDV P7-1 [161–163], RDV Pns10 [164], and RGDV Pns11 [165] have the capacity to
form homodimers to assemble the proposed helical symmetry structures of tubules, by
which virions can rapidly disseminate from the intestine barriers of the insect vector. This
mechanism is known as ‘actin-based tubule motility’. The understanding of how viruses
overcome the plasmalemma barrier of the salivary gland cavities in insect vectors is limited.
In the case of RGDV, virus-induced filaments to perform an exocytosis-like process that
enables viral passage through the apical plasmalemma into salivary cavities [166].

Apart from pass through the physical barriers in the insects, rice viruses also manipu-
late vector immune systems for efficient infection of insect cells and persistent transmission
by insect vectors. Autophagy pathway is always modulated by rice viruses and often
positively regulates persistent viral propagation in insect vectors [167]. For example, RGDV
replication in cultured leafhopper vector cells and intact insects can trigger the autophagic
process such as obvious virus-containing double-membrane autophagosomes, conversion
of ATG8-I to ATG8-II and increased level of autophagic flux, by which the viral spread in
the leafhopper intestine is facilitated [168]. The positive roles of autophagy in persistent
transmission of rice viruses by insect vectors are further supported by a series of research
projects recently. RGDV P2 directly recruits a GAPDH-ATG4B complex to induce the
formation of initial autophagosomes, which were further modified to evade fusion with
lysosomes for degradation, and persistently exploited by viruses to promote efficient prop-
agation [169]. They also found that RGDV Pns11 directly recruits ATG5-ATG12 conjugation
to induce the formation of autophagosomes, thereby facilitating viral spread within the
insect bodies [170]. SRBSDV P7-1 interacts with the mitophagy receptor BNIP3 (BCL2 inter-
acting protein 3) and induces BNIP3-mediated mitophagy by bridging autophagosomes
and mitochondria for maintaining persistent viral infection in insect vectors [171]. But
sometimes, autophagy negatively regulates virus infection in insects. A recently study
exhibits that RBSDV hijacks PtdIns(3,5)P2 via its viral capsid protein to evade autophagic
degradation and promote its survival in insect cells [172]. These findings suggest au-
tophagy may serve as a double-edged sword during viral infection. Rice viruses such as
RGDV and RRSV also induce apoptosis in insect vector cells [173,174], suggesting a link
between virus-induced apoptosis and virus transmission insect ve1ctors to the host plant.
RSV CP also competitively bound G protein Pathway Suppressor 2, an inhibitor of the
c-Jun N-terminal kinase (JNK) signaling, thus releasing the JNK signaling to promote RSV
replication in the vector [175]. Although cytopathologic alterations such as autophagy or
apoptosis are triggered to regulate virus persistent transmission, their potential damage on
the relevant tissues and organs may alter the fitness of the insect vectors.

Antiviral RNAi pathway, a primary antiviral response in plants, can also be triggered
by the propagation of plant viruses in insect vectors, evidenced by the characterization
of vsiRNAs in virus-infected insect vector [176,177]. Antiviral RNAi in insect vectors can
control the initial infection of the insect midgut epithelium, which eventually affects the
vector competence for the virus. A recent report also indicates a novel control strategy of
viral replication in insect vectors whereby interaction between endogenous microRNAs
and vsiRNAs [178]. They found that the transcription of miR-263a was suppressed by
RSV-derived vsR-3397, thus leading to a compromised RSV replication and was beneficial
for maintaining a tolerable accumulation level of RSV in insect vectors. Notably, RNA
modification also correlates with viral persistence in insect vectors. For example, N6

methylation of adenosine (m6A) regulates RBSDV replication in its vector via modifying
viral and insect RNA, and it is used by the virus to maintain a specific titer threshold
required for viral transmission [179]. This regulation mechanism either on protein level or
RNA level reflects an ingenious adaptation strategies of viruses to their insect vectors.

Such transovirial viruses that RDV [180,181], RGDV [182,183], and RSV [184] vertically
transmit to vector offspring via exploiting a symbiotic bacterium, directly hitchhiking
with insect sperm without disturbing sperm functioning, using vitellogenin-mediated
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transovarial transportation system, or entering the oocyte of insect vector via virus-induced
tubules [78]. These findings verify that viral vertical transmission of a rice virus by insect
vectors in nature exists two modes: maternal transmission and paternal transmission.

Emerging evidence has proven that rice viruses can manipulate their vectors either
directly or by inducing changes in host plants to promote the spread of viral pathogens. For
example, during the late infection of SRBSDV in rice plants, SRBSDV P6 enters the nucleus
and interacts with OsEIL2 to suppress ethylene signaling by blocking the dimerization
of OsEIL2, thus promoting virus spread via attracting the insect vector [106]. It implies
more complex interactions among insect vectors, viruses, and host plants contribute the
transmission of viruses by balancing all organizational levels, from molecules to popu-
lations. Once one or more of the interactions undergo changes through evolution or are
halted by environmental interventions, virus transmission may be failed. That’s a quite
possible reason for explaining why field epidemics of rice viral diseases present three
typical characteristics: outbreak, intermittence, and migration. Thereby, exploration of
rice-virus-vector should be focused for seeking solutions to control rice viral diseases.

6. Disease Prevention and Control Strategies for Rice Viral Diseases

With the long-term efforts of studying on rice viral diseases, many strategies for
disease prevention and control have been developed as a system. By collecting the present
knowledge, four main points are summarized as follows.

6.1. Generation of Resistant Rice Varieties

Generation of resistant rice varieties through different breeding strategies is always a
more safe and effective way to prevent and control rice viral diseases. While owing to the
limitation of antiviral gene resources, antiviral breeding for disease resistance processes
slowly. But many other strategies for resistance to viral diseases have been employed,
including encapsulation of viral genome, silencing of viral genes by antisense RNA or
by small RNA molecules, expression of ribozyme, or modification of host factors. For
example, as early as in 1999, transformed lines with expressing the RNA-dependent RNA
polymerase of RYMV were found to be resistant to RYMV strains from different African
locations, sometimes there were complete suppression of virus multiplication [185]. In
addition, expressing hairpin RNA targeting viral genes can limit plant viruses in rice to a
great degree [186–189]. Generation of transgenic rice plants expressing artificial miRNA
directly targeting Virus Genes also possess high-effective disease resistance. For example,
transgenic rice plants expressing artificial miRNA targeting RSV MP are highly resistant to
the virus [190]. Recently, marker-free rice plants with stable and high resistance to RBSDV
through RNA interference were also developed [191]. These marker-free transgenic lines
driven by either maize ubiquitin-1 promoter or rice rbcS green tissue expression promoter
in elite rice background should have great potential in breeding of resistant varieties to
both RBSDV and SRBSDV. Another strategy that to modify host factors with function in
helping virus propagation has already successfully established. For example, genome
editing of rice eIF4G loci through CRSPR/Cas9 method conferred partial resistance to both
RTSV and RBSDV [110,111]. By applying CRISPR/Cas13a immune system, virus resistance
in both dicot and monocot plants were obtained [192]. Additionally, the integration of
current miRNA knowledge with conventional and modern crop improvement strategies is
a method to generate resistant rice varieties [193,194].

Although many strategies are exercisable and effective to generate resistant rice va-
rieties, rare varieties are generated yet. Even worse, some identified resistance loci have
potential ability to be overcome by the evolution of virus genome. For example, insertion
of an E309K mutation in eIF(iso)4G1, the well-established resistance locus in rice, strongly
diminished the interaction with avirulent VPg [195]. These situations urge us that more
potential resistance gene resources need to be determined and applied to breeding work in
the future. There is still a way to go to open a new paradigm in rice breeding by closely
combining resistance cultivars to various rice viruses.
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6.2. Adapt Measures to Avoid Virus Infection at Seedling Stage

Rice plants are more susceptible to viruses at the seedling stage. For example, rice
is susceptible to SRBSDV infection during all growth periods, but the symptoms depend
on the growth stage at the time of infection, and the earlier the infection occurs, the
more severe the symptoms are [50,196]. Thus, knowing how to protect rice seedlings
in seedling nurseries will greatly alleviate disease occurrence and prevalence. Solutions
established in different rice-growing areas are illustrated as follows: (1) in the tropical
rice-growing region, use of planting dates that avoid high vector populations will largely
reduce diseased seedlings; (2) covering rice seedling nurseries with insect-proof nets to
segregate rice seedlings with viruliferous insects [197]; (3) cultivating rice seedlings in
greenhouse and then transplanting in the fields. These practices are the most economical
and effective preventive measure for rice viral diseases.

6.3. Use Pesticides Rationally to Reduce Transmission Agents

Pesticides should first be applied in rice fields to control overwintering or the first-
generation of vector, and in rice seedling nurseries to reduce the population of insect vectors,
thereby the primary source of infection largely decreased [51]. For example, once overwin-
tering or the first-generation of R. dorsalis were controlled by applying pesticides, the RSMV
transmission was largely suppressed. For RYMV, a soil-borne rice virus, seed pelleting, or
coating seedling is recommended to control the rice infection in seedling nurseries.

6.4. Development of Commercial Antiviral Agents

It is of great importance to develop safe and effective chemical agents for controlling
plant viral diseases. To date, several immune stimulants such as Dufulin, Amino oligosac-
charide, and moroxydine hydrochloride have been developed and applied into viral disease
control [198]. However, the species of commercial antiviral agents are too scanty. A recent
paper proposed viral coat proteins as biochemical targets for antiviral compounds [199],
which hopefully provides new insights and references for further development of new safe
and effective antiviral pesticides.

7. Conclusions and Future Perspectives

This review primarily summarizes the occurrence and damage of rice viral diseases,
disease symptoms, transmission biology, arms race between rice viruses and rice plants as
well as insect vectors, and the strategies in viral disease management. This knowledge tells
us about a major challenge during the coming decade that how to balance rice production
and consumption.

Repeated outbreaks of known and newly emerged rice viruses remind us that rice
viruses are tricky. We know little about their law of existence: how they come like SRBSDV
emerging since 2001 in China, and how they leave or stash in the vast nature such as
RBSV. Most important, under natural conditions, life system of crops, biotic factors, abiotic
factors, and human activities should be balanced in the agroecosystem. Once such balance
is stricken by external or internal elements such as environment, plant nutrients, transmis-
sion ability of vectors, weak link will be vulnerable to cause the outbreak and epidemic
disease [200–202]. These existing questions have prompted us to accelerate our capacity
and progress in researching rice virus diseases. As the propose raised by Christopher
Surridge 20 years ago, feeding the world in the 21st century urgently requires a second
green revolution, involving the most audacious feat of genetic engineering yet at the top
of the waves [203]. These have been hailed as the magic bullet that will help to fulfil the
demand for increasing consumption and finally solve the world’s food crisis substantially.
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