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Background: Lung cancer (LC) is the most common malignant tumor in the world, and lung 
adenocarcinoma (LUAD) is the most common type of LC. Immune microenvironment plays a critical role 
in cancer from onset to relapse. We aimed to identify an effective immune-related prediction model for 
assessing prognosis and predicting the relevant tumor therapeutic drugs.
Methods: According to the RNA sequencing data of LUAD transcriptome in The Cancer Genome Atlas 
(TCGA) database and the immune-related genes obtained from IMMPORT (The Immunology Database 
and Analysis Portal) database, immune prognosis-related genes were screened. Weighted gene co-expression 
network analysis (WGCNA) identified hub genes in differentially expressed immune-related genes (DEIRGs). 
Least absolute shrinkage and selection operator (LASSO) Cox and ten rounds of cross-validation were 
used to screen core genes to establish a prognostic model, and in situ hybridization was used to verify the 
expression of core genes in LUAD. Then the patients from the TCGA database were divided into high-
risk group and low-risk group. The survival, tumor microenvironment (TME) and immune cell infiltration 
of different groups were further analyzed, and the differential genes between the two groups were analyzed 
by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment 
Analysis (GSEA) enrichment analyses. Finally, the small molecular drugs that can inhibit the prognosis of 
LUAD were screened by Connectivity Map (CMAP), and the therapeutic mechanism of small molecular 
drug oxibendazole was verified by Cell Counting Kit-8 (CCK-8) experiment.
Results: A four-immunoprognosis-related gene model was established to forecast the overall survival (OS) 
of LUAD through LASSO Cox regression and ten rounds of cross-validation analysis. This prognostic 
model stratified LUAD patients into low-risk and high-risk groups. According to the findings of the survival 
analysis, the low-risk group had a greater OS than the high-risk group and the content of immune cells in 
LUAD was corrected with the survival prognosis of patients. Univariate and multivariate Cox regression 
also revealed that the prognostic model was an independent prognosis factor in LUAD. Five kinds of small 
molecular drugs which can inhibit the prognosis of LUAD were screened by CMAP. As shown by CCK-8 
test, the small molecular drug “oxibendazole” can effectively inhibit the proliferation of LUAD cells.
Conclusions: Based on immune-related prognostic genes, a new prognostic model for LUAD was 
constructed. Oxibendazole can inhibit the proliferation of LUAD cells, which provides a new idea for the 
treatment of LUAD.
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Introduction

Lung cancer (LC) remains the most common cause of 
human cancer death worldwide, and it accounts for greater 
than 25% (1). LC is divided into two major subtypes based 
on histology: small cell LC (SCLC) and non-small cell 
LC (NSCLC), which account for 15% and 85% of all 
cases, respectively (2). NSCLC is divided into squamous 
cell carcinoma, adenocarcinoma, and large cell carcinoma. 
Squamous cell carcinoma accounts for 25–30% of all 
LC cases, and lung adenocarcinoma (LUAD) is the most 
common type of LC and accounts for approximately 
40% of all LC (3). The incidence of LUAD has increased 
recently due to air pollution, the increasing number of 
smokers, the aging population, and the popularization of 
medical checkups. The lack of obvious symptoms and rapid 
onset of LUAD in the early stage of its development has 
led to an overall five-year survival rate of less than 20% (4),  
and there are less than 15% of patients with advanced 
LUAD (5). With the development of precision medicine, 
gene-targeted therapeutic agents, such as gefitinib, erlotinib 
and crizotinib, are widely used in the clinical treatment of 
small cell carcinoma (6), and the survival rate of patients 

improves with targeted gene therapy.
The occurrence and development of tumor is closely 

related to the biological characteristics of tumor cells, 
immune system and immune microenvironment. Tumor 
microenvironment (TME) is a bidirectional, dynamic and 
complex network system, including various types of stromal 
cells (fibroblasts, lymphocytes and endothelial cells), 
immune cells (T lymphocytes, B lymphocytes and etc.) 
and extracellular components (cytokines, growth factors, 
hormones, extracellular matrix, etc.), which surrounds 
tumor cells and are nourished by the vascular system. It 
plays an important role in tumor progression, such as 
local drug resistance, cancer metastasis, immune escape 
and so on. NSCLC has always been regarded as a non-
immunogenic tumor, but the latest research shows that 
NSCLC is one of the most sensitive cancers to monoclonal 
antibody immune checkpoint inhibitors (ICIs). For example, 
ICIs targeting the programmed death receptor 1 (PD-1)/
programmed death receptor 1 (PD-L1) axis has changed the 
first-line treatment of patients with advanced NSCLC, 
and several PD-1/PD-L1 inhibitors have been approved to 
market, significantly improving the prognosis of patients. It 
can be seen that the study of immune system in LC is also 
of great significance. 

Advances in genomic microarray and high-throughput 
sequencing technologies in combination with bioinformatics 
analysis has provided effective methods to study tumor 
development, and the widespread use of gene chips and 
RNA sequencing has also greatly enriched tumor-related 
data. The current study screened The Cancer Genome Atlas 
(TCGA) database for immune-related transcriptomic data 
in LUAD and normal lung tissues, constructed a prognostic 
model, and analyzed the TME and immune cell infiltration 
in tumor tissues via integration with the prognostic model. 
In addition, we analyzed the risk difference of transcriptome 
data in order to screen out the relevant risk factors to 
predict the relevant tumor therapeutic drugs. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
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Methods

Data collection

The transcriptional group data and clinical case data of 
patients with LUAD were obtained from TCGA database 
(http://portal.gdc.cancer.gov/). Immune-related genes were 
obtained from IMMPORT (The Immunology Database 
and Analysis Portal) database. The cancer/paracancerous 
tissues of LUAD patients involved in this study were 
resected by Department of Thoracic Surgery, and diagnosed 
as LUAD by the Department of Pathology, Affiliated 
Hospital of Nantong University. All tissue samples were 
quickly placed into the medium paraformaldehyde fixation 
solution after surgical resection. The study was approved by 
the Human Ethics Committee of the Affiliated Hospital of 
Nantong University (No. 2023-L017) and written informed 
consent was obtained from all patients. Human LUAD 
cell line (A549) was purchased from Shanghai Cell Bank of 
Chinese Academy of Sciences. The study was conducted 
in accordance with the Declaration of Helsinki (as revised  
in 2013).

Data processing

We used R software to extract messenger RNA (mRNA) 
and long non-coding RNA (LncRNA) data sets from 
transcriptome data, and then the immune related genes were 
screened out by using “limma” package in R software. The 
clinical data with clear sample information was analyzed 
through the Weighted Gene Co-expression Network 
analysis (WGCNA) to screen out and filter the modules 
related to survival. Table 1 lists the clinicopathological 
characteristics of the patients which with prognostic follow-
up information. The survival data and gene expression 
data of the relevant samples in the selected module were 
combined, and a forest map of survival-related immune 
genes (P≤0.05) and survival-related immune LncRNAs 
(P≤0.01) was drawn using the “survival” package in R 
language.

Construction of prognostic model

The samples obtained from the TCGA database were 
randomly divided into training and validation sets, and the 
core genes involved in model construction were screened 
using least absolute shrinkage and selection operator 
(LASSO) Cox and ten rounds of cross-validation using the 
formula, 1

  n

i
Coefi ExRisk scor pie

=
= ×∑  (Coefi: coefficient; 

Expi: expression of prognostic characteristic genes), to 
obtain the risk score. The risk score of each sample was 
calculated based on the expression levels of immune-
related genes in the prognostic model, and all samples were 
divided into high-risk and low-risk groups by the median 
value of the risk score. Differential analysis was performed 
for the genes involved in model construction, and Kaplan-
Meier survival analysis was used to assess the differences 
in overall survival (OS) between the high-risk and low-risk 
score groups. The “survival” and “time ROC” packages 
in R software were used to plot the receiver operating 
characteristic curve (ROC) for five-year OS. The ability 
of the prognostic model to predict five-year survival was 
evaluated by plotting the area under the curve (AUC) of the 
ROC. Univariate and multifactor Cox regression analyses 
were performed to verify whether the risk assessment 
calculated by the model was an independent predictor.

Clinical correlation analysis

The clinical data obtained from TCGA database were 
correlated and sorted out, and the “ComplexHeatmap” 

Table 1 Clinicopathological characteristics of the patients (n=522)

Clinical Group Data, n (%)

Age (years) ≤65 241 (46.2)

>65 262 (50.2)

Gender Female 280 (53.6)

Male 242 (46.4)

Stage I–II 403 (77.2)

III–IV 111 (21.3)

T T1–2 453 (86.8)

T3–4 66 (12.6)

M M0 353 (67.6)

M1 25 (4.8)

N N0 335 (64.2)

N1–3 175 (33.5)

We included patients with prognostic follow-up information 
in the TCGA database into this table. However, the individual 
clinical characteristics of some patients may be missing, but we 
ensured that their prognostic information was complete. TCGA, 
The Cancer Genome Atlas; T, tumor; N, node; M, metastasis.

https://jtd.amegroups.com/article/view/10.21037/jtd-24-569/rc
http://portal.gdc.cancer.gov/
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package of R software was used to draw the heat map of 
the difference of clinical traits between high-risk group and 
low-risk group.

Risk differential gene analysis

The samples were divided into high-risk and low-risk 
according to the constructed prediction model, and 
the genes differentially expressed in the high-and low-
risk groups (|Log2 fold change (logFC)| >1 and false 
discovery rate (FDR) <0.05 were statistically significant) 
were screened by using the “limma” package in R software, 
The differentially expressed genes (DEGs) in the high-and 
low-risk groups were analyzed using GO enrichment, and 
KEGG enrichment analysis was performed. Enrichment 
analysis of DEGs was performed using GSEA software (7).

TME score and immune cell infiltration

Based on TCGA transcriptome data, the immune score, 
stromal score, and Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE) score of the samples were calculated based 
on the immune and stromal cells in the tumor tissues using 
the “ESTIMATE” package in R software. The samples 
were divided into high-and low-score groups according 
to the scores, and prognostic analysis was performed on 
both groups. The relative expression of different immune 
cells between the high- and low-risk groups was analyzed 
using the “preprocessCore” package in R software, and the 
differentially expressed immune cells were screened for 
prognostic correlation analysis.

Connectivity Map (CMAP) analysis

CMAP (https://clue.io/) provides a wealth of information on 
small molecule drugs, gene expression, and closely related 
diseases at the genomic level (8). Researchers can link gene 
expression data to disease-related drugs, and a connectivity 
score from −1 to 1 is used to reflect the proximity between 
expression profiles. Drugs with negative scoring indicate 
potential therapeutic molecules. We uploaded high-risk 
genes associated with survival to CMAP and screened small 
molecule drugs with potential antitumor effects as new 
target candidates for high-risk LUAD patients (9). 

In situ hybridization experiment

The paraffin slices were baked at 62 ℃ for two hours. The 
paraffin slices were dewaxed in the environmental dewaxing 
solution I and rehydrated with graded alcohol detergent. 
The paraffin sections were digested with protease K  
(20 μg/mL) at 37 ℃ and circled with a gene pen, then 
the pen ring was rinsed three times in PBS. The paraffin 
slices were then incubated with 3% methanol-H2O2 for  
15 minutes and washed in PBS for 3 times. The slices 
were pre-hybridized in 37 ℃ hybridization buffer for  
1 hour, and then hybridized overnight in the hybridization 
buffer containing probes in the thermostat. The following 
day, the slides were washed at 37 ℃ for 30 minutes, and 
then hybridized with corresponding branching probes. 
The slides were hybridized horizontally for 45 min in a 
wet box at 40 ℃, and the slides were washed at 37 ℃ for  
20 minutes, diluted with a hybrid solution containing signal 
probes, diluted at 42 ℃ for 3 h. After taking the normal 
rabbit serum, the 30 min was sealed at room temperature, 
the HRP-mouse anti-DIG IgG was dropped, and the  
50 min was incubated at 37 ℃. Finally, the five minutes was 
washed with PBS for four times. Adding newly prepared 
3,3N-Diaminobenzidine tetrahydrochloride (DAB) 
chromogenic solution, and the positive was brown. After re-
staining, the nucleus was dehydrated and sealed with graded 
alcohol.

Cell lines and culture

Human LUAD cell line (A549 and H1299) was from 
Nantong College, which were cultured in a cell incubator 
with 5% CO2 at 37 ℃ in complete culture medium 
composed of RMPI-1640 basic culture medium and 10% 
fetal bovine serum.

Cell growth assay

Cell growth was detected using a Cell Counting Kit-8 
assay (CCK-8) Kit (China Seville Corporation, Wuhan, 
China) according to the manufacturer’s protocol. The cell 
suspension was inoculated in a 96-well plate (1,000 cells/
well) and the same sample was repeated for three times. 
It was pre-cultured for a period of time (37 ℃, 5% CO2), 
then 0.25 and 1.00 μL drugs were added to each hole of the 
culture plate. CCK-8 (10 μL/well) was added at six, twelve, 

https://clue.io/
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24 and 48 hours, respectively. After an additional incubation 
of two hours, optical density (OD) was measured at the 
wavelength of 450 nm (OD450) using a microplate reader.

Statistical analysis

All analyses were performed using R language (version 4.2.1) 
and its appropriate packages. Data were analyzed using 
standard statistical tests as appropriate. P≤0.05 indicated 
a significant difference between or among the indicated 
groups. Multiple testing consideration was adjusted using 
the FDR method.

Results

Immune genes and immune LncRNAs related to prognosis

Transcriptomic and clinical data of LUAD samples were 
obtained from TCGA, and the mRNA and LncRNA 
datasets were extracted from the transcriptomic data using 
Perl software. The mRNA dataset was screened for genes 
associated with immunity. The clinical data were analyzed 
to remove samples with unknown data, and the remaining 
346 samples were analyzed using the WCGNA module  
(Figure 1A). The red, brown and yellow modules correlate 
with survival status. The green module correlates with 
survival time. Genes in the red, brown, yellow and green 
modules were selected for subsequent analyses. Figure 1B,1C 
show the forest plots of mRNAs and LncRNAs associated 
with immune prognosis, respectively.

Construction and evaluation of prediction model

A total of 126 immune genes related to prognosis and 43 
immune LncRNA related to prognosis were selected by 
WGCNA module analysis. The samples were randomly 
divided into training set and validation set, and the 
prognostic genes were identified by LASSO Cox regression 
algorithm (Figure 2A). Four core genes (LINC02747, DKK1, 
INSL4, VEGFC) were screened out through ten rounds of 
cross-validation (Figure 2B). Figure 2C makes a differential 
analysis of the genes involved in the construction of the 
model, and finds that the genes are differentially expressed 
between the high-risk group and the low-risk group.

Then Kaplan-Meier survival analysis showed that the 
survival rate in the low-risk group (blue) was significantly 
better than that in the high-risk group (red) (Figure 3A). 
The same results were obtained in both the training set and 

the validation set (Figure 3B,3C).
The risk score distribution (Figure 4A,4B) and the 

corresponding survival status (Figure 4C,4D) of patients 
in the training group and validation group showed that 
the OS time of the high-risk group was shorter, and the 
Figure 4E,4F show the heat map of gene expression in the 
prognostic model.

As Chen et al. (10-12) reported, the establishment of 
a prognostic model requires univariate and multifactorial 
independent prognostic analysis to verify the predictive 
efficacy and independence of the model. Univariate and 
multivariate independent prognostic analyses showed that 
the prognostic model could be used as an independent 
prognostic factor, and had nothing to do with age, sex, 
pathological stage and other clinical traits. In the univariate 
Cox regression analysis, the risk score of the training set 
and the corresponding risk ratio of hazard ratio (HR) 
[95% confidence interval (CI)] were 5.388 (3.153–9.207) 
(P<0.001) respectively, and the risk score of the validation 
set and the corresponding risk ratio of HR (95% CI) were 
6.381 (2.969–13.715) (P<0.001) respectively (Figure 5A,5B). 
In multivariate Cox regression analysis, the risk score of 
the training set and the corresponding risk ratio of HR 
(95% CI) were 4.635 (2.643–8.127) (P<0.001), and the 
risk score of the validation set and the corresponding risk 
ratio of HR (95% CI) were 6.644 (3.058–14.434) (P<0.001)  
(Figure 5C,5D).

The AUC of the risk score of the combined set, the 
training set and the validation set were 0.667, 0.724 and 0.609 
respectively by working characteristics of time dependent 
receptors (ROC) analysis (Figure 6A-6C), suggesting that 
the prognostic characteristics were reliable. In order to 
further evaluate whether the 4 core genes are involved in 
the occurrence and development of LUAD, we explored 
the relationship between risk score and clinicopathological 
factors  in the combined set  and the tra ining set  
(Figure 6D,6E). The results showed that patients with high 
stage and lymph node metastasis had a higher risk than those 
with low stage and no lymph node metastasis (P<0.05). The 
risk score was also related to the clinical characteristics of age 
in the validation set (Figure 6F).

TME analysis and immune cell infiltration

Stromal and immune cells in tumor tissues were estimated 
from the expression data, and the stromal score, immune 
score, and ESTIMATE score of each sample were obtained 
using the ESTIMATE algorithm. The TME scores were 
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Figure 1 Immune mRNAs and immune LncRNAs related to the prognosis. (A) The WGCNA module genes of the prognostic-related 
genes. (B) Forest plot of the immune genes implicated in survival, P≤0.05. (C) Forest plot of the immune LncRNAs related to survival, 
P≤0.01. ME, module eigengene; T, tumor; N, node; M, metastasis; HR, hazard ratio; TCGA-LUAD, The Cancer Genome Atlas-lung 
adenocarcinoma; mRNA, messenger RNAs; LncRNAs, long non-coding RNAs; WGCNA, weighted gene co-expression network analysis.
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Figure 2 Construction of the prognostic model. (A) The LASSO Cox regression algorithm was used to identify the prognostic genes. (B) 
The set of four genes was screened by 10 rounds of cross-validation. (C) Differences in the expression of the genes involved in the prognostic 
model construction between the high-risk and low-risk groups. ***, P≤0.001. LASSO, least absolute shrinkage and selection operator.

Figure 3 Kaplan-Meier survival analysis of the high and low risk groups. (A) Combined set; (B) training set; (C) validation set.

analyzed in combination with the risk scores of the samples. 
Figure 7A-7C show that the immune scores were different 
in the high- and low-risk groups. The immune cells were 
higher in the low-risk group compared to the high-risk 
group, but the stromal scores and ESTIMATE scores 
were not significantly different. The samples were divided 
into high- and low-risk groups according to their scores, 
and Kaplan-Meier survival analysis shows that the high-
risk group (red) had a better survival rate than the low-risk 
group (blue) based on stromal score, immune score and 
composite score (Figure 7D-7F).

Taken together, these results suggested a correlation 
between immune cell content in LUAD tissue and patient 
survival prognosis. The relative contents of different 
immune cells in each sample were obtained by analyzing 
the expression of genes in the samples and the expression 
of genes in immune cells. The tumor tissue samples with 
high accuracy were screened according to the P value, and 

the relative contents of different immune cells in high-
and low-risk samples were obtained by combining the risk 
scores of the samples. Figure 8A,8B show the histogram 
and heatmap of the expression content of different immune 
cells in the high- and low-risk groups. Figure 8C shows 
the difference in the expression of different immune cells 
between the high- and low-risk groups, based on P value 
and suggested that plasma cells, resting memory CD4+ 
T cells, follicular helper cells, resting natural killer (NK) 
cells, M0 macrophages, M2 macrophages, mast cells, 
eosinophils and neutrophils had differential expression. 
Compared to the low- risk group, plasma cells, resting NK 
cells, and eosinophils were downregulated in the high-
risk group, and resting memory CD4+ T cells, follicular 
helper cells, macrophage M0, macrophage M2, mast cells, 
and neutrophils were upregulated in the high-risk group. 
The samples were divided into high and low expression 
groups according to the median immune cell values, and 
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Figure 4 Evaluation of the prognostic model. (A,C,E) The distribution of patient risk scores, corresponding survival status and heatmap of 
the expression of prognostic model genes for risk scores in the training set. (B,D,F) The distribution of patient risk scores, corresponding 
survival status and heatmap of the expression of prognostic model genes for risk scores in the validation set.

Kaplan-Meier survival analysis showed that the expression 
of M0 macrophages correlated with survival time and 
survival status. The survival rate of the M0 macrophage low 
expression group (blue) was better than the macrophage M0 
high expression group (red) (Figure 8D).

Risk differential gene analysis

Differential analysis of genes between the high- and low-
risk groups was performed, and 201 low-risk genes and 351 
high-risk genes were screened (Figure 9A). GO enrichment 
analysis (Figure 9B) and KEGG enrichment analysis  
(Figure 9C) were performed for DEGs. The most important 
GO enrichment analyses were epidermal development, 

collagen-containing extracellular matrix and receptor ligand 
activity. The KEGG enrichment analysis showed that the 
DEGs were primarily enriched in pathways associated with 
cytokine receptor interactions, the PIK3/ATK signaling 
pathway and human papillomavirus infection.

To identify significant changes in biological pathways 
between the high- and low-risk groups, further GSEA 
enrichment analysis was performed. Using FDR<0.05 
and P<0.05 as filtering criteria, genes in the high-risk 
group were primarily enriched in seventeen significantly 
altered pathways including “cell regulation”, “P53 
signaling pathway” and “cell cycle” (Figure 10A-10C); 
Three significantly altered pathways in the low-risk group 
were filtered according to P<0.05, including “linoleic 
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Figure 5 Prognostic model evaluation. (A) Univariate Cox regression analysis of the prognostic model in the training set. (B) Univariate 
Cox regression analysis of the prognostic model in the validation set. (C) Multivariate Cox regression analysis of the prognostic model in the 
training set. (D) Multivariate Cox regression analysis of the validation set prognostic model.

Figure 6 Prognostic model evaluation. (A) Analysis of ROC over time in the combined set (AUC =0.667). (B) Analysis of ROC over time 
in the training set (AUC =0.724). (C) Analysis of ROC over time in the validation set (AUC =0.609). (D) Differential expression of the 
combined set between the high-risk group and the low-risk group. (E) Differential expression of the training set between the high-risk group 
and the low-risk group. (F) Differential expression of the validation set between the high-risk group and the low-risk group. ***, P≤0.001; **, 
P≤0.01; *, P≤0.05. AUC, area under the curve; T, tumor; N, node; M, metastasis; ROC, receiver operating characteristic curve.
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Figure 7 Analysis of the tumor microenvironment. (A-C) Estimation of STromal and Immune cells in MAlignant Tumor tissues using 
Expression data (ESTIMATE) score, Immune score and Stromal score in the high-risk and low-risk groups. (D-F) Kaplan-Meier survival 
analysis of the high-risk and low-risk groups.

Figure 8 Analysis of the immune infiltration. (A,B) Heat maps of immune cell infiltration in the high-risk and low-risk groups. (C) The 
Violin diagram shows the different expression of immune cells between the high-risk and low-risk groups; red: high-risk group; green: low-
risk group. (D) Kaplan-Meier survival analysis showed that the low M0 macrophages expressing group had better survival than the high M0 
macrophages expressing group, P=0.028. NK, natural killer.
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Figure 9 Risk differential gene analysis. (A) DEGs between the high-risk and low-risk groups, log|FC| ≥1, FDR <0.05. (B) GO enrichment 
analysis. (C) KEGG enrichment analysis. FDR, false discovery rate; FC, fold change; BP, biological process; CC, cellular component; MF, 
molecular function; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

acid metabolism”, “α-linolenic acid metabolism” and 
“arachidonic acid metabolism” pathways (Figure 10D-10F).

Screening of five LUAD candidate small molecule drugs

To identify new drugs for patients with LUAD, we 
performed CMAP analysis of high-risk genes and screened 
the five most relevant small molecule drugs online using the 
CMAP database (Table 2).

Verification of in situ hybridization and expression of 
LINC02747 in LUAD

DKK1, INSL4 and VEGFC have been reported to be highly 
expressed in LUAD, so in situ hybridization was used to 
detect the expression of LINC02747 in paracancerous 

tissues and LUAD tissues. By DAB Horseradish Peroxidase 
Color Development Kit, we found that the expression of 
LINC02747 in LUAD tissue was higher than that in normal 
lung epithelial tissue (Figure 11).

CCK-8 verifies that oxibendazole inhibits the growth of 
LUAD cells

After the A549 cells were plated, the CCK-8 was detected at 
6, 12, 24 and 48 h after administration of 0.25 and 1.00 μm 
oxibendazole in the experimental group. Compared with 
the NC group, we found that oxibendazole could inhibit 
the growth of A549 cells and inhibit the activity of A549 
cells in a time-dependent manner (Figure 12). Similarly, we 
further verified in the H1299 cell line that the growth and 
activity of H1299 cells were also inhibited by oxibendazole  
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(Figure 13). These results indicate that oxibendazole had 
different inhibitory effects on LUAD cells cultured in vitro. 

Discussion

LC is the main cause of cancer death in the world (13). 
LUAD is the most common histological subtype of 
primary LC. Due to the unobvious early symptoms of 

LC, patients are often at a late stage at initial diagnosis. 
Meanwhile, the prognosis is relatively poor, and the five-
year survival rate is only about 19%. This low survival rate 
is related to many factors, including the patient’s age, with 
or without underlying disease, tumor size, tumor stage 
and postoperative treatment. In recent years, many studies 
have been carried out on LUAD, and a lot of progress has 
been made, but the molecular mechanism of carcinogenesis 
and progression of LUAD is still insufficient (14). In this 
study, we constructed a prognostic model consisting of four 
immune prognosis-related genes, which can be used to 
classify patients with LUAD into high and low risk groups. 
The characteristic genes come from the expression data of 
LUAD in TCGA, and the model is randomly divided into 
groups for verification, which proves the role of the model 
in the prognosis of LUAD.

These four immune prognosis-related genes included 
one LncRNA and three  mRNA.  Among them,  a 
previous study has found that LINC02747 up-regulates 
the expression of TFE3 by adsorbing miR-608, and 

Table 2 Five most relevant small molecule drugs

Name Score Description

Tyrphostin-AG-1295 98.42 PDGFR receptor inhibitor

ABT-751 96.27 Tubulin inhibitor

Oxibendazole 95.81 Tubulin inhibitor

Mirin 95.24 MRE11A exonuclease inhibitor

Ingenol 94.23 PKC activator

PDGFR, platelet-derived growth factor receptor; PKC, protein 
kinase C.

Figure 10 Differential gene analysis. (A-C) Several pathways in the high-risk group. (D-F) Several pathways in the low-risk group.
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Paracancerous tissues LUAD tissues

Figure 11 Microscopy results of in situ hybridization experiment LINC02747 in adjacent/cancerous tissues by DAB Horseradish Peroxidase 
Color Development Kit. LUAD, lung adenocarcinoma. 

Figure 12 A549 cells were treated with 0.25 and 1.0 μM oxibendazole, and cell counts were collected at the indicated times. Each reported 
value represents the mean ± standard deviation (SD) from three independent experiments. **, P<0.01; ***, P<0.001; ****, P<0.0001, for the 
vs. noncancerous (NC) group.

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

6 h

24 h 48 h

12 h

C
el

l v
ia

bi
lit

y,
 %

C
el

l v
ia

bi
lit

y,
 %

C
el

l v
ia

bi
lit

y,
 %

C
el

l v
ia

bi
lit

y,
 %

NC

NC NC

NC0.25

0.25 0.25

0.251

1 1

1
Concentration, μM

Concentration, μM Concentration, μM

Concentration, μM

*** ***

****

****
****

****

****

**



Journal of Thoracic Disease, Vol 16, No 9 September 2024 5873

© AME Publishing Company. J Thorac Dis 2024;16(9):5860-5877 | https://dx.doi.org/10.21037/jtd-24-569

Figure 13 H1299 cells were treated with 0.25 and 1.0 μM oxibendazole, and cell counts were collected at the indicated times. Each reported 
value represents the mean ± standard deviation (SD) from three independent experiments. *, P<0.05; **, P<0.01; ****, P<0.0001, for the vs. 
noncancerous (NC) group.

finally promotes the proliferation of clear cell renal cell  
carcinoma (15). However, it has not been found in the study 
of LUAD. In this study, we found that LINC02747 was also 
highly expressed in LUAD, so it is of great value to study 
whether LINC02747 plays a carcinogenic role in LUAD 
and its potential mechanism.

The imbalance of Dickkopf-associated protein 1 (Dickkopf-1, 
Dkk1) is related to the pathogenesis of various cancers. It 
is a member of the Dkk protein family, including Dickkopf-
associated protein 2 (Dickkopf-2, Dkk2), Dickkopf-associated 
protein 3 (Dickkopf-3, Dkk3) and Dickkopf-associated protein 
4 (Dickkopf-4, Dkk4). This secreted protein family shares a 
similar conserved cysteine domain and inhibits the Wnt/-
catenin pathway by inducing proteasome B-catechin 
degradation, inducing apoptosis and preventing cell 
proliferation (16). One study has found that DKK1 can 
be used as an inhibitor of Wnt signal pathway to down-
regulate the expression of Wnt-7a and promote the 
development of NSCLC (17). INSL4 was found for the 
first time in placental tissue and belongs to the relaxin/

insulin-like peptide family. For many years, the peptide 
family has played a functional role in cancer (18). The 
functional consequences of relaxin receptor activation in 
cancer cells include cell movement ability increasing tumor 
growth and angiogenesis (19), all of these contribute to 
tumor expansion, tissue invasion and metastasis. INSL4 
can be used as a prognostic marker for proliferation and 
invasiveness of NSCLC (20). Vascular endothelial growth 
factor C (VEGFC) can be promoted by amplified LncRNA 
PVT1 (plasma cell tumor variant translocation 1), thus 
promoting the proliferation and metastasis of LUAD (21). 
The above studies suggest that these may be new markers 
for the diagnosis, prognosis and treatment of LUAD. 
The risk score composed of these four genes divided the 
training set and validation set into high-risk group and low 
risk group, and the survival rate of the high-risk group was 
significantly lower than that of the low-risk group. This 
prognostic feature had been proved to be independent of 
other clinical traits as an independent prognostic factor and 
has a strong potential for clinical application.
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TME plays an important role in tumor progression 
and metastasis, and there is a close relationship between 
inflammation and TME (22). Inflammation in TME is a 
characteristic of cancer, which is the interaction between 
inflammatory cells and tumor cells, thus affecting tumor 
progression (23). In this study, the TME score between 
the two risk groups showed that the high-risk group 
had lower immune score, resting memory CD4+T cells, 
follicular helper cells, macrophage M0, macrophage M2, 
mast cells and neutrophils were higher in the high-risk 
group. Macrophage M0 was abundant in the high-risk 
group and was related to the prognosis of patients. Tumor 
associated macrophages (TAM) are abundant in TME and 
participate in tumorigenesis, development, angiogenesis and  
metastasis (24). Preclinical and clinical data show that 
in many types of tumors such as pancreatic ductal 
adenocarcinoma (PDAC), glioblastoma and bladder 
cancer, the high infiltration of TAM is closely related to 
poor prognosis. At the same time, high TAM infiltration 
reduces the sensitivity of cancer patients to radiotherapy, 
chemotherapy and targeted therapy (25). TAM can 
be induced to polarize into typical activated “M1” 
macrophages and alternately activated “M2” macrophages 
(M0 macrophages are unpolarized immature macrophages). 
Different levels of immune cell infiltration have different 
effects on the prognosis of patients.

By comparing the genes expressed in high-risk 
group and low risk group, 405 DEGs were identified, 
including 119 low risk genes and 286 high risk genes. GO 
enrichment analysis showed that “epidermal development”, 
“keratin filament” and the structural components of “skin 
epidermis” were the most important biological processes, 
molecular function and cellular localization, respectively. 
KEGG enrichment analysis showed that the DEGs were 
mainly concentrated in “human papillomavirus infection”, 
“intracellular phagocytosis” and “salmonella infection”. 
GSEA enrichment analysis showed that the up-regulated 
genes in the high-risk group were mainly enriched in 
biological pathways such as “fine cell apoptosis”, “p53 signal 
pathway” and “cell cycle”. One study has found that 50% 
of invasive tumors have p53 gene mutations, which are 
often used as targets for anticancer therapy (26). Different 
from normal cells, tumor cells have an uncontrolled 
cell cycle, cells continue to divide and proliferate, and 
apoptosis-related signaling pathways in tumor cells are  
damaged (27). The imbalance of cell cycle is the main reason 
for the development of cancer, so the main mechanism of 
screening drugs is also related to the inhibition of cell cycle 

of cancer cells.
With the development of medical treatment and 

biotechnology, the treatment of LC has made a lot of 
progress, such as targeted therapy and immunotherapy, 
but only some patients can benefit from it. Therefore, new 
drugs for the treatment of LC still need to be developed. 
CMAP is a database of transcriptional expression of 
human cancer cells treated with compounds or drugs, 
which can be used to predict drugs based on changes 
in gene expression in diseases. Research shows that 
gliclazide could play an anticancer role in LUAD cells by 
CMAP analysis. We identified five small molecular drugs 
through CMAP analysis of high-risk genes. ABT-751 is 
a new oral antimitotic agent that inhibits microtubule  
polymerization (28). It has cytotoxicity in preclinical studies 
and this related toxicity is acceptable. Research found that 
ABT-751 combined with carboplatin inhibited the growth 
of LC fine cell lines, and it also shows moderate clinical 
anti-tumor activity in advanced NSCLC treated with 
carboplatin (29). Oxibendazole is a tubulin inhibitor and 
as a benzimidazole drug, it also shows anticancer activities 
in addition to antiparasitic drugs, such as disrupting 
microtubule polymerization, inducing apoptosis, stopping 
fine cell cycle (G2amp M), anti-angiogenesis and blocking 
glucose transport (30). Another study has shown that 
oxibendazole can induce apoptosis through mitochondrial-
mediated calcium destruction and mitochondrial membrane 
potential destruction (31), which is related to cancer 
pathway. Ingenol, as a protein kinase C activator, has 
been found that ingenol 3,20 dibenzoate (IDB) is a tumor 
inhibitory protein kinase C (PKC) isozyme activator, which 
can increase the production of IFN-γ and degranulation 
of NK cells. Especially when NK cells are stimulated by 
NSCLC cells, IDB shows a strong anticancer effect by 
promoting NK cell-mediated killing of NSCLC cells (32). 
Mirin is a MRE11A exonuclease inhibitor. It has been 
found that mirin can inhibit events related to homologous 
recombination in a variety of cellular and biochemical 
contexts (33). Adel Alblihy et al. reported that mirin 
reverses platinum resistance in ovarian cancer cells and 3D 
sphere models through gene knockout or blocked Mre11 
depletion (34). Kasey Jividen et al. found that inhibition 
of DNA repair enzyme MRE11 by small molecule mirin 
can inhibit androgen-dependent transcription and growth 
of prostate cancer cells (35), indicating that mirin has the 
potential to inhibit tumor cells. Tyrphostin-AG-1295 
(casein AG1295) is an inhibitor of PDGFR tyrosine kinase. 
This study only has shown that it can inhibit the growth 
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and invasion of Toxoplasma gondii (36), but its effect on 
tumor cells needs to be further studied. To sum up, ABT-
751, oxibendazole and ingenol have potential therapeutic 
effects on LUAD, but the inhibitory effects of Mirin and 
tyrphostin-AG-1295 on LUAD need to be further studied. 
In this study, we successfully verified that oxibendazole 
can inhibit the growth and proliferation of LUAD cells in 
vitro. Other small molecular drugs are only data screening 
based on the database, and more studies are needed to 
verify the practicability of these molecules and carry out 
in vitro and in vivo experiments to clarify their molecular 
mechanisms.

In this study, the prognostic model was constructed by 
screening the immune genes related to the prognosis of 
LUAD in the database, and the accuracy of the model was 
verified. The samples were grouped by the model, and the 
DEGs in the high-risk group were analyzed. Meanwhile, 
the potential anticancer drugs for LUAD were screened 
by CMAP analysis, which provided an important reference 
for the treatment of LUAD. However, due to the fact that 
the transcriptome data and clinical information studied in 
this paper came from the TCGA database, the stability of 
the validation model using other databases could not be 
estimated. It is necessary to further expand the data sample 
size and validate the model with external data sets. Secondly, 
among the selected small molecular drugs, three drugs 
have been studied in LC cells, and the potential mechanism 
of other drugs in LC cells needs to be further studied. In 
addition, more research evidence is needed to prove the 
effectiveness and safety of the predicted molecular drugs. 
At the same time, the drug resistance of tumor cells to 
anticancer drugs is often the main reason for the failure of 
chemotherapy. Thus, on the basis of routine chemotherapy 
drugs, the combination with other targeted drugs to 
improve the efficacy is also a new treatment strategy.

Conclusions

Based on immune-related prognostic genes, we constructed a 
new prognostic model to predict the prognosis of LUAD, and 
several small molecule drugs targeting high-risk LUAD were 
predicted to provide new ideas for the treatment of LUAD.
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