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1  | INTRODUC TION

The growing morbidity of foodborne illnesses induced by contam-
inated food, in particular meat and meat products, has received 
increasing attention according to reports from the European Food 
Safety Authority, the European Centre for Disease Prevention 
and Control, and the United States Department of Agriculture 
(Centers for Disease Control and Prevention (CDC), 2017; Food & 
Authority, 2018; Food & Authority, 2019; United States Department 
of Agriculture (USDA), 2017). Staphylococcus aureus are typical 

foodborne pathogens, which induce foodborne intoxication globally 
by the production of heat-stable enterotoxin (Carvalho et al., 2021; 
Hani Tabaie Zavareh & Ardestani, 2020; Mama et al., 2020; Oliveira 
et al., 2020). As mentioned by some reports, a large number of staph-
ylococcal food poisoning cases were brought about by contaminated 
meat products (Grispoldi et al., 2021; Lee et al., 2015). Thus, it is nec-
essary to monitor the survival behavior of S. aureus under different 
conditions in pork products.

Numerous studies investigated the S. aureus growth behavior 
in meat or meat products under different temperature conditions. 
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Abstract
The incidence of frequent foodborne disease outbreaks due to Staphylococcus aureus 
contamination necessitates the urgent searching for effective methods to monitor 
S. aureus. This research aims to construct model with a dynamic survival curve and 
some static growth curves to predict the behavior of S. aureus in raw pork. Lack of 
research about S. aureus kinetics in pork under fluctuating temperature conditions 
across freezing and thawing necessitates this study. One-step analysis was used to 
determine the model parameters, which was more efficient than conventional model 
analysis with two steps. The results of kinetic analysis showed that Tmin (minimum 
growth temperature) was 6.85°C, which is close to the estimated values in previous 
reports. Subsequently, validation results indicated the integrated model can accu-
rately predict the behavior of S. aureus regardless of isothermal or nonisothermal 
conditions with the root-mean-square errors (RMSE < 0.44 log CFU/g, 73.9% of the 
errors of prediction falls within ±0.5 log CFU/g), accuracy factors Af and bias factors 
Bf were both close to 1. This work may offer an effective method for the assessment 
of microbial security related to S. aureus in pork.
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Mansur et al described the kinetic behavior for S. aureus in raw meat, 
ham, and sausage under isothermal (static) conditions (10, 15, 20, 
25, 30, 35, and 40℃) (Mansur et al., 2016). Similarly, Lee et al. (2015) 
used a large number of growth curves under isothermal conditions 
to model the growth kinetics of S. aureus in pork. However, most of 
the researches were under the static temperature conditions (Kim 
et al., 2018; Lee et al., 2015; Mansur et al., 2016). Temperature fluc-
tuations will occur during household storage and in the food sup-
ply chain when products are transferred from retail stores to lorries 
and customers (Oliveira et al., 2009). Freezing–thawing might also 
be involved in food supply (Teuteberg et  al.,  2021; United States 
Department of Agriculture (USDA), 2020). Thus, the impacts of 
fluctuating temperatures on the behaviors of pathogens should be 
recorded. The growth of Escherichia coli O157:H7 and Salmonella in 
ground meat at dynamic temperature conditions have been analyzed 
(Hwang & Huang, 2018; Reddy et al., 2011). Nevertheless, none of 
the studies are concerned about how dynamic temperature vari-
ations across freezing and thawing affect S. aureus survival in raw 
pork. The lack of researches emphasizes the necessity of this work.

As a common mathematical analysis, predictive microbiology can 
be applied to predict the survival behaviors of microorganisms and 
mathematically model reproducible behavior under some environ-
mental conditions, contributing to obtain information about the sur-
vival behavior of microorganism. The bacterial growth curves under 
isothermal conditions can be described by some main empirical 
models like the Gompertz model, logistic model, Baranyi model, and 
Huang model (Fujikawa et al., 2004; Li et al., 2013; Lu et al., 2020). 
The inactivation kinetics can be modeled using the Geeraerd and 
Mafart model (González-Tejedor et  al.,  2018). During traditional 
modeling, a large number of isothermal curves and a two-step ap-
proach for data analysis were used (Lee et al., 2015; Li et al., 2013). 
In the first step, a primary model as mentioned above was fitted 
with isothermal data and the kinetic parameters were estimated. In 
the second step, a secondary model was used for further analysis to 
find the impact of environmental factors (Kataoka et al., 2017; Rubio 
et al., 2018). However, this two-step method is time-consuming for 
large amounts of isothermal data collections and inefficient with 
higher errors. In this case, the one-step analysis which integrates the 
primary model and secondary model into one step might provide a 
reliable approach (Huang, 2015; Huang & Hwang, 2017; Hwang & 
Huang, 2018; Li et al., 2019; Liu et al., 2020). The one-step analysis 
can be used to construct a predictive model not only under isother-
mal (static) conditions but also under nonisothermal (dynamic) con-
ditions via a numerical method. Liu et al. (2019) used the one-step 
analysis to accurately predict L. monocytogenes growth in braised 
beef under fluctuating temperatures and static conditions, the reli-
ability of the one-step analysis method was hence validated. In addi-
tion, some researches indicated that the one-step dynamic analysis 
could provide more accurate estimates with fewer tests than the 
static analysis for the microbial kinetic analysis (Cattani et al., 2016; 
Liu et al., 2019).

The objective of the research was to (i) obtain and determine the 
kinetics parameters with the one-step approach under isothermal 

(static) combined with nonisothermal (dynamic) temperature condi-
tions; (ii) construct a model to describe the survival kinetics of S. 
aureus in raw pork under various temperature conditions simulating 
temperature fluctuations in food supply chain and household stor-
age; (iii) perform a validation and evaluation for the model with other 
curves which were set aside.

2  | MATERIAL AND METHODS

2.1 | Bacterial strains and culture conditions

Staphylococcus aureus ATCC29213 (China Medical Culture Collection 
Center, Beijing, China) and three foodborne isolates of S. aureus (Jilin 
Entry and Exit Inspection and Quarantine Bureau) were stored at 
−20°C in a solution of trypticase soy broth (TSB; Qingdao Hope 
Biotechnology Co., Ltd) and glycerol until use. The pure cultures 
were transferred into TSB and cultured for 24 h under the tempera-
ture condition of 37°C for activation. Cultures were then streaked 
onto Baird Parker agar plates (BPA; Qingdao Hope Biotechnology 
Co., Ltd) and cultured for 24  h under the temperature condition 
of 37°C. To prepare working cultures, cells were extracted from 
individual colonies on the BPA plates and then placed in the TSB 
broth (10 ml). Bacterial cultures were cultured for 16–18 h at 37°C 
(Huang, 2015; Lee et al., 2015).

2.2 | Sample preparation and bacterial inoculation

Raw pork used in the present study was purchased at a major re-
tail supermarket in Changchun, China, and sent to the laboratory 
within 30 min. Pork was weighed (20 ± 0.1 g) in sterile centrifuge 
bottles (Hwang & Huang, 2018). Meat samples were inoculated by 
adding 100 μl of the S. aureus cocktail to the final concentration of 
103–4 CFU/g (Juneja et al., 2007).

2.3 | Sample incubation and enumeration

Inoculated samples were randomly grouped and stored separately 
at a dynamic temperature profile and two isothermal temperature 
profiles (11°C, 16°C). The dynamic curves combined with two 
static curves were used for fitting analysis to estimate the model 
parameters. The dynamic temperature profile was designed by 
referring to a previously reported study (Huang & Hwang, 2017; 
Liu et  al.,  2019) to allow for arbitrary fluctuations and incubate 
samples near the minimum growth temperature (Tmin), thus ob-
serving the death and survival conditions of bacteria in culturing. 
Among the dynamic temperature profiles, 7°C could be set for 
observing the growth of bacteria near the minimum temperature, 
which is close to the estimated minimum temperature in previous 
reports (Lu et  al.,  2020; Medveďová et  al.,  2020). Freezing tem-
peratures were also included in the dynamic profiles which may 
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help accurately estimate the theoretical minimum temperature 
for growth (Liu et  al.,  2019). After the inoculation, the samples 
were immediately treated with 0.1% sterile peptone water (PW) 
by serial decimal dilutions at a preset sampling time. The diluted 
aliquots were spread onto the BPA base plates to estimate the 
bacterial populations, followed by incubation overnight at 37°C. 
Counts were recorded with the logarithm (log10 of CFU/g) of the 
subsequent dilutions. In addition, each treatment was conducted 
in triplicate (Kataoka et al., 2017).

2.4 | Mathematical modeling and Estimation of 
kinetic parameters

For the estimation of kinetic parameters, the research then adopted 
a one-step analysis method. Logistic equation of Equation (1) was 
used as the primary model for kinetic analysis of S. aureus in pork to 
fit survival curves. In the model, N refers to bacterial count (CFU/g), 
while maximum population density (Ymax) (ln CFU/g) had been cal-
culated with an upper asymptote. Equation (1) subtly portrays two 
cases in one equation, which were referred as previously reported 
(Huang & Hwang, 2017). In case the experimental temperature ex-
ceeds Tmin, the equation turns to the logistic equation in particular 
appropriate to the description of bacterial logarithmic growth having 
carrying capacity. Rate coefficient K in the case of T ≥ Tmin is μmax 
(specific growth rate), the maximum value of the first derivative on 
the logarithm of viable count for time (Juneja et al., 2007) (ln CFU/g 
per h). In case the temperature is lower than Tmin, the equation could 
be simplified as first-order survival kinetics under K < 0 which can 
describe the inactivation behavior under unfavorable conditions 
(Huang & Hwang, 2017; Li et al., 2017).

In the one-step analysis, the logistic model and the secondary 
model (Equation  2) were integrated for being solved concurrently 
through numerical analysis and modification (Huang & Hwang, 2017; 
Hwang & Huang, 2018). In Equation (2), �max can be described by the 
Huang square root secondary model at an incubation temperature 
above Tmin, a is a regression coefficient, T is the incubation tempera-
ture (℃). Below Tmin, the rate (K) of decline in the bacterial population 
was also described in Equation (2), k as the coefficient.

Because of temperature variation during bacterial growth, the 
differential equation cannot be solved analytically. The fourth-order 
Runge–Kutta model (Equation 3) is an effective numerical approach 
in solving ordinary differential equations which describe microbe 

dynamic growth in food (Liu et al., 2019). Kinetic parameters were 
estimated using nonlinear least squares optimization function, which 
minimizes the error or the deviation of numerical solutions from the 
observed data for the most suitable kinetic parameters according to 
laboratory growth profiles (Hwang & Huang, 2018). The numerical 
analysis and optimization were then made with Python (www.py-
thon.org) in combination with Numpy and Scipy.

Yn is the approximation at tn (ln CFU/g); h is the time step (0.1 h); f 
(*) is the ordinary differential equation, which is dN/dt in Equation (1); 
k1, k2, k3, and k4 are the increments computed by f (*) at each step.

2.5 | Model evaluation and validation

During fitting, the goodness-of-fit of proposed models was assessed 
using the root-mean-square error (RMSE) (Equation 4), which com-
pares the predicted value ŷ and the observed value y at each sam-
pling point (Valero et al., 2018). N means quantity of the observed 
data, and P suggests quantity of parameters.

For verifying predictive models, another temperature profile 
set aside between 20and −20℃ was designed for the samples. 
Additionally, isothermal growth curves under 37, 28, 20℃, and 16℃ 
were also used for the forward analysis to validate the model. The 
accuracy factor (Af) (Equation 5) and bias factor (Bf) (Equation 6) were 
applied for the validation, which performed the prediction accuracy 
under different conditions (Ross, 1996; Rubio et al., 2018). Af mea-
sures the spread between observation and model predictions, while 
Bf indicates the extent of the modeled under- or overestimate (Rubio 
et al., 2018). Af and Bf closer to 1 indicate the model predictions per-
fectly match with the experimental data. n represents the number 
of trials.

Furthermore, the residual errors (ε) were also observed to judge 
predictive model accuracy and figure out the law of distribution 
of difference between y and ŷ (Hwang & Huang,  2018). The re-
sidual errors analysis was conducted for detecting the distribution 
pattern.
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3  | RESULT AND DISCUSSION

3.1 | Survival of S. aureus in pork

The survival of S. aureus in pork samples was observed under dy-
namic nonisothermal conditions and isothermal conditions (Figure 
S1), and the dynamic fitting curve is shown in Figure 1. The dynamic 
temperature profile was set as the dotted line (Figure 1). During the 
incubation process, the temperature was reset to allow the ran-
dom changes and observe different growth phases, simulating the 
temperature fluctuation that may occur during food storage and 
distribution. In the current study, S. aureus could survive under low 
temperature conditions (7℃) with atmospheric oxygen. Besides, the 
inactivation was observed when the samples were exposed to 0 and 
−20°C under the dynamic conditions.

The statistical fitting results of the model are presented in 
Table 1, and a good performance of the model with the observed 
values is illustrated. Although, growth and inactivation parameters 
can also be determined by a two-step method based on isothermal 
experiments (Jewell, 2012). The two-step method does not consider 
the gross error of parameters evaluated with primary and second-
ary models, which potentially provokes bias in the condition that 
estimates gain application in certain dynamic and extreme experi-
mental scenarios. In contrast, the one-step method integrates the 
primary model and the secondary model into one model, so as to 
determine gross growing and inactivating parameters in one step to 
fix the inverse problem efficiently (Huang, 2017). The variables of 
the integrated model were estimated using the data of the colony 
unit count versus time at different temperature profiles. The one-
step kinetic analysis is feasible to both static and nonisothermal 
(dynamic) conditions (Liu et al., 2019). Huang, et al. compared the re-
sults of the one-step analysis with that of the conventional two-step 

approach in Salmonella enteritidis growth kinetics estimate, indicated 
the former can produce more efficient and accurate models (Huang 
& Hwang, 2017). Similar results were obtained in the present study, 
only two constant temperature curves combined with a dynamic 
temperature curve were used to estimate parameters and accurate 
model was obtained. This approach is not only more efficient but 
also more accurate.

The estimated kinetic parameters of the model in this study, 
including a, Tmin, and Ymax, are shown in Table  1. Entire estimates 
for parameters were at a high level of significance with p  <  .05. 
Numerical analysis and least squares optimization were taken to 
evaluate the kinetic parameter of a, k, Tmin, as well as Ymax from in-
verse analysis. The observed data extracted on dynamic and static 
profiles could robustly estimate parameters in the reverse analysis. 
The convergence for the optimization procedure was a success. All 
of the parameters are obtained with a very low p value except k, 
suggesting the statistical significance of a, Tmin, and Ymax. The esti-
mate of k (3.62 × 10–3) was less certain than the estimates of a, Tmin, 
and Ymax. The estimate of k had a larger p > .05, suggesting that the 
regression analysis was not able to confidently estimate this param-
eter. One approach to solve this problem was to fix k to 3.62 × 10–3, 
and the data were analyzed again. This treatment did not affect the 
accuracy, and the same results of a, Tmin, and Ymax were obtained 
(Table 1). The estimated value of a, Tmin, as well as Ymax is 7.66 × 10–3, 
6.85, and 21.25, with p values equal to 5.47 × 10–15, 3.52 × 10–11, 
and 1.96 × 10–38, respectively. Minimum growth temperature esti-
mated by our reverse analysis approached 6.85°C, which is close to 
the values obtained with the Huang square root secondary model 
in previous reports (7℃ reported by Lu et al., 2020 and 6.06 and 
7.72°C reported by Medveďová et  al.,  2020), which indicates that 
it can describe S. aureus growth accurately. Additionally, based on 
the result of kinetic analysis for S. aureus in raw pork, it cannot be 

F I G U R E  1   Growth and survival 
of Staphylococcus aureus in raw pork 
under dynamic temperature profiles and 
mathematical modeling. Programmed 
time (hours)=0, 3, 6, 8, 24, 25, 25.5, 
26, 26.5, 31.5, 51.5, 52.5 54.5, 70.5, 
74.5, 76.5, 92.5, 95.5, 96.5, 97.5, 98.5, 
99.5, 100, 100.5, 101, 101.5, and 102.5; 
programmed temperature (℃) =11, 11, 11, 
11, 11, 24, 24, 24, 24, −20, −20, 37, 0, 0, 0, 
7, 7, 7, 20, 20, 20, 20, 37, 37, 37, 37, 37
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ignored for the potential that microorganism contamination and 
growth at low temperatures in food. Low temperature refrigeration 
is seen as an effective way for food preservation. However, S. aureus 
show cold tolerance and can grow at low temperatures in raw pork, 
which represents a potential hazard of S. aureus to thrive well even 
after long-term storage under low temperatures.

The RMSE of the model in this study is 0.49 log CFU/g. As shown 
by the analysis on residual errors (ε), the residual errors abide by 
Laplace distribution, with the location factor as 0.08 log CFU/g (ε 
distribution is symmetric in ε = 0.08 log CFU/g) and the scale factor 
as 0.44 log CFU/g (Figure 2). This implies the exponential reduction 
of probability density with the growth of ε. Approximately 75.6% 
of prediction errors fall within ±0.5 log CFU/g, while 95.6% within 
±1 log CFU/g. No estimates are less than −1 log CFU/g (under pre-
diction), or above 1.5 log CFU/g (over prediction), suggesting that 
a good performance is obtained for the model fittings (Hwang & 
Huang, 2018).

3.2 | Validation of predictive model

Another survival curve under the dynamic temperature condition 
and some growth curves under isothermal conditions were taken for 
verifying the accuracy of the proposed predictive model. The tem-
perature profile exhibited sustained fluctuations in temperatures 
between −20 and 20°C, simulating arbitrary volatility of tempera-
ture conditions in frozen or refrigerated food. Since a few parts of 
the profile had lower than minimum growth temperature (Tmin), the 
death rate of bacteria might be in direct proportion to temperature 
deviation from Tmin. The mathematical models accurately regis-
ter the growth and survival of bacteria, where model estimations 
were in good agreement with results of the experiment, as shown in 
Figure 3. Similarly, the model was also able to precisely estimate S. 
aureus growth under isothermal conditions at 16, 20, 28, and 37°C, 
which are shown in Figure 4. Predicted RMSE on dynamic and iso-
thermal profiles is <0.44 log CFU/g, and we see from Figure 5 that 

TA B L E  1   Estimates of kinetic parameters for describing growth and survival of Staphylococcus aureus inoculated in pork

Estimated value L95CI U95CI Std Error t-value p-value

A 7.66 × 10–3 6.37 × 10–3 8.95 × 10–3 6.5 × 10–4 11.86 5.47 × 10–15

Tmin 6.85 5.29 8.41 0.78 8.81 3.52 × 10–11

Ymax 21.25 20.37 22.13 0.44 48.3 1.96 × 10–38

MSE 0.24

RMSE 0.49

Number of observations 45

Number of parameters 3

Degree of freedom 42

Note: L95CI and U95 CI, 95% confidence limit; MSE, mean square error; RMSE, root-mean-square error.

F I G U R E  2   The distribution of residual 
errors for model development
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the corresponding residual errors conform to the normal distribu-
tion, which is symmetric in ε = 0.1 log CFU/g. Generally, 73.9% of the 
prediction errors are in ±0.5 log CFU/g, and 97.8% in ±1 log CFU/g. 
Less than 2.2% of errors of prediction are below −1 log CFU/g (under 
prediction), and none are >1.0 log CFU/g. Accordingly, model predic-
tion errors fall within the standard scope of errors, and the results of 
the experiment are valid. Af and Bf were 1.05 and 0.98, respectively, 
indicating that the models were highly predictable. In an ideal case, 
Af = Bf = 1 indicates the predictions best agree with the observed 

data. Af specifically grows from 0.1 to 0.15, so an acceptable range 
of Af is 1–1.15.

Instead of using large number of different isothermal experi-
ments, dynamic analysis straightforwardly places microorganisms at 
dynamic temperatures which can induce the response by changing 
kinetic parameters linked to microbial growth or survival during the 
temperature fluctuation (Huang & Hwang,  2017; Liu et  al.,  2019). 
In our study, a dynamic temperature profile was used in combi-
nation with static profiles for fitting analysis. Interplay of varying 

F I G U R E  3   Validation of the predictive 
models using dynamic temperature 
profiles

F I G U R E  4   Validation of the predictive 
models using isothermal temperature 
profiles
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environmental conditions and microorganisms was pondered under 
dynamic temperature conditions to better comprehend the physio-
logical state of bacteria, and the result makes for the dynamic model-
ing of the microorganism under sophisticated ecosystems. In future 
researches, more accurate prediction of the foodborne pathogens 
in food may require the optimization of the time–temperature pro-
files. Meanwhile, more environmental factors could be considered 
for better describing the cell behavior.

In this study, an integrated model was constructed combin-
ing with the dynamic survival model and the Huang square root 
secondary model to describe the survival of S. aureus in raw pork 
under various temperature conditions. The proposed model pre-
cisely estimated the survival kinetic of S. aureus, which illustrates 
that the one-step method has greater efficiency and accuracy in 
the development of kinetic models used for predicting microorgan-
ism growth and survival. Furthermore, models have been validated 
with good performance in the external verification and internal 
verification. Therefore, this model could help to set up the critical 
control points (CCP) on storage temperature as HACCP in meat in-
dustrial processing and distribution to improve food safety. In gen-
eral, the research might provide useful information and a reliable 
method for the prediction of S. aureus contamination in pork under 
dynamic temperature conditions during household storage or food 
chain supply.
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