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The etiology of immune-related diseases or traits is often complex, involving many genetic 
and environmental factors and their interactions. While methodological approaches 
focusing on an outcome measured at one time point have succeeded in identifying 
genetic factors involved in immune-related traits, they fail to capture complex disease 
mechanisms that fluctuate over time. It is increasingly recognized that longitudinal 
studies, where an outcome is measured at multiple time points, have great potential to 
shed light on complex disease mechanisms involving genetic factors. However, longi-
tudinal data require specialized statistical methods, especially in family studies where 
multiple sources of correlation in the data must be modeled. Using simulated data with 
known genetic effects, we examined the performance of different analytical methods for 
investigating associations between genetic factors and longitudinal phenotypes in twin 
data. The simulations were modeled on data from the Québec Newborn Twin Study, an 
ongoing population-based longitudinal study of twin births with multiple phenotypes, 
such as cortisol levels and body mass index, collected multiple times in infancy and 
early childhood and with sequencing data on immune-related genes and pathways. We 
compared approaches that we classify as (1) family-based methods applied to summa-
ries of the observations over time, (2) longitudinal-based methods with simplifications of 
the familial correlation, and (3) Bayesian family-based method with simplifications of the 
temporal correlation. We found that for estimation of the genetic main and interaction 
effects, all methods gave estimates close to the true values and had similar power. If 
heritability estimation is desired, approaches of type (1) also provide heritability estimates 
close to the true value. Our work shows that the simpler approaches are likely adequate 
to detect genetic effects; however, interpretation of these effects is more challenging.

Keywords: genetic association, family design, longitudinal studies, linear mixed models, generalized estimating 
equations
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inTrODUcTiOn

It is increasingly recognized that longitudinal studies – where an 
outcome, or phenotype, is measured on each individual at multiple 
time points – have great potential to shed light on complex dis-
ease mechanisms involving genetic factors. The Quebec Newborn 
Twin Study (QNTS) is a prospective longitudinal investigation on 
twin pairs born between April 1, 1995 and December 31, 1998 in 
the Greater Montreal Area (1). Six hundred and sixty-two [662, 
38% monozygotic (MZ)] (67%) of the eligible twin pairs and their 
families were recruited into the study with 322 pairs undergo-
ing additional laboratory assessments (1–3). To be eligible, the 
twin pairs had to share the same household environment and 
be free from major congenital diseases (1). The QNTS collected 
information on a wide range of biological, cognitive, behavioral, 
and social factors including anthropometric measures and 
dietary intake (1). DNA is also available on a subset of the twins 
and sequencing is in progress. Using results from QNTS, earlier 
studies have estimated the heritability over time of traits, such as 
dietary intake, eating behaviors, and body size (2–4).

An important goal of QNTS is to perform longitudinal analy-
sis on associations between genetic factors, such as those from 
the inflammatory pathway, and developmental phenotypes like 
obesity. Obesity is characterized by a state of persistent low-grade 
inflammation (5). Adipose tissue and its infiltrated macrophage 
and immune cells release proinflammatory mediators, such as 
tumor necrosis factor-α (TNF-α), interleukins (IL)-1b and -6, 
and chemokine ligand 2 (CCL2) (5). Inflammatory cytokines 
and chemokines activate nuclear transcription factors, such 
as activator protein-1 (AP-1) and nuclear factor-kB (NF-kB), 
which in turn induce the expression of proinflammatory genes 
in a positive feedback manner (5, 6). Caloric and nutrient excess 
induce hypothalamic inflammatory signals, which, among other 
effects, induce insulin/leptin resistance (5, 7, 8). Variations in 
genes related to the leptin signaling pathway have already been 
implicated in the classical monogenic model of severe obesity (9). 
In addition, a Swedish cross-sectional study showed that genetic 
variants of the inflammatory cytokines IL-1β and IL-1RN were 
associated with significant differences in body fat in young men 
(10). A systematic review performed in 26,944 healthy adults also 
revealed that haplotypes in the IL-6 gene were associated with 
increased waist circumference and body mass index (11). Thus, 
genetic variations influencing the inflammatory response likely 
affect obesity phenotypes.

Since the QNTS contains longitudinal data on twin pairs, 
a challenge with the analysis of QNTS data is accounting for 
the correlation due to both repeated measurements over time 
and repeated measurements within a family. Many different 
approaches have been developed to analyze longitudinal data on 
unrelated samples [reviewed in Ref. (12), for example]. In par-
ticular, regression-based methods allow estimation of the effects 
of covariates of interest while accounting for the correlation of 
repeated measurements on an individual. In a marginal model 
approach, the mean of the response is specified with a linear or 
generalized linear model and the correlation between response 
values is modeled with a prespecified correlation structure. 
These models are fit using Generalized Estimating Equations 

(GEE) (13). In multi-level or hierarchical models, the correlation 
between the repeated measurements is assumed to be due to 
unobserved subject-specific regression coefficients that are mod-
eled as random effects in the linear or generalized linear mixed 
model. These models are fit using maximum likelihood-based 
approaches (14).

Similarly, many methods exist for the analysis of genetic data 
collected on families but at a single point of time. Among these 
methods are those that use random effects to model the correla-
tion among family members based on kinship and include the 
genotype of interest as a fixed effect in a mixed model (15, 16). 
Specifically for twin studies, the structural equations classical 
twin model (17) can also be used to test for genetic association 
by including the genotype as a covariate in the model.

There has been much interest in evaluating approaches for 
the analysis of family data measured at multiple time points. For 
example, multiple Genetic Analysis Workshops have included 
longitudinal family data for researchers to evaluate and compare 
performance of different approaches; these contributions are 
summarized in Gauderman et  al. (18), Kerner et  al. (19), and 
Beyene and Hamid (20). However, the evaluated methods have 
generally involved simplifications to the data structure so that 
either standard longitudinal methodology or standard family-
based methodology can be used.

The analysis strategies developed so far can be broadly 
classified as (1) two-stage analyses where family-based meth-
ods are applied to summaries of the observations over time, 
(2) longitudinal-based methods that simplify the familial 
correlation, and (3) family-based methods that simplify the 
temporal correlation. In the two-stage approaches, repeated 
time measurements can be collapsed by taking the average over 
time or the slope, intercept or residuals from regressing each 
individual phenotype values on time. Methods appropriate to 
family data are then applied to the collapsed scores [see in Ref. 
(21, 22), for recent examples]. For methods of type (2), many 
groups have evaluated either the GEE or GLMM approach to 
longitudinal analysis when the family structure is simplified. 
For example, Choi et al. (23), Shi et al. (24), and Sung et al. (25) 
all include a random family effect in their mixed effect models, 
implicitly assuming that the correlation between observations 
from related family members is constant regardless of the 
relationships. In the GEE approach evaluated by Shi et al. (24) 
and Sung et al. (25), a compound symmetry correlation struc-
ture is assumed for the correlation between family members, 
which explicitly assumes constant correlation between family 
members. This assumption is known not to be realistic with, for 
example, samples of MZ and dizygotic (DZ) twins. MZ twins 
are more closely related genetically than are DZ twins, and so 
we would expect that phenotypes measured on MZ twins are 
more correlated than phenotypes on DZ twins. Finally, the 
Bayesian approach for variance component estimation with 
longitudinal family data described by Burton et al. (26) more 
realistically models the familial correlation between family 
members due to both shared genes and shared environment. 
However, although all time points are included in the analysis, 
the correlation between time points is assumed to be constant. 
Phenotype values measured at adjacent time points would not 
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be more similar to each other than say the first time point to 
the last. Again, this is clearly unrealistic. To our knowledge, 
no approach concurrently models both the correlation due to 
time and family without simplifying one of these correlation 
structures in a way known to be unrealistic.

As the three different types of analysis strategies involve three 
different simplifying assumptions, it is of interest to evaluate 
the effects of these simplifications. In this paper, we examine 
the performance of some of the analytical methods described 
above for investigating associations between genetic factors and 
longitudinal phenotypes in family data using data simulated 
based on the QNTS. The family structures, ages, and sex of the 
subjects are taken from the QNTS. Genotype data were simu-
lated based on these family structures and the BMI phenotype at 
multiple time points was simulated based on the growth curves 
of the subjects and under multiple genetic models. As the true 
models are known, we evaluate which approaches most closely 
estimate the true parameter values and we estimate the power of 
each method. As no method proposed to date can fully model 
the correlational complexity of the longitudinal family design, 
our work provides important guidance to analysts about when 
each approximation is expected to perform adequately. Although 
many different studies compare the performance of some of the 
methods outlined above [for example, Ref. (23–25)], comparisons 
are not exhaustive as typically only two methods within each of 
the three types, for example the marginal to multi-level model, 
are compared. In addition, we simulated data under multiple 
different genetic models, and we include the Bayesian approach 
in our comparison.

MaTerials anD MeThODs

We evaluated several different approaches for the analysis of 
longitudinal family data. In the next section, we describe the 
methods that we evaluated. We then describe our simulations and 
our metrics for judging each approach.

statistical approaches
We divide the approaches into three categories (1) those that use 
a summary statistic of the phenotype over time, (2) those that 
simplify the correlation due to sampling multiple members of the 
same family, and (3) methods that simplify the correlation due to 
repeated measurements over time.

Summary Statistic Approach
The simplest form of analysis for a longitudinal outcome meas-
ure is to summarize the repeated measures for each individual. 
The analysis based on the summary measure can then be done 
using standard methods for family-based designs. We used the 
following individual summary measures: (1) the average over 
the time points, (2) the intercept and the slope calculated using 
a linear regression of BMI on age for each individual, and (3) 
the area under the curve (AUC) calculated using the trapz R 
function [pracma package (27)] implementing the trapezoidal 
rule method. We then analyzed each summary measure using 
three models. First, we fit a linear mixed model with a random 
family effect to account for the twin correlation using the lme 

function [nlme package (28)]. This model simplifies the familial 
correlation.

Since we are analyzing twin data, we then used the classical 
twin model (17) as implemented in the twinlm function of the 
mets package (29), which provides estimates of variance compo-
nents (additive genetic, shared environmental, and residual) and 
heritability. The classical twin model is a path model incorporat-
ing the different variance components:

 
xY aA dD cC eE ,ijij ij ij ij ij= β + + + +

 

where Yij is the trait value for twin j in twin pair i, b is a vector 
of fixed effects corresponding to the vector of covariates xij to be 
included in the model and including an intercept, a, d, c, and 
e are the path coefficients and Aij, Dij, Cij, and Eij are mutually 
independent with standard normal distributions. The variance 
components for additive genetic ( )A

2σ , dominance genetic ( )D
2σ , 

common environmental ( )C
2σ , and residual components ( )E

2σ  are 
the squares of the path coefficients a, d, c, and e, respectively. We 
fit the “ACE” model, including additive genetic, common envi-
ronmental and residual variance components (i.e., dropping the 
dominance term from the model). Heritability can be estimated 
from this model as the ratio /( )A A C E

2 2 2 2σ σ σ σ+ + .
For all methods, covariates in the linear model included sex 

and genotype.

Simplifying Familial Correlation
We then considered methods that simplify the familial correla-
tion. In the case of twin data, this means that the correlation 
structure corresponding to twin zygosity (MZ and DZ) is not 
correctly modeled. With the simplified correlation structure, 
conventional statistical methods for longitudinal data can be 
used. We evaluated two models described in Choi et al. (23). The 
first is a marginal GEE model for which we used three correla-
tion structures: exchangeable, autoregressive, and unstructured. 
The second model is a three-level, hierarchical (subject-specific) 
model. These models were fit with the R gee (30) and nlme pack-
ages, respectively. For both the GEE and hierarchical approaches, 
covariates in the linear model included sex, genotype, age, and 
genotype-by-age, depending on the underlying genetic model.

Simplifying Correlation Over Time
A third strategy involves modeling the correlation of phenotype 
that is due to kinship, as in the approaches of type (1). However, 
rather than use a summary of all time measurements, each time 
point is included in the analysis and the correlation between 
time points is assumed to be due to kinship. A Bayesian-based 
approach to estimate the variance components that could 
handle arbitrary family structure and continuous and binary 
traits was proposed by Burton et al. (26) and implemented using 
WinBUGS (31). This approach was not presented as a means of 
detecting association with genetic factors; however, association 
can be assessed by including genotypes at measured SNPs in the 
linear model.

We now describe our Bayesian model, which includes both 
genotype and genotype-by-age effects and assumes the twin study 
design. We assume n twin pairs are measured at six time points. 
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Let the trait value for individual j of twin pair i at age k be denoted 
by Yijk for i n j k= = =1 1 2 1 6, , ; , ; , , 

. Letting Gij and Sij represent 
the genotype (coded assuming an additive allelic effect) and sex 
of the individual j in twin pair i, and Tijk represent the age at the 
kth time point, the full model describing the association between 
trait and covariates is

 S G T G T( ) ( )ijk ij S ij G ij T Tij ijk GT ij ijk0 0µ β β β β β β β= + + + + + × + ×  

 
Y N~ , ,ijk ijk E

2µ σ( )  

where the regression parameters b0, bS, bG, bT, and bGT are all 
considered fixed effects, b0ij is the random intercept, and bTij is 
the random time effect. E

2σ  is the residual variance.
The random effects are further decomposed into a random 

effect due to kinship and a random effect due to common 
environment. Letting MZ and DZ represent MZ and DZ twins, 
respectively, the model for the random intercepts for the ith twin 
pair is

 

i 0 0V VN~ 0, ,

if MZ
1
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A C
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and the model for the random slopes for the ith twin pair is

 

Ti T TV VN~ 0, ,

if MZ
1
2

if DZ
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1
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where V0 is the covariance matrix for the random intercept effects 
and VT is the covariance matrix for the random slope effect. The 
variance components accounting for correlation due to kinship, 
the additive polygenic variances are A

2σ  and A
2τ  for the intercepts 

and slopes, respectively. Similarly, the variance components due 
to common environment are c

2σ  and c
2τ  for the intercepts and 

slopes. The variance components for the intercepts are assumed to 
be unrelated to those of the slopes. As in the classical twin model, 
heritability can be estimated as the ratio /( )A A C E

2 2 2 2σ σ σ σ+ + .
To implement this model, we used the twin model param-

eterization described in Visscher et al. (32), which is equivalent 
to the model given above. This parameterization is a twin model 
version of the parameterization used by Burton et  al. (26) and 
Burton et al. (33). Briefly, this parameterization gives ioβ  and Tiβ  
as a sum of random effects corresponding to the twin pair and to 
the individual. For MZ twins, the individual effect (Ind) is shared 
between the two twins and can be combined with the pair effect 
(Pair), which leads to the following model

 

Pair if MZ

Pair Ind if DZoij
i

M

i
D

ij

0

0 0

β =
+





  

 

Pair if MZ

Pair Ind if DZTij
Ti
M

Ti
D

Tij

β =
+





  

where N NPair ~ 0, ,Pair ~ 0,
1
2i

M
A C i

D
A C0

2 2
0

2 2σ σ σ σ( )+ +



 , and 

NInd ~ 0,
1
2ij A0

2σ



 . The random time effects are defined simi-

larly, with variance components A
2τ  and C

2τ  in place of A
2σ  and C

2σ , 
respectively. Burton et al. (33) mention that this parameterization 
would be expected to assist convergence.

As this is a Bayesian approach, prior distributions are required 
for all model parameters. Following Burton et al. (26), flat priors 
are used for all parameters. The prior distributions for the fixed 
effect slope parameters are assumed to be N( , )0 106  and the pri-
ors for the variance components are all assumed to be Uniform 
(0,100). During testing, three chains of 10,000 iterations and 1000 
burn-in were run and results were compared between chains. 
Final results for a single dataset were based on one chain of 20,000 
iterations, which took ~5 min to run.

simulations
Our simulations were performed using the model described in 
Section “Simplifying Correlation Over Time” above, to which we 
added a fixed effect Tβ ′ to allow modeling of a segmented effect 
of time with a knot at 6 months of age, so that:

 

S G T

T G T

( ) ( )ijk ij S ij G ij T Tij ijk T

ijk GT ij ijk

0 0µ β β β β β β β

β

= + + + + + × +

× ′ + ×
′

 

where ′ =Tijk 0 for k ≤ 2 and ′ = −T Tijk ijk 6 for k > 2. We considered 
several values of the simulation parameters, as described in 
Table 1. These values were chosen in order to reflect the observed 
QNTS data. For example, the segmented effect of time was based 
on catch-up in growth observed after birth and the magnitude of 
the age, sex, and genotype effects were based on BMI trajectories 
observed in QNTS (example trajectories are shown in Figure 1A). 
We used correlation patterns in the QNTS DZ and MZ twins to 
define the covariance parameters. Figures 1B–D show examples 
of simulated average BMI trajectories for selected models.

We simulated 788 children (226 DZ pairs and 168 MZ pairs) 
based on the number of QNTS twins with at least three time 
points available. Sex and age values were defined as observed 
in the QNTS data. In order to get a complete dataset with six 
time points per individual, we imputed each missing visit (age) 
value by randomly sampling an existing age value at that visit. We 
chose to perform simulations on a complete dataset to facilitate 
the comparison of methods (see Discussion). Genotype data were 
simulated by assigning genotypes to parents for a single nucleo-
tide polymorphism (SNP) with minor allele frequency of 0.3 and 
using Mendelian transmission to obtain the genotypes of the 
DZ twins and one MZ twin per family. The second MZ twin was 

TaBle 1 | simulation models.

Parameter genetic effect modeled

(1) none (2) effect on average (3) effect on change (linear) (4) effect on change (segmented)

(a) (b) (c) (d) (a) (b) (a) (b)

0β 11 11 11 11 11 11 11 11 11

Sβ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Gβ 0 0.1 0.15 0.2 0.3 0 0 0 0

Tβ 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.8 0.8

Tβ ′ 0 0 0 0 0 0 0 −0.8 −0.8

GTβ 0 0 0 0 0 0.005 0.01 0.005 0.01

A
2σ 4.5 4.3 4.3 4.3 4.3 3 3 3 3

C
2σ 2.25 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5

A
2τ 0 0 0 0 0 0.001 0.001 0.001 0.001

C
2τ 0 0 0 0 0 0.001 0.001 0.001 0.001

E
2σ 2.25 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5

FigUre 1 | example trajectories of observed and simulated BMi versus age in months. (a) Trajectories observed for two twin pairs in the QNTS. The 
monozygotic (MZ) twin pair is shown in red and the dizygotic (DZ) twin pair is shown in blue. (B) BMI trajectories in a simulated dataset under genetic model 2. 
The sample average at each age within each genotype category (G; coded as 0, 1, or 2 for the number of minor allele) is shown. (c) BMI trajectories in a simulated 
dataset under genetic model 3. (D) BMI trajectories in a simulated dataset under genetic model 4.
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respectively. Burton et al. (33) mention that this parameterization 
would be expected to assist convergence.

As this is a Bayesian approach, prior distributions are required 
for all model parameters. Following Burton et al. (26), flat priors 
are used for all parameters. The prior distributions for the fixed 
effect slope parameters are assumed to be N( , )0 106  and the pri-
ors for the variance components are all assumed to be Uniform 
(0,100). During testing, three chains of 10,000 iterations and 1000 
burn-in were run and results were compared between chains. 
Final results for a single dataset were based on one chain of 20,000 
iterations, which took ~5 min to run.

simulations
Our simulations were performed using the model described in 
Section “Simplifying Correlation Over Time” above, to which we 
added a fixed effect Tβ ′ to allow modeling of a segmented effect 
of time with a knot at 6 months of age, so that:

 

S G T
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( ) ( )ijk ij S ij G ij T Tij ijk T

ijk GT ij ijk

0 0µ β β β β β β β

β

= + + + + + × +

× ′ + ×
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where ′ =Tijk 0 for k ≤ 2 and ′ = −T Tijk ijk 6 for k > 2. We considered 
several values of the simulation parameters, as described in 
Table 1. These values were chosen in order to reflect the observed 
QNTS data. For example, the segmented effect of time was based 
on catch-up in growth observed after birth and the magnitude of 
the age, sex, and genotype effects were based on BMI trajectories 
observed in QNTS (example trajectories are shown in Figure 1A). 
We used correlation patterns in the QNTS DZ and MZ twins to 
define the covariance parameters. Figures 1B–D show examples 
of simulated average BMI trajectories for selected models.

We simulated 788 children (226 DZ pairs and 168 MZ pairs) 
based on the number of QNTS twins with at least three time 
points available. Sex and age values were defined as observed 
in the QNTS data. In order to get a complete dataset with six 
time points per individual, we imputed each missing visit (age) 
value by randomly sampling an existing age value at that visit. We 
chose to perform simulations on a complete dataset to facilitate 
the comparison of methods (see Discussion). Genotype data were 
simulated by assigning genotypes to parents for a single nucleo-
tide polymorphism (SNP) with minor allele frequency of 0.3 and 
using Mendelian transmission to obtain the genotypes of the 
DZ twins and one MZ twin per family. The second MZ twin was 

TaBle 1 | simulation models.

Parameter genetic effect modeled

(1) none (2) effect on average (3) effect on change (linear) (4) effect on change (segmented)

(a) (b) (c) (d) (a) (b) (a) (b)

0β 11 11 11 11 11 11 11 11 11

Sβ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Gβ 0 0.1 0.15 0.2 0.3 0 0 0 0

Tβ 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.8 0.8

Tβ ′ 0 0 0 0 0 0 0 −0.8 −0.8

GTβ 0 0 0 0 0 0.005 0.01 0.005 0.01

A
2σ 4.5 4.3 4.3 4.3 4.3 3 3 3 3

C
2σ 2.25 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5

A
2τ 0 0 0 0 0 0.001 0.001 0.001 0.001

C
2τ 0 0 0 0 0 0.001 0.001 0.001 0.001

E
2σ 2.25 2.25 2.25 2.25 2.25 1.5 1.5 1.5 1.5

FigUre 1 | example trajectories of observed and simulated BMi versus age in months. (a) Trajectories observed for two twin pairs in the QNTS. The 
monozygotic (MZ) twin pair is shown in red and the dizygotic (DZ) twin pair is shown in blue. (B) BMI trajectories in a simulated dataset under genetic model 2. 
The sample average at each age within each genotype category (G; coded as 0, 1, or 2 for the number of minor allele) is shown. (c) BMI trajectories in a simulated 
dataset under genetic model 3. (D) BMI trajectories in a simulated dataset under genetic model 4.
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FigUre 2 | Mean estimated values (sD) for fixed effects from selected simulation and analysis models. Analysis models shown are the classical twin 
analysis of the mean (twinlm mean in red) and slope (twinlm slope in blue), the marginal GEE model with unstructured working correlation matrix (GEE unstructured 
in black), the three-level hierarchical model (Hierarchical in yellow), and the Bayesian approach (Bayesian in green). The effect of genotype on rate of change 
(genotype–time interaction) was not modeled when not simulated.
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obtained by duplicating the first twin’s genotype. Genotypes were 
coded as 0, 1, or 2 for the number of minor alleles. We considered 
four different scenarios for the genetic effect (see Table 1): (1) 
no genetic effect (used to estimate the type I error of the genetic 
association test), (2) effect on average BMI values, (3) effect on 
BMI change with linear effect of time, and (4) effect on BMI 
change with segmented effect of time. Values of the phenotype 
were simulated according to each simulation model using R and 
the rmvnorm function of the mvtnorm package. For all models 
the heritability resulting from the specified simulation param-
eters is ~0.5. We based the choice of all simulation parameters on 
the observed QNTS data. We performed 2000 replicates of each 
simulation model.

All analyses were performed in R (34) except where otherwise 
noted. Simulation model 4 was analyzed as simulation model 3, 
thus ignoring the segmented effect of time. We calculated the 
mean and SD of the parameter estimates over the 2000 replicates. 
For the methods of type (1) and (2), which are all frequentist 
approaches, we estimated power or type I error as the percentage 
of replicates for which the p-value of the genotype effect, or the 

genotype–time interaction effect when included, was smaller 
than 0.05. For the Bayesian approach, our estimate of power 
is the percentage of replicates where the 95% credible interval 
excluded 0.

resUlTs

Figure  2 shows the average across the 2000 simulations of the 
parameter estimates for the fixed effects for selected genetic mod-
els and analysis methods; Table S1 in Supplementary Material 
shows the averages for all genetic models. Among the summary 
statistics, the AUC is harder to interpret in terms of actual differ-
ences in BMI. Unlike the mean and slope summary statistics, the 
change in the AUC associated with the genetic effect (as estimated 
by the regression coefficient) cannot easily be interpreted in terms 
of BMI values. Moreover, the AUC analysis did not provide more 
power to detect genetic effects compared to other approaches (data 
not shown); we have, therefore, omitted the results of the AUC 
phenotype analyses. Similarly, the analysis using the intercept as 
phenotype did not provide more information about the genetic 
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FigUre 3 | estimated power or type i error from the 2000 simulated datasets for each model. (a) Estimated type I error from model 1 (simulated genetic 
effect at 0) and estimated power to detect a simulated genetic effect on the mean phenotype of 0.1, 0.15, 0.2, and 0.3 from model 2. (B) Estimated power to detect 
a simulated linear genetic effect on the rate of change of 0.005 and 0.01 from model 3. (c) Estimated power to detect a simulated segmented genetic effect on the 
rate of change of 0.005 and 0.01 from model 4. Methods shown are the classical twin analysis of the mean (twinlm mean in red) and slope (twinlm slope in blue), the 
marginal GEE model with unstructured working correlation matrix (GEE unstructured in black), the three-level hierarchical model (Hierarchical in yellow) and the 
Bayesian approach (Bayesian in green).
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effect and had lower power than the mean (data not shown), and 
we, therefore, also do not discuss this analysis further.

In general, all methods of analysis yielded accurate estimates 
for most of the fixed effects of main interest (the main and inter-
action genetic effects; see Figure 2; Table S1 in Supplementary 
Material). For genetic model 2d, all analysis methods except 
the classical twin model with the slope phenotype gave point 
estimates of the genetic effect very close to the true value of 0.3. 
However, since the genetic effect was simulated to be on the mean 
of the phenotype we would not expect the analysis on the slope 
phenotype to produce accurate estimates. Similar results were 
seen for models 2a–c (Table S1 in Supplementary Material).

When the genotype affected the rate of change (models 3a 
and 4b shown in Figure 2), this effect was picked up by the main 
genetic effect in the classical twin analysis of the mean phenotype 
since the model cannot include a genotype-by-age term; there-
fore, the point estimate for the main genetic effect would not be 
expected to be close to the true value. In the classical twin analysis 
of the slope phenotype, the genotype–age interaction is captured 
by the main effect due to SNP and the parameter estimates are 
very close to the parameter value for the genotype–age interac-
tion terms. Results were similar for models 3b and 4a (Table S1 in 
Supplementary Material).

In terms of the point estimates of the fixed effects, there was 
little difference between the marginal and hierarchical models 
(Figure  2; Table S1 in Supplementary Material) for all genetic 
models. We ran the marginal model analysis with three different 
working correlation matrices (exchangeable, autoregressive, and 
unstructured); since results were similar between these analyses 
(data not shown) we only present the analysis using the unstruc-
tured correlation matrix. The point estimates for the Bayesian 

approach are also close to the true values (Figure 2; Table S1 in 
Supplementary Material).

Figure  3 shows the estimated power and type I error rates 
for the methods shown in Figure  2. Type I error (shown in 
Figure  3A when the simulated effect is 0 in simulation model 
1) was well controlled except when the familial correlation was 
simplified (analysis of summary measures with a single random 
family effect and GEE models), where the type I error rates 
ranged from 7.5 to 10% (results not shown except for GEE with 
unstructured correlation in Figure 3). Power was similar across 
methods. For genetic model 2, there was very low power to detect 
the genetic effect with the slope phenotype; this reflects the fact 
that these models were simulated so that the genetic effect was 
on the mean. Notably, the classical twin model with the mean 
phenotype had power close to maximal for genetic model 2 and 
the highest power for genetic models 3 and 4, even though these 
models were simulated so that the genetic effect was on the rate 
of change and not on the mean.

Variance components partitioning genetic, environmental 
and residual variance are estimated by two of the tested meth-
ods: the classical twin analysis and the Bayesian model. The 
classical twin analysis of the mean summary statistic provided 
accurate estimates of variance components and heritability 
of the mean (over time) phenotype (for model 1: simulated 
h2 = 0.5, estimated h2 = 0.50 ± SD = 0.103; results were similar 
for the other models and for the slope phenotype, Table S2 
in Supplementary Material, and also for different heritability 
values, Table S3 in Supplementary Material). Estimates of 
variance components by the Bayesian model were very poorly 
estimated (Table S4 in Supplementary Material); we discuss 
this further below.
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DiscUssiOn

In this work, we have described the performance of multiple 
approaches to analyse longitudinally collected family data in 
estimating the effect of a common genetic variant. Although 
methods have been developed to handle the correlation due to 
repeated measurements over time of longitudinal designs and 
other methods have been developed that model the correlation 
due to kinship in family designs, the methods proposed for stud-
ies that involve both types of correlation have required a simpli-
fication of either the time or the family structure that a priori is 
known to not be realistic. Nevertheless, if interest is focused on 
the estimation of the main or interaction fixed effects and the 
power to detect a genetic effect, we found that all methods per-
formed quite well even with an incorrectly modeled correlation 
structure. Interestingly, power remained high for all approaches 
even when the linear model used in the analysis was different from 
the true underlying model (Model 4, segmented time effect). As 
it is challenging to implement methods with more complicated 
correlation structures, such as the approach of Burton et al. (26), 
our work shows that the estimation methods offered by standard 
software like R or SAS are likely to be adequate for most models 
of association between genetic factor and phenotype.

The most straightforward approach for the analysis of longitu-
dinal family data is to use a summary statistic for each individual 
as the phenotype in a family-based analysis. We evaluated four 
summary statistics – the mean, the intercept and slope of a regres-
sion of each individual phenotype on age, and the AUC – and we 
highlighted results for the mean and the slope. We found that 
even under the model where the genetic effect was on the slope 
of the phenotype over time (gene-by-age interaction), the power 
to detect the genetic effect stayed high with the mean phenotype 
analysis. The main limitation in using summary measures is that 
it is difficult to clearly distinguish between a genetic effect on the 
mean phenotype or on the rate of change in the phenotype since 
the mean also captures the effect on change.

Since we were analyzing twin data, we evaluated the perfor-
mance of summary measures mainly with the classical twin anal-
ysis as implemented in twinlm. A benefit to twinlm is the ability 
to estimate the variance components; a disadvantage is that this 
software is only applicable to twin family structures. Therefore, 
with other family structures a general pedigree approach, such as 
that implemented in ASSOC of SAGE (16) would be required. A 
related approach to summary measures is the two-stage approach 
of Hossain and Beyene (35), which tests for a genetic effect on the 
residuals of a mixed model accounting for familial correlation. 
This approach would be preferred if the speed of computation, 
such as with GWAS data, is a concern.

Although generally power was similar and the genetic fixed 
effects were well estimated by all methods, not all methods 
provide estimates of the additive genetic variance. This estimate 
is important if heritability estimation is one of the goals of the 
analysis. Estimation of variance components parameters is done 
using twinlm and the Bayesian approach (discussed below). For 
the standard longitudinal approaches, the GEE approach treats 
the variance as a nuisance parameter and is not recommended 
if the variance components are of direct interest. The multi-level 

modeling does provide variance estimates but the variance that 
is estimated is not the additive genetic variance because of the 
simplification of the family structure. It may be possible to extend 
to longitudinal data existing mixed model parametrization of the 
biometrical twin models [e.g., in Ref. (36)], although fitting these 
models may be difficult.

For our simulated data, we assumed no missing data. 
Specifically, all individuals in the dataset were observed at exactly 
six time points. We assumed an equal number of observations 
per individual to simplify the scripting of the Bayesian approach 
described in Burton et al. (26); however, this assumption is not 
realistic when analyzing real data and ideally methods should 
be able to handle missing time points. For the summary statistic 
approaches, if values are missing at some time points, one could 
use either imputation or compute the summaries with the miss-
ing values omitted. The latter could lead to higher variability of 
the collapsed values if the summaries are based on very different 
numbers of observations for the different individuals. The longi-
tudinal regression-based methods can be run with unequal num-
bers of observations per individual and the Bayesian approach 
could also be scripted to handle unequal numbers.

Because we were interested in comparing the Burton method 
to the other methods, we chose to implement the approach with 
the same non-informative prior distributions. Burton et al. (26) 
justify their selection by noting that with the large sample sizes 
used (50 families of size 5) there is likely little sensitivity to the 
choice of the prior distribution. Our simulated datasets of 394 
twins are also of large sample size. We evaluated sensitivity to the 
choice of prior distribution by running Models 1–4 with different 
prior distributions on five randomly sampled datasets. For the 
fixed effects, we altered the variance parameter of the Normal 
prior from flat (106) to more informative (100 and 500). For the 
variance components, we modified the uniform range to include 
negative values and also to be less wide [U(−10,10) and (−10,50)]. 
The results are essentially unchanged (results not shown).

The Burton approach seemed promising as it was able to handle 
the correlation due to family structure, variance components are 
estimated, it is flexible enough to allow more complicated models 
and family structures, and all time points were simultaneously 
analyzed. However, there are a number of potential issues with 
using this approach. First, though all time points are included 
in the analysis, the correlation between time points is assumed 
to be due to the family structure. This implies that phenotype 
values measured at adjacent time points are no more correlated 
than those measured at distant time points, an assumption that is 
clearly not realistic. Burton et al. (26) do address this shortcoming 
but highlight that to model the additional correlation over time 
would make the approach susceptible to poor MCMC mixing 
and convergence. Convergence issues like this are a common and 
important criticism of MCMC approaches. Second, although 
WinBUGS or OpenBUGS (37) provide powerful tools for Bayesian 
analysis, they are not necessarily user-friendly. Implementation 
of the hierarchical Bayesian models described here is not 
straightforward for the beginner or novice WinBUGS user. To 
overcome these scripting challenges, we assumed equal number 
of observations per individual and no missing data; however, 
in practice, the script should be flexible enough to handle both 
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which would increase the complexity of the scripting. Finally, the 
variance components were not well estimated by this approach, 
unlike in Burton et  al. (26). This could be due to the fact that 
our model was based on different family structures (twins only) 
or that there may have been convergence issues associated with 
our model parameterization. Indeed, traceplots of multiple runs 
on a single dataset did show that the genetic and environmental 
variance parameters appeared to mix poorly, which in practice 
makes results from this model questionable even though we 
observed that the fixed effects were well estimated. Modifying 
the prior distribution did not improve estimation (results not 
shown). A multivariate normal parameterization of the random 
effects could be evaluated as a means to improve results; however, 
a priori it might be expected to perform poorly (33). Finally, it is 
possible that the convergence issue is related to the Gibbs sam-
pling approach. With Gibbs sampling, each parameter is updated 
individually, conditional on the other parameters. A disadvantage 
to this type of sampling is that the current values of the variance 
components could greatly constrain the proposal distribution 
for the variance component being updated, especially since the 
structure of the hierarchical model is such that the total varia-
tion of the data is a sum of each of the variance components. 
Thus, an updating mechanism that jointly proposed new values 
for all variance components may perform better. Implementing 
this approach could require programming a different version of 
this sampler outside of WinBUGS or OpenBUGS, which again 
greatly limits the use of this approach and requires a data analyst 
comfortable with this type of specialized programming.

We have presented a review and evaluation of different 
approaches to the analysis of longitudinal family data. The 
complexity with analyzing these data is that there are two sources 
of correlation between the observed values: the correlation due 
to repeated observations within the same family and the cor-
relation due to repeated observations from an individual over 
time. Other sources of correlation are common in health data. 
For example, rather than having observations clustered within 
families, observations can be clustered within hospitals. The equal 
correlation within group assumption of the GEE and multi-level 
modeling approaches described would probably be a reasonable 

assumption, and certainly a more realistic one than making this 
assumption on family members. Studies also commonly collect 
multiple phenotype or response variables, such as systolic and 
diastolic blood pressure, on each subject. Often these are analyzed 
separately, but we would expect results to be correlated since the 
phenotypes themselves are correlated. Therefore, a combined 
analysis might be preferable, particularly if a covariate is thought 
to be associated with multiple phenotypes (if the covariate of 
interest is genetic, this is called a pleiotropic effect). Suo et  al. 
(38) provide a recent review and evaluation of different analysis 
approaches to detect pleiotropic effects, which include MANOVA 
and data reduction using principal component analysis, for the 
case of unrelated samples and observations collected at a single 
time point. It would be interesting to evaluate analysis strategies 
for multiple phenotypes collected in a longitudinal family study 
and whether standard approaches with simplified correlation 
structures work well, as we observed here, or whether more com-
plicated methodology, such as the recently proposed Bayesian 
latent variable method for longitudinal and family correlation 
(39), is required.
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