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ABSTRACT

Hantavirus-induced diseases are emerging zoonoses with endemic appearances and frequent outbreaks in different
parts of the world. In humans, hantaviral pathology is characterized by the disruption of the endothelial cell barrier
followed by increased capillary permeability, thrombocytopenia due to platelet activation/depletion and an overactive
immune response. Genetic vulnerability due to certain human leukocyte antigen haplotypes is associated with disease
severity. Typically, two different hantavirus-caused clinical syndromes have been reported: hemorrhagic fever with renal
syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The primarily affected vascular beds differ in these
two entities: renal medullary capillaries in HFRS caused by Old World hantaviruses and pulmonary capillaries in HCPS
caused by New World hantaviruses. Disease severity in HFRS ranges from mild, e.g. Puumala virus-associated
nephropathia epidemica, to moderate, e.g. Hantaan or Dobrava virus infections. HCPS leads to a severe acute respiratory
distress syndrome with high mortality rates. Due to novel insights into organ tropism, hantavirus-associated
pathophysiology and overlapping clinical features, HFRS and HCPS are believed to be interconnected syndromes
frequently involving the kidneys. As there are no specific antiviral treatments or vaccines approved in Europe or the USA,
only preventive measures and public awareness may minimize the risk of hantavirus infection. Treatment remains
primarily supportive and, depending on disease severity, more invasive measures (e.g., renal replacement therapy,
mechanical ventilation and extracorporeal membrane oxygenation) are needed.
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INTRODUCTION

Hantavirus-associated diseases are emerging zoonoses that re-
main a clinical challenge with increasing incidence and multi-
ple serious outbreak situations (Figure 1) [1–4]. Hantavirus infec-
tions were first recognized during the Korean War, when more
than 3000 United Nation’s troops developed a syndrome typ-
ically comprising hemorrhagic fever and kidney failure. This
clinical picture was eventually referred to as hemorrhagic fever
with renal syndrome (HFRS). The causative viral pathogen, Han-
taan virus (HTNV), was first discovered in its natural reservoir,
the striped field mouse (Apodemus agrarius), in the late 1970s
(Figure 2) [5]. Puumala virus (PUUV), causing a milder course
of HFRS also named nephropathia epidemica, was identified in
a different mouse strain, bank voles (Myodes glareolus), in the
1980s, although the disease had been known in Scandinavia
since the 1930s [6]. Dobrava–Belgrade virus (DOBV) was first iso-
lated from a field mouse (Apodemus flavicollis) in Slovenia in the
1990s and was recognized as a frequent hazard for soldiers dur-
ing the Yugoslav wars [7–11]. Mortality due to HFRS ranges from
<1% in PUUV infections to 10–15% in HTNV or DOBV infections
[12–14].

Apart from HFRS, there is the hantavirus cardiopulmonary
syndrome (HCPS), with a high mortality rate of up to 40% in
America [3, 15]. The causative hantavirus of HCPS, Sin Nom-
bre (SNV), was identified within months after its first outbreak
in the Four Corners Region in the USA [16, 17]. Other han-
taviruses causing HCPS have been found in North and South

America [18–21] over the years. Based on the geographical evo-
lution, hantaviruses are separated into Old World viruses (e.g.,
HTNV, DOBV, PUUV) that commonly elicit HFRS and New World
viruses [e.g., SNV, Andes virus (ANDV)] that commonly elicit
HCPS (Table 1).

Hantavirus infections are rare infectious diseases. However,
hantavirus diseases emerge progressively, in particular in Eu-
rope, and new hantaviruses with yet unknown pathogenic im-
pact are being discovered in different parts of the world, calling
for joint efforts at the crossroads of nephrology, infectious dis-
eases and public health [1, 2, 14, 22].

Hantavirus ecology and epidemiology

Hantaviruses are carried and transmitted to humans by
persistently infected rodents, insectivore hosts and bats.
The geographic distribution and ecology of hantaviruses are
therefore closely connected to their hosts. Myodes, Ratus and
Apodemus are the primary rodent reservoirs of Old World han-
taviruses, whereas New World hantaviruses are transmitted via
Sigmodontines, a rodent subfamily of New World rats and mice
[1]. Hantavirus species have been discovered in Africa, Asia and
Europe, as well as North America and South America (Table 1) [1,
23, 24]. The evolution and distribution of hantavirus populations
and the subsequent rate of infections are associated with cli-
mate change and disturbed rodent habitats caused by excessive
agriculture and deforestation [25–27]. Increases in temperature,

FIGURE 1: Epidemiology of hantavirus infections in Europe. Incidence for hantavirus infection in 2019 as recorded by the European Centre for Disease Prevention
and Control (ECDC). More than 4000 cases of hantavirus disease were reported in Europe (0.8 cases per 100,000 population), with detection of PUUV as the causative
pathogen in 98% of cases. Finland and Germany accounted for 69% of all reported cases. Distribution of PUUV, Dobrava virus (DOBV), HTNV and Tula virus (TULV)
across Europe are depicted by colour. Recent outbreak situations as reported to the ECDC from 2011 to 2021 are indicated with approximately affected cases and year

of the outbreak in parenthesis. European countries that do not report hantaviral infections to the ECDC are depicted in grey (Belarus, Denmark, Moldavia, Montenegro,
Kosovo, Ukraine).
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FIGURE 2: European hosts for pathogenic hantaviruses. Source: Images were provided by Shutterstock.com: (A) Holger Kirk/Shutterstock.com, (B) Monika
Surzin/Shutterstock.com, (C) Stephan Morris/Shutterstock.com, (D) corlaffra/ Shutterstock.com and (E) Ryzhkov Sergey/Shutterstock.com.

humidity and rainfall are directly associated with the incidence
of hantaviral infections in different parts of the world [28–30].
For example, warm ambient temperature and abundant rainfall
directly affect vegetation growth, boosting rodent populations
[31, 32]. In Europe, rodent food availability and higher ambient
temperatures in cold seasons have been reported to cause
more frequent and severe outbreaks of hantavirus infections
[30, 33]. Higher temperature is also correlated with increased
rodent reproduction, sexual maturation and survival [34, 35].
The extent of rodent habitat growth and subsequent hantavirus
distribution by long-term climate change is unclear (Table 2)
[24]. Nevertheless, migration of humans due to climate change
to areas less vulnerable to extreme weather events will increase
rodent density and may even contribute to hantavirus dis-

ease in new regions [36]. Of note, the increase in atmospheric
moisture as well as the increase in air temperature facili-
tates aerosolization and thus augments hantaviral infectivity
[29, 37].

Hantaviruses are circulating between chronically infected
host reservoirs, whose infection is usually inapparent. Trans-
mission to humans is caused by inhalation of contaminated
aerosolized rodent excreta, leading to so-called spillover infec-
tions [3]. These spillover infections to humans or other animals,
such as red fox, moose or domestic cat and dog, are a concern
for public health, as they facilitate the evolution of new han-
tavirus species by natural reassortment (Table 2) [33, 38, 39]. The
risk of hantavirus infections in humans mainly depends on the
closeness to and frequency of contact with rodents. Therefore
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Table 1. Human pathogenic and medically important hantaviruses according to the 2019 classification of hantavirids [264]

Disease

HFRS HCPS Virus
Geographic
distribution Reservoir host

Commercial
serological

test Comments

Old World
hantaviruses

X SEOV Worldwide Rat (Rattus) X Metropolitan
distribution

NEa PUUV Europe,
Russia,
Americas

Bank vole (Myodes glareolus) X Main European virus

X DOBV Balkans Yellow-necked mouse
(Apodemus flavicollis)

X

X TULV Europe,
Russia

Common vole (Microtus arvalis)

X AMRV/SOOV Far-East
Russia

Korean field mouse (Apodemus
peninsulae)

X HTNV China,
Russia, Korea,
Central
Europe

Striped field mouse (Apodemus
agrarius)

X Main Asian virus

X Luxi virus
(LUXV)

China Yunnan red-backed vole
(Eothenomys miletus)

X THAIVb Southeast
Asia

Greater bandicoot rat
(Bandicota indica)

X SANGV Africa African Wood Mouse
(Hylomyscus simus)

First African virus,
spillover infections to
bats

New World
hantaviruses

X Bayou virus
(BAYV)

North
America

Marsh rice rat (Oryzomys
palustris)

X Black Creek
Canal virus
(BCCV)

North
America

Hispid cotton rat (Sigmodon
hispidus)

X New York
virus (NYV)

North
America

White-footed mouse
(Peromyscus leucopus)

X SNV North
America

Eastern deer mouse
(Peromyscus maniculatus)

X Main North American
virus

X Choclo virus
(CHOV)

Panama Fulvous colilargo (Oligoryzomys
fulvescens)

X Araraquara
virus (ARQV)

Brazil Hairy-tailed bolo mouse
(Bolomys lasiurus)

X Anajatuba
virus (ANJV)

South
America

Fornes’ colilargo (Oligoryzomys
fornesi)

X Castelo dos
Sonhos virus
(CASV)

South
America

Brazilian colilargo
(Oligoryzomys eliurus)

X ANDV Argentina,
Chile

Long-tailed colilargo
(Oligoryzomys longicaudatus)

X Main South American
virus, human-to-human
transmission

X Bermejo virus
(BMJV)

Argentina Hairy-tailed bolo mouse
(Bolomys Lasiurus)

X Laguna Negra
virus (LANV)

Argentina,
Bolivia,
Paraguay

Small vesper mouse (Calomys
laucha)

X Lechiguanas
virus (LECV)

Argentina Flavescent colilargo
(Oligoryzomys flavescens)

X Oran virus
(ORNV)

Argentina Long-tailed colilargo
(Oligoryzomys longicaudatus)

aPUUV causes nephropathia epidemica, a mild form of HFRS. PUUV is the main European hantavirus, whereas HTNV is the main Asian hantavirus. ANDV and SNV are
the major South and North American hantaviruses causing HCPS. Novel New World hantaviruses were detected recently with unknown pathogenicity.
bSo far only serological evidence reported.

NE: nephropathia epidemica.
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Table 2. Research needs in hantavirus diseases

Hantavirus ecology and epidemiology
• Extension of host reservoir habitats due to climate change
• Impact of human migration on hantaviral spread
• Characterization of spillover infections, especially to bats, facilitating hantaviral reassortment and spread
• Role of human-to-human transmission of ANDV and SNV in public health

Hantavirus structure and life cycle
• Role of integrins for cell entry in pathogenic and apothegenic hantaviruses
• Integrin gene polymorphisms in hantaviral attachment and the susceptibility for hantaviral infection

Hantavirus pathogenesis and immunopathology
• Hantavirus cell tropism and organ-specific dysfunction in HRFS and HCPS
• Generation of HFRS animal models reflecting human hantavirus disease
• Local and systemic tissue damage caused by pathogenic mediators in hantavirus disease in in vivo models
• Assessing causal attribution of involved pathogenic mediators using targeted approaches, i.e. antibodies
• Pathomechanisms of AKI in hantavirus disease

Clinical presentation
• Characterization of hantavirus disease beyond the dichotomous denominations of HFRS and HCPS
• Revised taxonomy beyond HFRS and HCPS
• Long-term kidney sequelae in DOBV and HTNV
• Prognostic impact of pre-existing CKD, RRT, kidney transplantation and immune suppression in hantavirus disease
• Phenotype, frequency and sequelae of kidney involvement in ANDV- and SNV-caused disease
• Systematic analyses of overlapping features in pathogenesis, phenotype and treatment approaches between emerging viruses, i.e.
SARS-CoV-2, Ebola virus and hantaviruses

Diagnosis
• Definition of clinical and diagnostic criteria for hantavirus diseases
• Prognosis-indicating scores facilitating risk stratification for the ER and ICU

Prevention
• Development of EMA- and FDA-approved vaccines, i.e. on the basis of recent RNA vaccine technology
• Development for preventive/precaution measures for public health (especially in endemic areas)

Therapy
• Development of targeted antiviral pharmacological approaches examined in randomized controlled clinical trials

AKI: acute kidney injury; CKD: chronic kidney disease; EMA: European Medicines Agency; ER: emergency room; FDA: US Food and Drug Administration; ICU: intensive
care unit; RNA: ribonucleic acid.

people with close exposure to rodent habitats, such as farmers,
forestry workers, military personnel and zoologists are subject
to a greater risk [40–42]. However, many cases are observed af-
ter sporadic cleansing of environments that are a habitat for ro-
dents, like basements or attics, without a specific professional
exposure.

The epidemiology of hantavirus-associated diseases de-
pends on their host reservoirs’ distribution. In Europe, Tula virus
(TULV), DOBV and PUUV are detected most frequently in their
rodent reservoirs (Figure 2). PUUV is the most widely distributed
hantavirus in Northern and Central Europe and usually causes
mild disease (Figure 1, Table 1) [43]. However, PUUV still poses a
threat due to its increasing incidence, with recurring outbreak
situations and thousands of patients in epidemic years [2, 44,
45]. In contrast, Southeastern Europe is dominated by DOBV, re-
sulting in a moderate–severe disease form of HFRS (Figure 2) [2].
Here, the Balkan region is primarily affected by DOBV, although
its host distribution is greater [3, 46, 47]. Of note, DOBV has been
emerging in Central and Eastern Europe in recent years [48–51].
TULV is dominantly circulating in the Tula region in Russia and
leads to a mild disease course [52]. However, patient cases are
found throughout Central Europe and the Baltic states (Figure 2)
[52–55].

Asia is the continent with the longest history of han-
tavirus infections. HTNV and the related Amur/Soochong
virus (AMRV/SOOV) are found in China, Far East Russia

and Korea, causing moderate forms of HFRS [1, 5, 56, 57].
China reports >10 000 cases and southern Korea ∼300–500
cases/year [58]. Further species with unknown pathogenicity,
such as Thailand virus (THAIV), Imjin virus (MJNV) and Jeju
virus (JJUV) have been recognized in different parts of Asia
(Table 1) [1, 2, 59, 60].

Due to the cosmopolitan distribution of rats as its natural
host, Seoul virus (SEOV) is considered to circulate worldwide [1].
SEOV is primarily reported from urban China; however, patient
cases have also been observed occasionally in the USA and Eu-
rope [61–63]. Surveillance studies indicate that HFRS caused by
rat-borne SEOVusually occurs inmetropolitan areas and current
trends in urbanization may further influence SEOV epidemiol-
ogy [64].

New World hantaviruses were first discovered after an out-
break of an acute respiratory disease named HCPS in the USA in
1993 and SNV was found as a first causative pathogen [15, 17].
SNV is the main pathogen circulating in North America [2]. In
contrast,ANDV is the dominant hantavirus in LatinAmerica [65].
Of note, ANDV is the only known hantavirus that can be trans-
mitted fromhuman to human by superspreading events, further
threatening public health and making pandemics a potential
scenario [18–21, 66]. Recently, novel hantaviruses with unclear
taxonomic status were discovered in their natural reservoirs in
America, but little is known about their pathogenicity (Table 1)
[1, 22].
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FIGURE 3: Hantavirus structure and life cycle. Hantavirus virions have a trisegmented single-stranded ribonucleid acid (ssRNA) genome, referred to as L (large),
M (medium) and S (small) segments. The particle’s surface consists of the glycoproteins Gn and Gc and viral RNA-dependent RNA polymerase (RdRp) is essential
for hantavirus replication and transcription. The hantavirus life cycle consists of eight essential steps. (1) Hantaviruses attach to the host cell’s surface by binding
to surface receptors with their glycoproteins. (2) The virion particle enters the host cell either by Clathrin-dependent (Old World hantavirus) or -independent endo-

cytosis (New World hantavirus). (3) Hantaviruses are uncoated in the host cell’s endosomes and lysosomes, facilitating the release of the viral genome and proteins.
(4) Viral RNA is transcribed by the RdRp and (5) viral mRNA is translated into viral proteins, hijacking the host cell’s machinery. (6) vRNA is replicated by RdRp and
(7) all viral components are put together at the Golgi apparatus (Old World hantavirus) or directly at the cell membrane (New World hantavirus). (8) Mature virion
particles egress the host cell by fusion of the Golgi apparatus (Old World hantavirus) or the viral vesicle (New World hantavirus) with the cell membrane. ER: en-

doplasmic reticulum; Gc: C-glycoprotein; Gn: N-glycoprotein; L: large segment; M: medium segment; S: small segment; vRNA: viral RNA. Source: Figure created with
Biorender.com.

Africa is the continent with the most recent scientific
progress in hantavirus ecology and epidemiology. Fifteen years
ago the first pathogenic hantavirus in Africa, Sangassou virus
(SANGV), phylogenetically related to Old World hantaviruses,
was isolated in Guinea [67, 68]. Novel hantavirus species have
been discovered not only in rodents, but also in shrews and bats
in Africa [2, 69, 70]. In particular, the role of bats as novel hosts
facilitating easier spillover infections to humans reflects an ad-
ditional concern for public health (Table 2) [3].

Taken together, the ecology and epidemiology of han-
taviruses and their associated diseases are mainly reflected by
their host reservoirs’ distribution. Hence HFRS caused by DOBV,
HTNV and PUUV dominates Eurasia, whereas SNV- and ANDV-
associated HCPS is primarily found in America (Table 1).

Hantavirus structure and life cycle

Hantaviruses, members of the Bunyaviridae family, are en-
veloped, single-stranded ribonucleic acid (ssRNA) viruses [71].

The total size of the viral RNA (vRNA) ranges from 11 845 nu-
cleotides for HTNV to 12 317 nucleotides for SNV [1]. The vi-
ral genome is separated into three segments referred to as S
(small), M (medium) and L (large), which share a 3′ terminal se-
quence and encode the nucleocapsid (N) protein, the glycopro-
tein precursors (GPCs) and the RNA-dependent RNA polymerase
(RdRp) [23, 72]. The vRNA itself is encapsulated by the N protein,
forming circular ribonucleoproteins (RNPs) [73]. The virion’s sur-
face consists of the two glycoproteins Gn and Gc (formerly G1
and G2, respectively) that mature from GPCs. The RdRp ampli-
fies and transcribes vRNA and is essential for hantavirus repli-
cation (Figure 3). Hantaviruses can survive for >10 days at room
temperature and for >18 days at +4°C outside cells, facilitating
transmission and spillover infection [74].

Hantaviruses not only infect primarily endothelial cells,
but also replicate in the epithelium—including podocytes and
tubular cells in the kidney as well as alveolar cells in the
lungs—macrophages, dendritic cells and lymphocytes [21, 75–
79]. Figure 3 highlights the hantavirus life cycle. In vitro studies
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FIGURE 4: Hantavirus-caused pathogenesis is characterized by vascular leakage and platelet activation. Hantaviruses primarily infect endothelial cells, reducing their
barrier functionwhile increasing vascular permeability. Endothelial cell–cell contacts are disturbed by the downregulation of VE-cadherin in adherens junctions caused

by vascular endothelial growth factor A (VEGFA) or bradykinin. Platelets are activated after hantavirus infection by either the direct interaction of viral glycoproteins and
platelet integrin αIIβ3 or by endothelial cell damage releasing adhesive factors such as fibrinogen, fibronectin and von Willebrand factor. Hantavirus can additionally
cause intravascular coagulation.Both activated platelets and coagulation contribute to thrombocytopenia. Source: Figure createdwith Biorender.comandfigure concept
adapted from Vaheri et al. [23].

suggest that hantaviruses attach to integrins (αVβ3, α5β1, αMβ2
and αXβ2) on host cells through binding with their larger
glycoprotein Gn [76, 80, 81]. β3- and β1-containing integrins
are proposed as the major entry receptors for both virulent
and avirulent Old and New World hantaviruses [80–82]. There
is evidence that binding to α5β1 integrin instead of αVβ3 is
associated with reduced virulence—as can be seen with the
apathogenic Prospect Hill virus (PHV). On the other side, the
African SANGV is the only pathogenic hantavirus known to
bind to α5β1 and to cause hantavirus disease [83, 84]. Different
nucleotide polymorphisms have been implicated in infec-
tion susceptibility in humans, calling for further research in
hantaviral attachment (Table 2) [85, 86]. Of note, protocadherin-1
(PCDH1) was reported recently to be another critical determi-
nant of attachment, entry and infection of New World but not
Old World hantaviruses [87].

After cellular attachment, OldWorld hantaviruses enter host
cells by clathrin-dependent endocytosis, whereas New World
viruses employ different mechanisms of cell invasion simul-
taneously, including micropinocytosis, clathrin-independent
receptor-mediated endocytosis and cholesterol- or caveolae-
dependent endocytosis (Figure 3) [23, 88, 89]. After cell entry,
viral particles are processed in endosomes or lysosomes,
where they detach from their cellular receptors and uncoat
as a consequence of decreasing pH. Afterwards, hantavirus
RNPs are liberated into the cytoplasm by fusion of viral and
endolysosomal membranes [88]. In the cytoplasm, vRNA is
then transcribed to L, M and S messenger RNA (mRNA), en-
abling their translation into viral proteins that hijack the host
machinery [1]. Additionally, vRNA is transcribed to comple-
mentary RNA (cRNA) using host-derived primers facilitating
amplification and replication of vRNA [1]. Both transcription
and replication processes of hantaviruses are performed by
viral RdRP [23]. After replication of the hantavirus genome,
the vRNA is encapsulated by the N protein. Then, further N
proteins bind, resulting in larger RNPs [90, 91]. The different
hantavirus components are finally assembled at the Golgi
apparatus, or alternatively, as currently suggested for New
World hantavirus, at the plasma membrane itself [92]. By fusion
with the host’s cell membrane, hantaviruses finally egress
[93].

Hantavirus pathogenesis and immunopathology

Despite different causative pathogens and disease patterns,
HFRS and HCPS have an overlapping pathophysiology con-
sisting of increased vascular permeability, platelet activa-
tion and an overreacting host immune response (Figure 4,
Table 3) [23, 46]. Differences in disease are reflected by the differ-
ent vascular beds that are primarily infected—renal medulla or
pulmonary capillaries. However, themechanismsmediating cell
tropism and organ-specific dysfunction during HFRS and HCPS
remain unknown (Table 2) [94].

The pathophysiology of capillary leakage is characterized by
the disruption of endothelial cell–cell contacts. Hantaviruses
primarily infect and replicate in endothelial cells of capillaries;
however, there are few to no direct cytopathic effects to the
endothelium as detected in histological samples [23, 95]. In
contrast, it is hypothesized that the breakdown of endothelial
cell-to-cell contact is mainly caused by the release of vasoactive
factors, including vascular endothelial growth factors (VEGF),
bradykinin and cytokines, rather than endothelial cell death
[96, 97]. Mechanistically, released VEGF results in a decrease
of VE-cadherin, a major component of adherens junctions
in endothelial cells, in vitro [98, 99]. VEGF-induced capillary
hyperpermeability may additionally be a direct consequence
of hantavirus-caused inactivation of αVβ3 integrins followed
by a decrease of VEGF receptor 2 (VEGFR2) on the cell surface
[75, 100]. VEGFR2 and αVβ3 integrins normally form a com-
plex affecting VEGFR2-directed permeability in response to
VEGF [101]. Hantaviruses functionally block the VEGFR2/αVβ3
integrins complex that causes VEGF-orchestrated cellular
permeability in vitro and in vivo [102–105]. In line with these
findings, levels of VEGF and soluble VEGFR2 in serum and urine
correlate with disease severity, indicated by low urine output
and haemorrhages in PUUV- and DOBV-infected patients [106].
Moreover, as hypoxia additionally challenges VEGF production,
elevated levels of VEGF are detected in pulmonary edema fluids
of HCPS patients and correlate with HCPS disease severity [99].
Of note, vandetanib, a small-molecule antagonist of VEGFR2,
leads to modest survival benefits in vivo as examined in the
Syrian hamster model of ANDV-caused HCPS [107]. However,
transfer of this treatment approach to the patient setting has
not been successful due to the reported frequent severe adverse
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Table 3. Pathophysiology in response to hantavirus infection as discovered in cell culture, in vivo models and human biosamples

Evidence reported in

Pathogenic mechanisms in
hantavirus disease

Cell
culture

In vivo
models Humans Comments References

Increased vascular permeability
VEGF-induced
endothelial
hyperpermeability

X X X Orchestrated by a decrease in
VE-cadherin and inactivation of the
αVβ3-integrin–VEGFR2 complex

[98, 99, 105–107]

Bradykinin-induced
capillary leakage

X X [109–111]

Cytokine-mediated
hyperpermeability

X X [113–119]

Platelet activation
Direct viral-caused
platelet consumption

X Interaction of viral glycoproteins and
integrin αIIβ3 on platelets

[124, 125]

Endothelial cell injury
causing platelet
activation

X X Release of adhesive agents, such as
fibrinogen, fibronectin, extracellular
vesicle tissue factor and von Willebrand
factor after endothelial infection

[23, 126, 127, 131, 132]

Overreacting host immune response
Reverse CD4+:CD8+

T-cell ratio
X X Causes further activation of

pro-inflammatory cytokines
[1, 3, 151, 152, 156]

Triggered T-cell
immune response by
HLA haplotypes

X May explain interpersonal and regional
differences in susceptibility and
vulnerability

[153, 156–163]

Cytokine-mediated
activation of innate and
adaptive immune
responses causing
tissue damage

X Distinct cytokine profiles in HFRS and
HCPS; cytokine storm is a common
central component in response in
hemorrhagic fevers

[116, 118, 119, 138,
142–145]

Increased vascular permeability, platelet activation and an overreacting host immune response are the central pathomechanisms in human disease caused by

pathogenic Old World and New World hantaviruses.

events of vandetanib in large-scale cancer trials on the one
hand and the fragile, critically ill HCPS patients on the other
[107, 108].

Furthermore, in vitro studies revealed activation of the
plasma kallikrein–kinin system leading to an increase in
bradykinin as another potential mechanism causing vascu-
lar permeability in hantavirus diseases [109, 110]. Successful
treatment with the bradykinin receptor antagonist icatibant in
case reports of severe PUUV infections underline the potential
involvement of bradykinin in human disease [110–112]. Break-
down of cell-to-cell contacts is additionally caused by cytokines
in vitro and in vivo [113–116]. For example, tumour necrosis
factor (TNF)-α contributes to vascular permeability through the
production of nitric oxide [117]. In particular, capillary leakage
and extracellular matrix degradation are linked to certain
cytokine profiles in serum samples in both HFRS and HCPS
patients and may even predict disease severity [118, 119].

Interestingly, the ability of hantaviruses to infect endothelial
cells is shared with many (emerging) viruses, i.e. severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviruses
(including dengue virus) and filoviruses (i.e., Ebola and Mar-
burg viruses), although endothelial receptor, entry mechanism,
mediators of disease and the extent of endothelial damage
differ widely [100, 120–123]. Hence dysregulation in vascular
function contributes significantly to pathophysiology in many
life-threatening viral infections and our growing knowledge due
to the current coronavirus disease 2019 (COVID-19) pandemic
may promote research advances for hantavirus disease (Table 2)
[100].

A common feature of hantavirus infection is thrombocytope-
nia; however, the exact pathomechanisms remain unknown
[3, 23, 78]. Currently it is hypothesized that the adhesion of
hantaviruses mediated by viral glycoproteins and integrin αIIβ3
on the surface of platelets contributes to platelet depletion
[124, 125]. Also, hantavirus infection–derived endothelial cell
injury may directly cause platelet activation through the release
of adhesive agents, such as fibrinogen, fibronectin and von
Willebrand factor [23, 126]. Moreover, hantaviruses promote in-
travascular coagulation, leading to an increase in thrombin and
fibrinolysis that additionally may cause thrombocytopenia due
to increased platelet consumption [127]. Of note, clinical criteria
of disseminated intravascular coagulation (DIC) are fulfilled
frequently in hantavirus patients, posing risks for bleeding and
thromboembolic complications [128–130]. Platelet activation
and elevated levels of tissue factor and extravesicular tissue
factor expressed by both endothelial and immune cells are
reported to promote this systemic procoagulant state [131–133].
Although the clinical picture consisting of renal injury and
thrombocytopenia might suggest thrombotic microangiopathy,
no histological or laboratory evidence for this entity has been
reported. Hemolysis as well as schistocytes are usually not
present.

In human kidneys, hantaviruses primarily replicate in
the endothelial cells of the renal medulla [134]. However,
hantaviruses may additionally infect other cell types in the
kidney, i.e. tubular cells, podocytes and the glomerular en-
dothelium as detected in kidney biopsy specimens of infected
patients [135]. Of note, the barrier function in all these cell types
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can be altered due to the breakdown of cell–cell contacts, which
may be an explanation for the observed proteinuria during
hantavirus infection [135, 136]. The detection of viral antigen
along with inflammatory cell infiltrations in the peritubular
area indicates that viral replication and the host’s immune
response together cause tissue damage in human disease
[137, 138]. The renal immunopathology is primarily character-
ized by an upregulation of pro-inflammatory cytokines, such
as type I interferons (IFNs) and interleukin-8 (IL-8) in the distal
nephron activating both innate and adaptive immune cells
[139–141]. The further systemic immune response is driven by
macrophages and antigen-specific cells, including CD4+ and
CD8+ T cells, as well as antibody-producing B cells [1, 3, 23].
Inflammatory cytokines and chemokines, i.e. transforming
growth factor (TGF)-β1, tumour necrosis factor (TNF)-α, IL-6 and
IL-10, play double-sided roles in human hantavirus infection.
On the one hand, immunosuppressive TGF-β1 acts protectively
in the late phase of PUUV infection by limiting tissue damage
caused by the immune system [142]. On the other hand, TNF-α,
IL-1 and IL-6 are associated with fever and septic shock as well
as the further induction of acute-phase proteins and increased
levels of those cytokines can be detected in urine, plasma and
tissue samples of severely infected patients [115, 116, 142, 143].

In line with this notion, disease severity in PUUV and DOBV
infections is associated with elevated serum levels of TNF-α, IL-
6 and IL-10 [115, 116, 143, 144]. Elevated urinary IL-6 levels in
PUUV-induced HFRS indicate local renal production of IL-6 in
addition to the systemic immune response [115]. With regard to
HCPS, elevated serum IL-6 levels are directly linked to fatal out-
comes in humans [145]. Interestingly, IL-6 production is an over-
lapping characteristic of viral hemorrhagic fevers, as high levels
of IL-6 have been linked to disease severity in Ebola virus in-
fection, dengue virus disease and Crimean–Congo hemorrhagic
fever [146–148].

Another remarkable parallel can be drawn to the cytokine
release syndrome (CRS), a toxic immune reaction upon can-
cer treatment with chimeric antigen receptor–modified T cells
that leads to a systemic increase in IL-6 and IL-10 [149]. Symp-
toms of CRS and hantavirus disease highly overlap—in mild
cases, flu-like symptoms; in severe cases, vascular leakage, coag-
ulopathy, hypotension, acute kidney injury (AKI) and pulmonary
edema—and blockage of the IL-6 receptor with tocilizumab re-
verses CRS [150]. This raises the question whether hantavirus-
infected patients could benefit from similar treatment. How-
ever in vivo animal and human data in hantavirus disease
are lacking and the full causal roles of the highlighted me-
diators on local tissue damage remain largely unaddressed
[145].

With regard to the adaptive immune system, hantaviruses
increase the number of CD8+ T cells and reverse the CD4+:CD8+

T-cell ratio [3]. As a consequence, further pro-inflammatory
cytokines are produced while regulatory cytokines are downreg-
ulated, enhancing the harmful effect of the immune system [151,
152]. Of interest, certain human leukocyte antigen (HLA) haplo-
types are associated with severe disease courses in both HFRS
and HCPS by triggering T-cell-mediated immune responses,
especially of CD8+ T-cells [153–156]. This genetic vulnerability
may explain interpersonal and regional differences in disease
severity of both HFRS and HCPS in endemic areas [136]. For ex-
ample, HLA alleles HLA-B*08, HLA-DRB1*0301 and HLA-DRB1*15
are associated with a severe form of PUUV infection, whereas
HLA-B*27 has a benign prognosis [153, 157, 158]. In HTNV-
caused HFRS, individuals with HLA-B*46 and HLA-B*46-DRB1*09
or HLA-B*51-DRB1*09 haplotypes are at a greater risk, whereas

HLA-DRB1*12 is protective [159, 160]. With regard to HCPS,
HLA-B*3501, HLA-DRB1*1402 and HLA-B*08 are negative prog-
nostic factors in SNV- and ANDV-infected patients, respectively
[156, 161]. In contrast, HLA-DRB1*15 and HLA-B*35-restricted
memory T-cell responses are reported to be protective in
ANDV-caused HCPS [161, 162]. Of note, different hantaviruses
may be processed differently through the same HLA molecules,
leading to either a mild or severe disease course as shown for
HLA-DRB1*13 and HLA-B*35 in PUUV- and DOBV-caused HFRS
[160, 163].

Small animal models recapitulating human hantavirus dis-
ease are scarce, as human pathogenic hantaviruses are main-
tained in nature by persisting rodent infection. For example,
mice, rats and hamsters infected with HTNV, DOBV and PUUV
fail to develop a human HFRS phenotype, whereas new born ro-
dents that are infected within 3 days after birth die due to neu-
rologic complications not recapitulating any disease character-
istics resembling human disease [164]. The generation of HFRS
animal models reflecting human hantavirus disease remains an
urgent scientific need to fully understand hantaviral pathogen-
esis (Table 2). In contrast, Syrian hamsters infected with ANDV
and SNV mimic human disease with regard to incubation time,
rapid-progressing respiratory failure and pathological lung find-
ings, but biosafety measurements make experimental design
complex [165–167].

Clinical presentation

Common early symptoms in the prodromal phase of both HFRS
and HCPS include myalgia, fatigue, abdominal pain, headache,
high fever and other flu-like symptoms [168]. Although similar
in pathogenesis, further observed clinical differences between
HFRS and HCPS are the consequence of the primarily affected
organs [3].

HFRS. HFRS is a generalized infection and its clinical course and
outcome are dependent on the causative (OldWorld) hantavirus,
although disease courses vary individually from subclinical to
lethal.

The incubation phase of hantavirus ranges from 2 to 6
weeks [1]. Afterwards, the disease can be divided in five distinct
phases: fever, hypotension, oliguria, polyuria and convalescence
(Figure 5) [1, 3]. HFRS is characterized by the sudden onset of
prodromal symptoms, such as myalgia, fatigue, abdominal pain,
headache, high fever, blurred vision and other flu-like symp-
toms lasting 3–6 days. Somnolence is reported less frequently.
The beginning of the hypotensive phase is characterized by
hemorrhage (i.e. conjunctival suffusion, skin and mucosal
petechiae, hematemesis, epistaxis, melaena, hematuria or
even intracranial bleeding) due to thrombocytopenia, as well
as hypotension or shock caused by vascular leakage. Of note,
approximately one-third of case fatalities are related to an irre-
versible and fulminant shock [3]. Hemorrhage is also facilitated
by thrombocytopenia, which is usually present in this stage and
is the direct consequence of hantavirus-caused activation and
depletion of platelets. The nadir in platelet count ranges from
∼70 × 109/L in PUUV to <30 × 109/L in DOBV- and HTNV-caused
HFRS [46, 169, 170]. Bleeding events, typically reported as gas-
trointestinal bleeding, hematuria or hemoptysis are reported
in ∼10% of HFRS cases. However, the incidence of bleeding
events ranges from <5% in PUUV to 20% in DOBV and 35% in
HTNV infections [171–173]. Microscopic hematuria is present
in the vast majority of HFRS patients, whereas macroscopic
hematuria is more frequently reported in DOBV and HTNV
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FIGURE 5: The typical disease course in HFRS can be divided into five distinct phases: fever, hypotension, oliguria, polyuria and convalescence. After human infection,
viral load peaks after 5–10 days and prodromal symptoms such as flu-like symptoms,myalgia, backache, abdominal pain and blurred vision occur. In parallel, platelets
as well as urine output and kidney function decrease, leading to the hallmark triad of AKI, hypotension and hemorrhages in HFRS.With the onset of clinical symptoms,

antibodies increase, leading to viral clearance and convalescence. Source: Figure created with Biorender.com and figure concept adapted from Avsic-Zupanc et al. [3].

infections [174]. Hematuria usually derives from medullary or
interstitial hemorrhages, i.e. is of intrarenal origin [175, 176].
DIC occurs in ∼30% of DOBV- or HTNV-infected patients as a
consequence of an activated coagulation system and is a neg-
ative prognostic factor [127, 128, 177]. DIC is reported in ∼20%
of PUUV patients according to the modified scoring system
of the International Society of Thrombosis and Haemostasis;
however, DIC is less severe in PUUV-caused disease [128, 177].
The hypotensive stage typically lasts 1–2 days and is followed by
the often rapidly progressing oliguric AKI. With hemodynamic
stabilization, renal function is eventually restored over a period
of 3–7 days (Figure 5). The decrease in systemic blood pressure
does not fully explain AKI, as a decline in kidney function may
even occur without hypotension and measured blood pressures
do not correlate with disease severity [96]. Intrarenal events—
especially hantaviral-caused acute interstitial nephritis with
cortical and peritubular capillaritis—are currently believed to
contribute to the development of AKI; however, the exact mech-
anisms remain elusive and call for further research (Table 2)
[96, 97, 176].

Due to the intrarenal inflammatory processes, swelling of
the kidneys is a hallmark of hantavirus-caused AKI, which is
typically accompanied by—sometimes very severe—abdominal
pain or backache. Proteinuria, sometimes in the nephrotic range,
is also a typical finding in hantavirus-caused AKI and reflects
the involvement of podocytes. The magnitude of proteinuria is
associated with disease severity [178–180]. Renal replacement
therapy (RRT) is needed in ∼5% of PUUV and 30% of both DOBV

and HTNV infections, and half of HFRS deaths occur in this
oliguric phase [3, 181–185]. Approximately 10% of DOBV- and
HTNV-infected patients require mechanical ventilation due
to the development of acute respiratory distress syndrome
(ARDS) caused by acute progressive noncardiac pulmonary
edema, whereas mechanical ventilation is rarely needed in
PUUV-caused disease [168, 172, 186–188]. With the onset of the
polyuric stage, kidney function gradually improves and urinary
output may be increased for several weeks (Figure 5). Finally,
convalescence, which is characterized by full recovery of kidney
function, is usually prolonged and takes up to 3–6 months
[189]. Of note, the risk for acute myocardial infarction, stroke
and venous thromboembolisms is significantly elevated in this
phase as a consequence of enhanced coagulation and inflam-
mation after hantavirus disease [129, 130]. Although kidney
function is usually completely restored, chronic kidney disease
(CKD) and hypertension have been reported as rare long-term
sequelae—robust data on the frequency and relative risk of
CKD and RRT in HFRS (especially in DOBV- and HTNV-infected
patients) are missing (Table 2) [172, 190–192].

PUUV-caused nephropathia epidemica is amild form of HFRS
that is the most common hantavirus disease in Europe. The typ-
ical disease stages are often not clearly distinguishable, as most
patients suffer from less severe kidney failure that rarely re-
quires RRT and hemorrhagic manifestations are usually mild
[177, 181, 182]. PUUV-caused HFRS is often misdiagnosed due to
its rather uncharacteristic clinical phenotype that resembles a
febrile disease with abdominal pain [3, 193]. Different from other
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hantaviruses, SEOV is characterized by accompanying liver dys-
function during HFRS [194].

Children have a similar clinical presentation of HFRS as
adults; however, the disease course is usually milder, with ab-
dominal manifestations of hantavirus infection being more fre-
quent [195, 196].

HCPS. The clinical phenotype of HCPS is characterized by ARDS,
with case fatality rates of 30–50% [15, 197]. However, disease
severity ranges from mild hypoxemia to fatal respiratory failure
with precapillary cardiogenic shock [198].

The prodromal phase observed in HCPS is similar to HFRS
and includes unspecific flu-like symptoms, including fever,
chills, myalgia, nausea and vomiting. The disease course is
characterized by progress to a cardiopulmonary stage with
tachycardia, arrhythmia, shortness of breath and cough. Due
to the vascular leakage in lung capillaries, patients rapidly
develop noncardiac pulmonary edemas, oxygenation impair-
ment and hypotension. Additionally, pulmonary infiltrates and
pleural effusion may be detected. Patients with severe HCPS
frequently require mechanical ventilation; often the disease
course is further complicated by cardiogenic shock, lactic aci-
dosis and hemoconcentration [3]. Therefore patients often die
within hours after hospitalization when entering the fulminant
cardiopulmonary phase [3]. When pulmonary edema resolves,
patients develop polyuria and full recovery is achieved only after
months [199].

With regard to kidney involvement in HCPS, proteinuria
is frequently seen and is associated with mortality [200–202].
Moreover, AKI occurs in ∼15–20% of HCPS patients and RRT
is needed in ∼10% of all HCPS patients [200, 203, 204]. The
pathogenesis of kidney involvement in HCPS is currently un-
clear, as—due to the profound thrombocytopenia and DIC in
the critically ill HCPS patient cohort—kidney biopsy samples
are not available. A recent but small Brazilian autopsy study
reported marked acute tubular necrosis. This notwithstanding,
more pathological characterization of kidney phenotype inHCPS
is needed [205]. Long-term kidney outcome in HCPS has been
scarcely examined, mainly due to the low incidence and high
mortality of the disease (Table 2). A small prospective study
from the USA reported kidney sequelae after HCPS consisting
of proteinuria and development of CKD in half of the reported
cases [206].

Hantavirus disease—an interconnected syndrome beyond HFRS
and HCPS. Renal and pulmonary diseases are often assigned to
either Old World or New World hantaviruses in a dichotomous
manner. However, HFRS and HCPS are defined and named after
symptoms that also may be partly absent or incomplete. Recent
advances in characterizing and understanding pathogenesis,
organ tropism and clinical phenotype have confirmed com-
mon features of HFRS and HCPS and have therefore led to the
perception of an interconnected disease [200, 207]. To this end,
various reports indicate a large overlap of renal and pulmonary
impairment in Old World and New World hantaviruses [168,
200, 206, 208–210]. For example, frequent development of ARDS
is observed in HFRS caused by DOBV and HTNV [186–188, 211].
In PUUV infections, there are case reports that the human lung
may be the primarily organ system affected, with PUUV being
additionally detected in bronchoalveolar lavage (BAL) fluid [168,
208, 209, 212–215]. In HCPS-assigned SNV and ANDV, RRT is often
needed for acute treatment [198, 203, 216]. In order to refine our

knowledge on epidemiologic and clinical aspects of hantavirus
disease and to determine disease progression beyond the
dichotomous denominations of HFRS and HCPS—i.e., to define
diagnostic criteria from large cohorts rather than case reports—
a novel platform, the Hantavirus Registry (NCT04323904), was
recently developed [217].

Diagnosis

The diagnosis of hantavirus-associated diseases is based on
clinical findings, local epidemiology and laboratory methods.
Hallmark laboratory findings of hantavirus infection are throm-
bocytopenia, leukocytosis, hemoconcentration, elevated serum
creatinine levels, hematuria and proteinuria. Further labo-
ratory markers depend on the other preferentially targeted
organs [2].

Hantavirus-specific immunoglobulin M (IgM) and IgG
antibodies are usually present in patients at the onset of
symptoms. In contrast to IgG antibodies that persist life-
long, IgM titers are detectable in the acute phase of in-
fection and decline over a period of 2–6 months (Figure 5)
(3, 218–220). Therefore an IgM capture test is combined with an
IgG test to detect acute infection. In Europe, hantavirus-specific
diagnostic strategies should at least cover DOBV and PUUV.
The serodiagnosis of hantavirus infection can be performed by
enzyme-linked immunosorbent assay (ELISA) or immunoblot,
predominantly detecting antibodies against N proteins [3, 221,
222]. ELISA is used in most commercially available serologic
tests and employs recombinant protein antigens taken from
DOBV, HTNV, PUUV, SEOV, SNV and ANDV (Table 4) [223]. The
sensitivity and specificity for ELISA-based serodiagnosis are
both ∼95% [223–225]. Also, immunoblots for DOBV, HTNV,
PUUV and SEOV are commercially available and the reported
sensitivity and specificity are 96% and 100%, respectively [223,
226]. Immunofluorescence assays (IFAs) examine the reaction
of patient serum samples to uninfected or hantavirus-infected
cells. IFAs have been most widely used in Europe and facil-
itate the detection of DOBV/HTNV and PUUV. The reported
sensitivity and specificity are 98% and 91%, respectively [227].
Of note, results obtained from ELISAs should be confirmed by
independent tests and in Europe both immunoblot and IFA
are used for confirmation. Rapid immunochromatographic IgM
antibody tests allow for point-of-care diagnosis but have not
yet entered widespread use; they are also limited in sensitivity
[228, 229].

The hantavirus genome can be detected by both traditional
and real-time polymerase chain reaction (PCR)-based diagnos-
tics in blood, saliva, BAL fluids and tissue samples. Of note, PCR-
based diagnostics facilitate postmortem diagnosis and organ
involvement. The viral load detected in blood samples at the on-
set of infection may even predict disease severity in both HFRS
and HCPS; however, the viremic phase is limited to the very
early stage of the disease (Figure 5) [230–233]. Another drawback
of PCR-based diagnostics is the possibility of obtaining false-
negative results in low-viremic infections often seen in, for ex-
ample, PUUV or in patients tested late in disease [2]. Moreover,
PCR-based diagnostics are prone to cross-contamination. Major
advantages of molecular-based diagnostics are rapid test results
obtained within 24 h, especially important in critically ill pa-
tients, and the ability to sequence the viral genome for phylo-
genetic analysis [223].
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Table 4. Comparison of frequently used commercially available diagnostic approaches for hantavirus disease

Diagnostic test
Antigen type/hantavirus

detected
Sensitivity

(%) Specificity (%) Comments References

ELISA DOBV
HTNV
PUUV
SEOV
ANDV
SNV

95–97 94–99 Combination of IgG test
and IgM capture test is
recommended

[224, 225]

IFA DOBV
HTNV
PUUV

98 91 Used as a confirmation test
in Europe

[227]

Immunoblot assay DOBV
HTNV
PUUV
SEOV

96 100 Used as a confirmation test
in Europe

[226]

Rapid
immunochromatographic
IgM antibody tests

DOBV
HTNV
PUUV
SNV

80–93 96 Point-of-care test [228, 229]

(Real-time)-PCR Facilitates sequencing of
the viral genome and the

detection of novel
hantaviruses

92–98 80–98 Time to test positivity
<24 h
Only useful in early viremic
stage of infection

[265, 266]

Prevention

Exposure to infected rodents is the main risk factor for
hantavirus-associated diseases and, due to a lack of targeted
antiviral therapy, preventive measures such as rodent control
and avoiding contact with potentially infected areas are recom-
mended to minimize risk of transmission [234–236]. A history
of possible exposure to rodent excreta can be obtained in ∼50%
of cases. Thus, identifying typical scenarios (e.g., sweeping out
areas that are likely inhabited by rodents) is helpful but can
certainly not be a prerequisite for making the diagnosis. Espe-
cially in endemic areas,hantavirus diseases should be suspected
based on the clinical picture and laboratory findings rather than
a history of exposure [236].

Vaccinations still remain controversial: in Korea, Hantavax
is in use, a vaccine derived from formalin-inactivated HTNV-
infected suckling mouse brain; however, frequent booster
doses are mandatory for achieving immunity [237, 238]. Sev-
eral formalin-inactivated vaccines have been used in China
with unknown protective efficacies [238, 239]. No vaccines are
currently approved in Europe or the USA. DNA vaccines for
hantaviruses thatmay facilitate construction ofmultivalent vac-
cines and long-lasting immunity are being tested in clinical tri-
als [240, 241]. Based on the recent experiences in the COVID-19
pandemic, RNA vaccines may actually be a very promising strat-
egy to extend to hantaviruses.

Therapy

Currently treatment of both HFRS and HCPS is mainly support-
ive, as there is no specific therapy available [242]. For close mon-
itoring, patients with a severe disease course should be ad-
mitted to the intensive care unit to maintain euvolemia and
electrolyte balance. Especially in anuric patients, the volume
status should be closely monitored to avoid extensive fluid re-

tention and pulmonary edema due to leaky capillaries. RRT is
needed in 4–6% of the hospital-treated patients in PUUV, in 10–
20% in DOBV and up to 40–50% in HTNV infections [170, 179,
182, 183, 193, 243–245]. In the case of severe thrombocytope-
nia and major bleeding events due to DIC, platelet transfusion
and/or fresh frozen plasma may be necessary to improve coag-
ulation and control the bleeding event [3, 246]. Of note, there are
hints that the extent of thrombocytopenia at the onset of infec-
tion predicts AKI severity as well as the clinical course in HFRS
patients [170, 247]. In HCPS patients, supportive therapy con-
sists of oxygen supplementation, mechanical ventilation when
necessary, inotropic support and maintenance of euvolemia
[199]. Additionally, extracorporeal membrane oxygenation im-
proves outcome in patients with refractory shock and ARDS
[248, 249].

Currently there is no targeted antiviral therapy available
in Europe or the USA. Ribavirin has shown some antiviral
effects against hantaviruses in in vitro models of HTNV-caused
HFRS, since it is inhibiting viral replication through targeting
the RdRp [250, 251]. In humans, ribavirin has been tested
in a double-blind, placebo-controlled clinical trial in China,
suggesting improved outcome and reduced severity of renal
insufficiency when administered within 5 days after the onset
of symptoms in HTNV-caused HFRS (Table 5) [252, 253]. In
contrast, a randomized, open-label Russian trial revealed that
ribavirin-associated side effects such as rash, sinus bradycardia,
hyperbilirubinemia and anemia were significantly increased,
while showing no protective effects in PUUV-infected patients
[254]. Of note, disease severity in PUUV-caused HFRS is—in con-
trast to HTNV—not associated with the viral load,whichmay be
a reasonable explanation for these different outcomes (Table 5)
[255–257]. Ribavirin has also been examined in HCPS patients in
a prospective, double-blind, placebo-controlled trial revealing
no beneficial effects. Currently there is no recommendation to
use ribavirin in HFRS or HCPS [258, 259].
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Table 5. Comparison of clinical trials examining ribavirin in hantavirus disease

Characteristics Huggins et al. [252] Malinin et al. [254] Mertz et al. [258]

Disease entity HFRS HFRS HCPS

Study period 1985–1987 2004–2005 1996—2001

Trial design Prospective, double-blind,
placebo-controlled trial

Prospective, open-label, phase II study Prospective, double-blind,
placebo-controlled trial

Number of patients 293 73 36

Dose of ribavirin Loading dose of 33 mg/kg, followed
by a dose of 16 mg/kg every 6 h for
the first 4 days and 8 mg/kg every 8
h for the subsequent 3 days

Loading dose of 33 mg/kg, followed by
a dose of 16 mg/kg every 6 h for the
first 4 days and 8 mg/kg every 8 h for
the subsequent 3 days

Loading dose of 33 mg/kg,
followed by a dose of 16 mg/kg
every 6 h for the first 4 days and 8
mg/kg every 8 h for the
subsequent 3 days

Timing of ribavirin
with respect to
onset of infection

4 days (lengthened to 6 days in
1986) after onset of symptoms

4 days after onset of symptoms Not specified; however, patients
had to be in the prodromal or
cardiopulmonary stage

Hantaviruses
involved

HTNV (confirmed in 82.6% by ELISA) PUUV SNV (confirmed in 63.9% by ELISA)

Primary endpoint Reduction in mortality, occurrence
of oliguria and hemorrhages

Change in viral load Survival at day 28 after study entry

Results for primary
endpoint

7-fold reduction of mortality in the
ribavirin group (P = .01)
3.7 reduction of oliguria in the
ribavirin group (P = .01)

Insufficient efficacy of ribavirin No difference in survival between
the ribavirin and placebo group

Adverse events Drug-related anemia in all male
study subjects (males accounted for
75% of study subjects). Females
showed similar trends that were
less dramatic due to sex-related
differences in hematocrit

Low hemoglobin levels in 95%,
hyperbilirubinemia in 81%, sinus
bradycardia in 43% and rash in 19% of
the ribavirin-treated patients

No significant differences in the
frequency of adverse events;
however, there was trend toward a
higher rate in anemia in the
ribavirin group

Inclusion criteria Age ≥14 years
Fever duration ≤4 days
(lengthened to 6 days in 1986)
Clinical diagnosis of HFRS
including fever and proteinuria
History making exposure to
infection likely

OR

Findings consistent with early
HFRS
Hantaviral IgM antibodies
No other evidence for an
alternative diagnosis

Age 18–65 years
Suspected diagnosis of HFRS
within 4 days of onset of disease
SOFA score = 1

Age ≥12 years
Suspected or serologically
confirmed acute hantavirus
disease in the prodromal of
cardiopulmonary stage

Exclusion criteria Advanced renal failure
manifested by oliguria or
uremia
Pregnancy or breast feeding
Known intolerance to ribavirin
Moribund on presentation or
life expectancy <48 h
Pre-existing non-HFRS
life-threatening condition

Known intolerance to ribavirin
Pregnancy or breast feeding
NYHA cardiac function ≥2
History of severe chronic
pulmonary or kidney disease
History of autoimmune hepatitis
Serum aminotransferase
levels greater than two times
the upper limit of normal
Hemoglobin level <12g/dL

Pregnancy or breast-feeding
A likely diagnosis other than
HCPS
Immunocompromised status
Receipt of systemic
corticosteroids within
30 days prior to enrolment
A mean arterial pressure of
<60 mmHg for 2 h despite
optimal medical management
A cardiac index <2.1
L/min/m2

Arterial oxygen pressure
<65 mmHg in intubated
subjects receiving 100%
oxygen
The presence of unilateral
pulmonary infiltrates that
did not become bilateral
within 24 h

Comments Study showed efficacy in reducing
case fatality and oliguria in
HTNV-infected patients

Study revealed insufficient efficacy
and safety of intravenous ribavirin in
PUUV-infected patients. Severity of
PUUV-caused HFRS is not associated
with viral load, in contrast to HTNV,
explaining the different outcomes
observed [255–257]

Premature termination of the
study due to the slow rate of
accrual of subjects and the
findings of futility analysis

NYHA: New York Hearth Association; SOFA: Sepsis-related Organ Failure Assessment score.
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Table 6. Summary of potential antiviral approaches for hantavirus disease tested in humans

Drug
Known /putative

target Purpose Virus
Number of
patients

Outcome/
comments References

Murine monoclonal
antibodies

Gc/Gn Blocking viral
entry

n.a. 22 Safety in a phase I
trial examined, proof
of efficacy lacking

[261]

Human immune
plasma

Gc / Gn Blocking viral
entry

ANDV 32 Safe and efficient
with a 50% reduction
in case fatalities in
an uncontrolled
clinical trial

[267]

Icatibant Bradykinin
receptor 2

Improving
vascular
function

PUUV Case reports Clinical trials apart
from case reports
lacking

[110–112]

Methylprednisolone Immunotherapy Rebuilding
immune
homeostasis

ANDV 66 No beneficial effect
reported

[204]

Ribavirin RdRp Inhibiting
viral
replication

ANDV, HTNV,
PUUV

547 Efficient in HTNV,
inefficient and
unsafe in PUUV and
ANDV (see Table 5)

[252, 254, 258,
259]

Gc: C-glycoprotein; Gn: N-glycoprotein; n.a.: not applicable.

Apart from ribavirin, methylprednisolone has been tested
in a randomized controlled clinical trial in ADNV-infected
patients, failed to provide any significant benefit to patients
(Table 6) [204]. Novel potential therapeutic strategies that were
tested in noncontrolled clinical trials include murine and
human-derived neutralizing antibodies that block viral entry. In
contrast to murine-derived neutralizing antibodies, for which
efficacy is unknown, human-derived neutralizing antibodies
resulted in a 50% reduction of case fatalities in ANDV infections
(Table 6) [260–262]. In addition, bradykinin type 2 receptor
antagonists have been tested in PUUV-infected patients and
may be promising candidates [107, 111, 112, 263]. However,
standardized, large-scale clinical trials examining both efficacy
and safety are lacking [238].

CONCLUSION

Hantavirus-associated diseases are emerging zoonotic infec-
tions with increasing incidence rates in Europe. The distribution
of hantaviruses is influenced by climate change and disturbed
rodent habitats and new hantavirus species with unknown
pathogenicity are encountered in these reservoirs. Recently
discovered human-to-human transmission by superspreading
events may further cause hantaviral spread and make a pan-
demic a possible scenario. Therefore further research in han-
tavirus pathogenesis, diagnosis antiviral and preventive mea-
sures, including vaccine development, remain mandatory.
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