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Human-like driving behaviour emerges from a
risk-based driver model
Sarvesh Kolekar 1✉, Joost de Winter 1 & David Abbink 1

Current driving behaviour models are designed for specific scenarios, such as curve driving,

obstacle avoidance, car-following, or overtaking. However, humans can drive in diverse

scenarios. Can we find an underlying principle from which driving behaviour in different

scenarios emerges? We propose the Driver’s Risk Field (DRF), a two-dimensional field that

represents the driver’s belief about the probability of an event occurring. The DRF, when

multiplied with the consequence of the event, provides an estimate of the driver’s perceived

risk. Through human-in-the-loop and computer simulations, we show that human-like driving

behaviour emerges when the DRF is coupled to a controller that maintains the perceived risk

below a threshold-level. The DRF model predictions concur with driving behaviour reported in

literature for seven different scenarios (curve radii, lane widths, obstacle avoidance, roadside

furniture, car-following, overtaking, oncoming traffic). We conclude that our generalizable

DRF model is scientifically satisfying and has applications in automated vehicles.
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W ith the introduction of automated vehicles, humans
will increasingly need to interact with automated
systems. One of the factors that influence human-

automation interaction is the trust that users have in the
system1,2. Research suggests that the more technology seems to
have human-like capacities, the more people are expected to trust
it to perform its intended function competently3. For example,
when recorded vehicle trajectories were played back to drivers,
the drivers preferred a driving style they thought was their own4.
To impart human-like capabilities in automated systems,
understanding and modelling the human driver is essential.

Despite many efforts in the field of driver modelling (for sur-
veys, see refs. 5–7), driver models are typically developed for
specific scenarios. For example, longitudinal behaviour has been
modelled using the optical edge rate on open roads8, the time to
extended tangent point in curves9, time to collision (TTC) while
approaching obstacles10 and time headway (THW) during car
following11. Lateral positioning has been modelled using two-
point (i.e., anticipatory vs. compensatory) models12,13 in normal
driving, and open-loop steering corrections14 in emergency sce-
narios. To the best of our knowledge, the literature does not
include a model of human driver behaviour that is applicable to a
multitude of scenarios.

Practically, a unitary model could be developed by including a
switch that selects a sub-model (or model parameters) based on
the current driving scenario. However, this would require a priori
identification of all possible scenarios, linked to appropriately
parameterized models, and smooth transitions between them.
Such an approach has two main problems: Firstly, the fragmented
approach will not perform satisfactorily for driving situations
where there is an inappropriate switch between tasks, or for
driving situations that have not been addressed a priori, a pro-
blem also reported for machine learning techniques15. Secondly,
this fragmented approach is not scientifically satisfying since it
does not elucidate the underlying principles governing driving
behaviour. These principles can be seen as a ‘cost function’ that
human drivers try to minimise. Such cost functions have been
proposed in the area of human motor control and have
demonstrated emergent motor-control behaviour in different
tasks and environments16. The present paper explores whether a
similar generalizable model can be made for driving in different
scenarios.

Essential to generalizable models is a cost function that is based
on existing theories that aim to explain driving behaviour in a
unified manner. The first attempt to such a unified theory was
made by Gibson and Crooks17. They proposed that drivers per-
ceive the qualitative concept of a ‘field of safe travel’, which is
comprised of the possible paths that the car can take unimpeded.
This theory paved the way for ‘motivational driver models’ such
as the risk homoeostasis and task-difficulty homeostasis theories
by Wilde18 and Fuller19, respectively. However, these theories
have two drawbacks: Firstly, they lack specificity regarding their
internal mechanisms, which makes it difficult to operationalize
and validate them20–22. Secondly, homeostasis theories cannot
account for an important characteristic of human-driving beha-
viour, namely satisficing. Drivers do not optimise their states (e.g.,
they do not try to follow the centreline of the road perfectly) but
try to maintain their state within acceptable limits (e.g., within
lane boundaries)23. Models based on homeostasis theories
maintain a certain risk or task-difficulty level, and hence will
always follow a reference trajectory (for example, centreline of the
road), which is not coherent with satisficing behaviour.

Näätänen and Summala24 addressed satisficing behaviour by
introducing the concept of a risk-threshold. According to their
theory, drivers do not maintain a certain level of risk but make
corrective actions only when the risk they perceive increases

beyond a threshold. This means that any vehicle state is accep-
table, as long as the driver’s risk is within his/her individualised
threshold. However, to the best of our knowledge, the risk-
threshold theory has not been operationalized and tested in dif-
ferent driving scenarios.

In this paper, we propose a novel risk metric, based on pub-
lished empirical data, that operationalizes the risk-threshold
theory. We then formulate a driver model that utilises the pro-
posed risk metric as a cost function, simulate it in different
driving scenarios, and compare its predictions of driver behaviour
with driver behaviour reported in literature. The results exemplify
that, in driving, similar to motor-control tasks, a cost function
that accounts for the consequence of noise (in human’s percep-
tion and actions) seems to be the underlying principle governing
driving behaviour. In short, we propose a risk metric that oper-
ationalizes human-like behaviour in a unified manner, for dif-
ferent driving scenarios.

Results
Quantifying perceived risk. According to Näätänen and Sum-
mala24, perceived risk is the product of the subjective probability
that an event will occur and the consequence of that event
(Fig. 1a). In this paper, we operationalize these components
(Fig. 1b).

The consequence of an event is the dangerousness of being in a
particular state. We quantified this by assigning a cost to objects
in the driving scene according to the danger they pose. These
values need to be identified experimentally and are independent
of the driver. A representation of the driver’s subjective belief
about the probability of an event occurring was quantified by
Kolekar et al.25. They measured drivers’ subjective (self-reported)
risk levels and objective (steering angle) steering responses in an
obstacle avoidance task. The Driver’s Risk Field (DRF), as
Kolekar et al.25 called it, has a high value near the ego car and
decays as the lateral and longitudinal distance from the ego car
increases. The DRF hence indicates that the driver believes that
there is a higher probability of being in a position near their
current position, in the next tla seconds (preview time), than at
further away points. The DRF, in essence, captures the driver’s
uncertainty in his/her perception and actions.

The quantified perceived risk (risk metric) is a scalar value
which is the product of the ‘cost of an event’ and the DRF,
summed over all the grid points. In essence, this risk metric
quantifies the ‘consequence of noise/variability in our perception
and actions’, which is similar to the unifying cost functions
proposed in motor control16,26.

Modelling the DRF. The DRF has been previously quantified for
a fixed speed on a straight road25. In this section, we provide the
mathematical formulation of a DRF that moves with the driver
and changes its shape with the speed and steering angle. In this
paper, the predicted vehicle path is calculated using a kinematic
car model. The position (xcar, ycar), heading (ϕcar), and steering
angle (δ) determine the radius of the arc (Rcar) in which the car is
predicted to travel, assuming a constant steering angle (Eq. (1)).

Rcar ¼
L

tanðδÞ ð1Þ

L is the wheel-base of the car. Using xcar, ycar, ϕcar and Rcar, the
centre of the turning circle (xc, yc) is determined, which is used to
calculate the arc length (s), measured along the predicted path
(Fig. 2a).

The DRF is modelled as a torus with a Gaussian cross-section
(Eq. (2)). The height (a) and width (σ) of the Gaussian are a
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function of the arc length (s) (Fig. 2b).
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The height of the Gaussian (a), is modelled as a parabola
(Eq. (3)).

aðsÞ ¼ p s� vtlað Þ2 ð3Þ
With a fixed look-ahead time (tla), the look-ahead distance is
assumed to increase linearly with speed (v). Parameter (p) defines
the ‘steepness’ of the parabola.

The width of the Gaussian (σ) is modelled as a linear function
of arc length (s) (Eq. (4)), which is a simplification of the
parabolic function (Supplementary Fig. 1) used in Kolekar et al.25

and includes the following parameters: first, c defines the width of
DRF at the location of the vehicle and is related to the car-width.
In this paper, c is equal to car-width/4 (±2σ of Gaussian
distribution accounts for 95%). Second, m defines the slope of
widening (or narrowing for negative values) of the DRF when
δ= 0 (driving straight). Third, k1 and k2 increase (or decrease, for
negative values) the width of the DRF proportional to the
(absolute) steering angle ( δj j). This is based on the rationale that
variability in steering angle increases linearly with the steering
angle11,27. It is similar to the empirically confirmed signal-
dependent noise present in the human sensorimotor system26,28.
k1 and k2 represent the parameters for the inner and outer edges
of the DRF, respectively, and allow for an asymmetric DRF. The
expansion of DRF proportional to δ results in the accumulation of
a higher risk for a curve with a smaller radius. The asymmetric
expansion (k1 and k2) provides flexibility to exhibit curve-cutting
(k1 < k2), centreline (k1= k2), or curve overshooting (k1 > k2)

behaviour.

σ i ¼ mþ kijδjð Þsþ c ð4Þ

i ¼ 1ðinner σÞ; 2ðouter σÞ
In short, the DRF is parameterized by p, tla, m, c, k1, k2, and is
only dependent on driver’s state, not the environment.

To test if the proposed risk metric can operationalize human-
like behaviour in a unified manner, we used the risk metric as an
input for a simple driver model (‘Methods’ section) and simulated
it on a virtual track (Fig. 3a). The main characteristic of the DRF
driver model is that it does not minimise the cost function.
Instead, it tries to achieve a certain goal (in this paper, a desired
speed Vdes), while maintaining the cost (quantified perceived risk:
C) below an individualised threshold (Ct).

To identify realistic parameter values for the driver model, we
replicated the track used to simulate the model (Fig. 3a), in a
driving simulator. A 25-year-old male volunteer drove ten times
with the instruction, ‘drive as you normally would’ and ten times
with ‘drive faster’. This was meant to emulate ‘normal’ and ‘sport’
driving behaviour. A section of the track (Fig. 3) was used for
parameter estimation. The speed and lateral deviation trajectories
estimated by the DRF model showed a close resemblance to those
of the participant who also drove faster in sport setting than in
normal setting. Also, the trajectories remained, for most parts,
within the ±2σ bound of the human trajectories. These results
show that the DRF driver model can operationalize driving
behaviour and remain within the human-like trajectory bounds
(±2σ). These were necessary, but not sufficient checks. To verify if
the proposed quantified risk is indeed human-like, we compare
the predictions of the DRF model with the results published in
human-driving behaviour studies in literature.

Validation using published literature. To validate the DRF
model, we selected papers from literature that investigated driver
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Fig. 1 Visualising the quantification of driver’s perceived risk. a This row illustrates Näätänen and Summala’s24 formulation of perceived risk. The
consequence of an event (e.g., colliding with a tree) and the driver’s subjective belief about the probability of that event occurring, form the driver’s
perceived risk. The driver in the ego car is indicated using the black marker. b This row illustrates the proposed quantification of this perceived risk. The
cost of each element in the driving scene is multiplied with the Driver’s Risk Field (DRF) that represents the driver’s belief of the probability of being in a
position. This product summed over all grid points generates the estimate of quantified risk.
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behaviour as a function of road and traffic conditions in terms of
speed and lateral position. Since no single study fully replicates
our scenarios, we chose different studies from literature, to
compare with the respective DRF model predictions. Wherever
possible, we chose a naturalistic driving study in similar condi-
tions as simulated.

Effect of road scenarios. We tested four road scenarios: different
curve radii, different lane widths, obstacle avoidance and roadside
furniture.

Curve radius. The effect of curve radius on driving behaviour was
examined by investigating the lateral position (curve-cutting
behaviour) and speed while driving through curves.

Lateral position: Research has shown that drivers exhibit
‘curve-cutting’, that is, they do not follow the centreline of the
lane but try to increase the effective radius of travel29–31. For
model validation, we selected the on-road study by Xu et al.32

because it provides the largest sampling of curve radii (0–200 m).
They found that the amount of curve-cutting reduced as the curve
radius increased (Fig. 4-1b), which is coherent with the
predictions of the DRF driver model (Fig. 4-1a). They quantified

curve-cutting behaviour using the trajectory transection rate
(TTR), which normalises the lateral deviation from the lane
centre with respect to the lane width, in curves. The DRF model
exhibits curve-cutting behaviour due to its asymmetric shape
defined by parameters k1 and k2 (Fig. 2c). The DRF model also
predicts that curve-cutting is higher in sport setting than in
normal setting.

Speed: Several studies report that the speed at which a curve is
taken increases non-linearly with curve radius, in driving
simulator33,34 and on-road tests11,33,35. The paper from Taragin
and Leisch36 was chosen (Fig. 4-1d) because their on-road study
provided data on curve radii range (60–714 m) and lane width
range (2.6–4.3 m), which are similar to that simulated for the
DRF model. The DRF model predicts that the speed increases
with curve radius, asymptotically approaching straight road speed
for a large radius (Fig. 4-1c), which is similar to the experimental
results of Taragin and Leisch36 (Fig. 4-1d). The DRF model
exhibits this speed dependency on curvature because the width of
the DRF changes with steering angle (Eq. (4)).

Lane width. The effect of lane width was examined using the
standard deviation of lateral position (SDLP) and speed.
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Fig. 2 Modelling the Driver’s Risk Field. a The ‘predicted path’ is calculated using the trajectory of vehicle kinematics, assuming constant steering angle
(δ) and speed (v) for a fixed look-ahead time (tla). b The DRF is modelled as a modified torus. Four steps are taken to form the DRF from (i) A torus that
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section.
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Lateral position: SDLP, which represents the swerving
behaviour of a car, is reported to increase with lane width, in a
simulator study by Godley et al.37. They examined the SDLPs of
participants on three different lane widths (2.5, 3.0, 3.6 m) (Fig. 4-
2b). Similar results are reported in other simulator38,39 and on-
road studies40 which are coherent with the predictions of the DRF
model (Fig. 4-2a). On a wider road, the DRF model has wider

areas of low cost and hence, can use a larger width of the road
without steering corrections (exhibit satisficing), resulting in
higher SDLP.

Speed: It is reported that the speed at which drivers negotiate
roads increases as the lane width increases, in simulator37,41–43

and on-road studies40,44. The DRF model also showed a similar
increase in speed with lane width (Fig. 4-2c) and is compared to
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the results from a (moving base) simulator study of Liu et al.42.
On a wider road, there is a larger area of ‘no risk’, which means
that the model can reach higher speeds before exceeding the risk
threshold.

On-road obstacles. Obstacle avoidance was simulated for the
DRF model by parking cars partially on the road, which led to a
temporary ‘narrowing’ of the street. The effect of this temporary
narrowing was examined by analysing the lateral deviation and
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Fig. 4 Validating the model in road scenarios using literature. Each row represents one scenario and the columns compare two different metrics in that
scenario. The DRF model results are compared to the results from literature (Supplementary Notes 1–8) in the adjacent subfigures (Supplementary Figures 3–6).
In the DRF model subfigures, the black and grey markers represent the sport and normal parameter settings, respectively. 1 Curve radius: 1a and 1b show that
the DRF model predicts the decrease in ‘curve-cutting’ (quantified using TTR) as curve radius increases. 1c and 1d show the speed at the curve centres. The
sport setting of DRF cuts the curves more (1a) and drives at higher speeds (1c) compared to the normal setting. 2 Lane width: 2b shows that the (mean ± SE)
standard deviation of lateral position (SDLP) of the vehicle increases as the lane width increases. The DRF model (2a) can predict this trend. 2c and 2d (mean ±
SD) show that the speed at which drivers negotiate a road increases as the lane width increases. 3 On-road obstacles: In 3b, the ‘wide’ obstacle encroaches
more onto the road compared to the ‘narrow’ obstacle. The minimum lateral deviation (3b) is calculated from the trajectories in 3a. Drivers moved away from
the parked cars (3c: lane centre=0, bars indicate 95% CIs). 3b shows that the DRF model showed a similar trend of moving away from the obstacle. Drivers
drove slower when there were parked cars, as compared to when there were no parked cars encroaching the road (3f: bars indicate 95% CIs). 3e shows that the
DRF model slows down for obstacles covering the road partially. 4 Roadside furniture: In the asymmetric case, the mean lateral deviation from the lane centre is
away from the parked cars (4b) and away from water (more dangerous than grass) in 4c. Subfigure 4c shows the distribution of lateral position of the
participants. 4e and 4f show that in the symmetric condition with ‘danger’ on both sides of the lane, the DRF model correctly predicted that the drivers drove
slower than in the asymmetric case. The mean lateral deviation (4b) and mean speed (4e) are calculated from the trajectories in 4a and 4d, respectively.
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speed of the ego vehicle. Several researchers have reported, in on-
road studies, that on-street parking induces ‘traffic calming’ by
reducing the average speed45–47. We selected the simulator study
of Edquist et al.48 because they measured the effect of on-street
parking on lateral position and speed.

Lateral deviation: Edquist et al.48 reported that the mean lateral
position of the vehicles shifted away from the parked cars (Fig. 4-
3c). The DRF model yields a similar trend, where the ego car
deviates away from the parked car (Fig. 4-3b).

Speed: A reduction in mean speed was reported in the presence
of parked cars (Fig. 4-3f)48, which is coherent with the behaviour
shown by the DRF model (Fig. 4-3e). It should be noted that
Edquist et al.48 reported the mean speed since they had a row of
parked cars. However, we had only one parked car, which means
we can only report the minimum speed. The DRF model
successfully avoided on-road obstacles by steering and braking.

Roadside furniture. Road shoulders, guard-rails, vegetation and
parked cars have been reported to affect a vehicle’s lateral posi-
tion and speed31,49. The DRF model was simulated in an
‘asymmetric’ case where a 200-m long row of cars was parked
outside the left lane boundary, and a ‘symmetric’ case where they
were parked outside both lane boundaries. Dunning et al.50

examined ‘asymmetric’ (with water (more risk) on one and grass
(less risk) on the other side of the lane boundary), and ‘sym-
metric’ (with water on both sides) conditions in their experiment.

Lateral position: Dunning et al.50 reported that the lateral
position of the participants shifted towards the less dangerous
grass in the asymmetric case and remained in the centre in the
symmetric case (Fig. 4-4c). Similar results are seen in the
behaviour of the DRF model, where the ego car moves away from
the parked cars (at lateral position=+2.75 m) and remains in the
centre of the lane in the symmetric case (Fig. 4-4b).

Speed: Dunning et al.50 reported that participants, on average,
drove slower in the symmetric case (Fig. 4-4f). The DRF model
also shows similar behaviour where the ego car drove faster in the
asymmetric case as compared to the symmetric case. This is
because in the asymmetric case, the DRF model steered away
from the ‘risky’ parked cars and could maintain a higher speed
without exceeding the risk threshold. In the symmetric case,
driving on the centreline was not enough to reduce the risk below
the threshold and hence the model had to slow down. In both
conditions, the sport setting drove faster than the normal setting
of the DRF model. The DRF model could react to roadside
furniture by steering and braking since the DRF spreads beyond
the lane boundaries.

Effect of traffic scenarios. We tested three traffic scenarios, namely:
car following, overtaking and interaction with oncoming cars.

Car following. We tested the effect of lead car speed on time
headway (THW) and braking intensity during car following. We
simulated ‘slow’ and ‘fast’ car following with lead cars that
maintained constant speeds of 12.5 and 15 m s−1, respectively.

THW: THW during car following represents the time available
to the driver of the following vehicle to reach the same level of
deceleration as the lead vehicle, in case the lead vehicle brakes.
Several studies in literature examined the effect of lead vehicle
speed on THW51–53 and reported that (for lead car speed above
10 m s−1) the preferred time headway under steady-state car
following (THWpref) is almost constant and independent of the
lead car speed. The DRF model also predicts an almost constant
THWpref (Fig. 5-1b). The DRF model, with the current parameter
values, behaved more conservatively (higher THWpref) than the

average human driver, as reported by He et al.53 in their on-road
study (Fig. 5-1c). In addition, the THWpref for the sport
parameterization was smaller than that for the normal para-
meterization of the DRF model. This concurs with the findings in
the literature, where sensation-seeking drivers were reported to
maintain lower THWpref compared to sensation avoiding
individuals52,54.

Braking intensity: Another aspect of car following that is
widely studied is the braking intensity of the car in response to
the separation to the lead car. In a test-track study, Van der
Horst55 reported that the braking intensity (deceleration at the
onset of braking) increased as the approach speed increased
(Fig. 5-1f), which corresponds to the DRF model’s results (Fig. 5-
1e). The study also reported that with ‘hard braking’ instruction,
participants’ braking intensity was higher than in normal braking
condition. The DRF model also predicts that a sport parameter
setting (black markers) will yield higher deceleration than the
normal setting (grey markers: Fig. 5-1e). The DRF model exhibits
this behaviour since the lead car encroached the DRF at a higher
rate when the approach speed was high and at a lower rate when
the approach speed was low. This ‘rate of encroachment’
translated into velocity reduction at a proportional rate.

Overtaking. We studied the effect of lead vehicle speed on
overtake-distance (distance covered during the overtaking man-
oeuvre) and on the TTC at which the overtaking manoeuvre is
initiated. To test the DRF model, we simulated a ‘flying overtake
manoeuvre’ in which there are no oncoming cars on the adjacent
lane. Figure 5-2a illustrates one of the major drawbacks of the
DRF model: it overtakes the car but does not return to its own
lane after the overtake. This is the drawback of using a cost-
threshold-based satisficing controller. Since the model perceives
the road to be twice as wide (ego+ overtaking lane), it comes
back (to its lane) just enough to bring the risk below its threshold
(satisficing). Secondly, the DRF model would not be able to
perform an ‘accelerative overtake’ since its speed is limited by the
Vdes parameter.

Overtake-distance: Crawford56 reported that the overtake-
distance increased with the speed of the overtaken car (Fig. 5-2c).
This corresponds to the DRF model’s behaviour, where the
overtake-distance was higher for the 10 m s−1 overtaken car than
for the 7.5 m s−1 overtaken car. In addition, note that the sport
setting of the DRF model had larger overtake-distances than the
normal setting.

TTC at overtake initiation: Several studies investigate time-to-
collision (TTC= ratio of relative distance to relative speed) at the
initiation of overtaking manoeuvres either to the lead car57 or with
the oncoming car58,59 (outside of the scope of our scenarios). The
on-road study by Chen et al.57 reported that the TTC at (start of)
lane change increased with the speed of the overtaken car (Fig. 5-
2f). Similar behaviour is shown by the DRF model, but more
interestingly, the sport setting of the DRF model maintained a lower
TTC than the normal setting. In a driving simulator study, Farah60

reported that young male drivers, generally considered sporty
drivers, had smaller TTCs at lane change than adults.

Oncoming traffic. We examined the effect of oncoming traffic’s
lateral position on the DRF model’s choice for speed and lateral
position. We simulated a narrow rural road with 2-m wide ego
and oncoming lanes, without any barrier in between. Lewis-Evans
and Charlton41 reported that on a two-lane rural road, drivers
drove more towards the road centre, in the absence of oncoming
traffic. The DRF model exhibits similar behaviour, with a bias
(≈50 cm) towards the road centre (Fig. 5-3b: ‘absent’ condition).
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The model shows this behaviour because the paved road to the
left (i.e., oncoming lane with no traffic) is less ‘dangerous’ than
the road boundary to the right.

Lateral position: Studies that investigated the effect of
oncoming traffic61–63 have reported that drivers’ lateral position
depends on the presence of oncoming vehicles in the adjacent

lane. Rasanen61, in an on-road study, compared driver’s lateral
position with and without oncoming traffic (Fig. 5-3c) and
reported behaviour similar to DRF model predictions, where the
lateral position moves away from the lane with oncoming traffic.
In addition, it moves even further when the oncoming car is offset
towards the lane position of the ego car (Fig. 5-3b).
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Fig. 5 Validating the model in traffic scenarios using literature. Similar to Fig. 4, each row represents one scenario and the two metrics in the two columns
compare the DRF model results to trends shown in the literature (Supplementary Notes 9–14). For the DRF model figures, the black and the grey markers
represent the sport and normal parameter settings, respectively (Supplementary Figs. 7–9). 1 Car following: 1b and 1c indicate that the preferred time headway is
independent of the speed. In 1c, the circular markers indicate the median and the whiskers indicate 25th and 75th percentile. 1e and 1f show that the braking
intensity (represented by the acceleration at brake initiation) increases as the approach speed to the obstacle increases. 2 Overtaking: 2b and 2c show that the
DRF model could correctly predict that the overtake-distance increases as the speed of the overtaken car increases. In the sport setting, the model covers larger
distance than in normal setting, indicating ‘smoother’ trajectories in the sport setting. However, the DRF model does not come back to its own lane sufficiently
(2a). Subfigures 2e and 2f show that the predictions of the DRF model agree with the results in literature that show the time to collision (TTC) at the start of the
overtake manoeuvre increases, as the speed of the overtaken car increases. 3 Oncoming traffic: In 3b and 3c, the minimum lateral deviation is shown on the y-
axis. The condition where no oncoming cars were present is indicated by ‘absent’. The DRF model simulated one car that drove on the oncoming lane’s centre
(‘centre’ in 3b) and another car that was offset towards the ego lane (‘offset’ in 3b). In normal and sport setting the DRF model moved away from the oncoming
traffic, which is in agreement with the driver’s behaviour. 3e and 3f show that the DRF model slowed down, like humans (3f), when it encountered oncoming
traffic. In 3c and 3f, the black markers indicate mean, and whiskers indicate the ±SD.
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Speed: The DRF model slowed down in the presence of
oncoming traffic, and slowed down more when the lateral
position of the oncoming car was offset towards the ego car
(Fig. 5-3e). Rasanen61 (Fig. 5-3f) reported no significant
difference in speed between the oncoming traffic ‘absent’ and
‘present’ conditions. However, Rosey et al.62 reported a significant
reduction in speed when drivers encountered oncoming vehicles.
Moreover, they also reported a significant decrease in speed while
encountering trucks as compared to cars62, which is in line with
the predictions of the DRF model.

Discussion
In this paper, we set out to find the underlying principle that
governs human-driving behaviour, implement this into a cost
function for an operational driver model, and evaluate the gen-
eralizability of the modelled behaviour across different traffic
scenarios by comparing it to adaptations in speed and lateral
position from available literature of real-world and driving
simulator studies.

One of the principles that emerged from qualitative driver
behaviour theories was ‘perceived risk’, However, to the best of
our knowledge, ‘perceived risk’ has not been quantified or used in
a driver model to generate human-like driving behaviour. In this
paper, we operationalized the ‘perceived risk’ by multiplying the
DRF (which accounts for the driver’s perception-action uncer-
tainty) with the cost map of the driving scene (which quantifies
the consequence of a hazard/event). This makes the cost function
‘uncertainty-aware’.

A driver’s ‘uncertainty-awareness’ is embedded in the DRF
model via four features. First, the DRF widens along the ‘pre-
dicted path’ and hence is wider than the car-width. Without this
feature, the DRF model would not slow down on a narrow road
(wider than car-width). Second, the DRF widens and elongates
with increasing speed. Without this, the DRF model would not
maintain constant time headways in car following or slow down

for curves. Third, the DRF widens with an increase in steering
angle. Without this feature, the DRF model would not slow down
more for curves with higher curvature than for curves with lower
curvature, and would negotiate all the curves at the same speed.
Fourth, the asymmetric widening of the DRF along the ‘predicted
path’ (generally k1 < k2) lets the model exhibit ‘curve-cutting’
behaviour. Without the asymmetric widening, the model would
always follow the lane centre.

Dealing with uncertainty in the ego-robot’s and the external
obstacles’ location has been widely studied64,65. Several models,
ranging from tentacle-like algorithms66 to Rapidly-exploring
Random Trees (RRT)67, have been proposed for trajectory and
speed planning. The methods that are closest to the cost function
proposed in this paper are based on uncertainty propagation68.
Most of these algorithms account for the first two points men-
tioned in the previous paragraph, namely: widening of the
uncertainty with predicted path and speed dependency of
uncertainty field. In addition, these algorithms account for the
uncertainty in predicting the future location of the obstacles. This
feature needs to be incorporated in the driving scene cost map of
future versions of the DRF model (Fig. 6d). However, algorithms
in the literature seldom incorporate the latter two features:
widening of uncertainty with steering and asymmetric uncer-
tainty propagation; hence, existing models cannot produce
‘curve-cutting’ and curvature-dependent speed negotiation,
behaviours that are seldom required in robotic applications. In
short, to generate human-like behaviour, the underlying cost
function has to be ‘uncertainty-aware’ and incorporate the
(motor-control inspired) effect of signal-dependent noise to
replicate the speed-accuracy trade-off that we see in driving
behaviour.

Implementing a satisficing controller in a potential field has its
drawbacks. The model did not return to its lane after overtaking
the lead car because it can sense hazard only from physical objects
(e.g., cars, road boundary) and cannot perceive the ‘tactical’ risk
of being in an oncoming lane. Other tactical risks, such as risks
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Fig. 6 Limitations of the model. a Tactical costs: The DRF model can only perceive physical risk from objects such as cars, trees, etc. However, it cannot
perceive the risk from oncoming traffic which is currently not in its field of view. Hence, at an intersection, rather than slowing down, it will speed up, since
there is larger road-area available, which is contrary to what a human would do. This can be solved by introducing additional ‘tactical costs’ that artificially
increase the risk of an intersection (red square). This approach can be extended to other elements such as traffic lights or zebra crossings. b Predicted
path: For simplicity, the DRF model currently uses a circular arc for predicting the path (for preview time tla seconds). This circular path arises due to the
assumption that the current steering angle (δ) and speed (v) will be held constant over the preview time. However, we can optimise for a vector of steering
angles and speed (as is done in a Model Predictive Control). This allows for a flexible DRF and better prediction of microscopic trajectories. c Surround
DRF: In this paper, the DRF only extends in front of the vehicle (top). However, the risk field extends on all four sides. The bottom image is merely a
suggestion, and the shape has not been investigated. This ‘surround DRF’ will help predict human-driving behaviour in additional scenarios such as: being
followed by another car, being overtaken, lane change manoeuvres, etc. d Uncertainty in dynamic obstacles: The DRF represents the driver’s (self)
perception-action uncertainty. However, the motion of dynamic obstacles is less predictable. This uncertainty was ignored in this paper, but will have to be
accounted for in future iterations of this model.
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that may occur when approaching an intersection or a red traffic
light, are not incorporated in the model either. However, the
structure of the model facilitates the addition of these ‘tactical’
costs to different road elements. Other limitations include the use
of car-kinematic model, using a circular arc for ‘predicted path’
calculations, and the DRF extending only in front of the ego car.
In future iterations, a car-dynamic model, a spline instead of a
circular arc (Fig. 6b), and a DRF that surrounds the vehicle on all
four sides (Fig. 6c) can help generate better microscopic trajec-
tories and generate behaviour in more scenarios (e.g., ego car
being overtaken).

Satisficing behaviour becomes important when developing
advanced driver assistance systems (ADAS) that physically
interact with the driver, e.g., the haptic shared controller (HSC)69,
which guides the driver via torques on the steering wheel. If the
HSC tries to follow a reference (e.g., the lane centre), it will exert a
torque and bring the driver to the centreline, even if the driver
was satisfied with an off-centre lateral position. To avoid these
undesired torques that can severely hamper the acceptance of the
system, we need threshold-based models that can exhibit satisfi-
cing behaviour.

An important contribution of this paper is the extensive
literature-based validation. Note that, in this paper, we do not
compare the trajectories of steering angle, speed and lateral
deviation, but assess the behaviour of the model by comparing
trends in certain metrics to those reported in the literature. Six
out of the seven scenarios were validated using on-road studies or
studies from driving simulators backed by on-road studies (only
simulator studies found for roadside furniture: Supplementary
Tables 1–8). In Fig. 4 (road scenarios), owing to the simplicity
and ‘static’ nature of road elements, there was abundant literature
and consensus amongst researchers as to which metric reflected
human behaviour (e.g., curve-cutting: TTR, lane width: SDLP). In
Fig. 5 (traffic scenarios), defining a metric that could capture
human-driving characteristics was more difficult, owing to
the complexity that arises due to its dynamic nature. Despite
these limitations, as the results show (Figs. 4 and 5), the strength
of the cost function (perceived risk) and the risk-threshold driver
model lies in the fact that they generate human-like behaviours in
different road and traffic conditions, including previously unseen
scenarios. Such a generalizable model in which the behaviour
emerges from an intrinsically motivated cost does not only pro-
vide understanding about human motivations for driving, but
also has applications in the design of automated systems. For
example, it could be used to make the automated vehicle drive in
a human-like manner, which is reported to be preferred by
humans4,63. Machine learning algorithms could use the ‘perceived
risk’ (cost function) as a feature that could be extracted from
demonstrated human-driving trajectories.

Our model has been developed for unassisted driving. However,
since its behaviour emerges from the underlying motivations for
driver adaptation, we hypothesise that it should be able to capture
driver adaptations to various driving support systems. For example,
drivers drove faster when their vehicle was equipped with lane-
keeping assistance based on HSC than in a car without this assis-
tance70. The DRF model should be able to predict this speeding
behaviour, since HSC essentially provides a ‘channel’ on the road
through which it guides the driver, reducing the driver’s perception-
action uncertainty. This would translate to a narrower DRF, which
allows a driver to drive faster before exceeding his/her risk threshold.
This thought experiment illustrates that a generalizable model in
which behaviour emerges from underlying cost functions, not only
predicts unassisted driver behaviour but also the effect of automated
and assistive technologies (on driver behaviour).

In short, maintaining the ‘consequence of the human’s
perception-actions noise’ under a threshold level seems to be the

underlying principle for driver’s adaptations in speed and lateral
position to a wide variety of road and traffic conditions.

Methods
Driver model control structure. This paper focuses on validating the DRF (the
dynamic field). However, to generate model predictions on human-driving beha-
viour, the risk metric calculated using the DRF needs to be connected to a con-
troller that converts the risk metric into control actions. We chose a simple control
algorithm over more complex ones for two reasons. First, we wanted to avoid the
ambiguity in attributing the driver model’s behaviour to the complex algorithm
instead of the DRF. Second, we wanted to avoid unnecessary complexity in for-
malising the optimisation problem. The DRF is an analytically calculable non-
linear function (of the driver’s states). However, since the environment is repre-
sented as a discretized (grid) cost map, the risk metric needs to be calculated
numerically. Moreover, we need a controller that maintains the cost below a certain
threshold and not one that minimises it. Hence, formulating the optimisation
problem with the necessary constraints would itself be a separate study and is
beyond the scope of this paper.

The basic control structure (Fig. 7a) includes a driver model that uses the
information from the environment and the feedback from the vehicle kinematics to
generate control actions (vk: speed, and δk: steering angle). The inner workings of the
driver model block are shown in Fig. 7b. The DRF is multiplied with the cost map of
the driving scene, and summed over all points to provide us with the quantified
perceived risk (cost). This cost is then used by the driver model algorithm, which is
based on the risk-threshold theory, to generate the control actions.

Driver model algorithm. The perceived risk (C), in combination with the risk
threshold (Ct) and desired speed (Vdes), is used to formulate the DRF Model. Vdes is
the speed at which the driver wants to drive on an open straight road, uninhibited.

In accordance to the risk-threshold theory, the model tries to maintain the risk
(C) below the risk threshold (Ct), and hence does not provide a specific trajectory,
but rather a range of safe trajectories (satisficing). To avoid the ‘bouncing’
behaviour exhibited by satisficing controllers (Supplementary Fig. 2), the DRF
model is complemented by a heading controller for the steering (Eq. (5)).

δkþ1 ¼ δk þ kh ϕroad � ϕcar
� �

; ð5Þ
where ϕroad and ϕcar are the heading of the road and car tlah seconds in the future,
respectively. The gain of the heading controller is kh. The predictions about the
future position and orientation of the car are made using the ‘predicted path’
calculations explained earlier in the ‘Results’ section.

The driver model algorithm (Fig. 7c), at each time step (k), compares the risk
(Ck) to risk threshold (Ct), and speed (v) to the goal (Vdes). This results in four
distinct cases of inequality. We do not consider the equality relations (e.g., if C=
Ct) because, practically they rarely occur.

(1) If (Ck < Ct and vk < Vdes): This condition generally occurs when you start the
journey. The model speeds up at a rate proportional to (Vdes− vk). The parameter
kv (specific for each driver) represents how aggressively the model accelerates. The
steering is determined by the heading controller (δhead). Hence, δk+1= δhead and
vkþ1 ¼ vk þ kv Vdes � vkð Þ.

(2) Else if (Ck > Ct and vk < Vdes): In this condition, the incurred risk is more
than the threshold (Ct), and the goal of desired speed has also not been achieved. In
this case, we first check if the steering alone can help the model reduce the risk
below the threshold. This check is performed by using the fmin_bound function,
which finds the steering angle δop (within the bounds of δk− 180∘ to δk+ 180∘) that
minimises the risk (Ck) assuming a speed of vk. It also calculates the risk (Cop) at
this δop.

(2a) If the model can find a δop such that Cop < Ct, then we continue to
accelerate (to achieve our goal) and steer using δopt that reduces Ck to Ct (and not
δop that reduces Ck to Cop). This is done so that the model does not ‘over correct’. If
we were to use δop to minimise Ck to Cop, it would always take the model to the lane
centre. Hence the model tries to apply a steering that is just enough to reduce the
risk (Ck) and get it below the threshold (Ct). Hence δk+1= δopt and
vkþ1 ¼ vk þ kv Vdes � vkð Þ.

(2b) If the model cannot find a δ such that Cop > Ct, then the model slows down
proportional to Cop− Ck (and not Cop− Ct) since the steering applied = δop is
expected to reduce Ck to Cop. This is done so that we do not slow down more than
what is required. Hence, δk+1= δop and vkþ1 ¼ vk þ kvcðCop � CkÞ.

(3) Else if (Ck < Ct and vk > Vdes): In this case the model slows down, while being
steered by the heading controller since the risk is lower than the threshold and
speed is higher than what is desired. Hence, δk+1= δhead and
vkþ1 ¼ vk þ kv Vdes � vkð Þ.

(4) Else if (Ck > Ct and vk > Vdes): In this case both the speed and risk are over
the desired limits and hence the model slows down while steering with δop that
minimises Ck. Hence δk+1= δop, and vkþ1 ¼ vk þ kvc Ct � Ckð Þ þ kv Vdes � vkð Þ.

Parameter estimation. The parameters of the DRF model were estimated from the
experimental data (n= 1; 10 trials normal, 10 trials sport driving). The experiment
was approved by the Human Research Ethics Committee (HREC)—TU Delft, and
a signed informed consent was obtained from the volunteer. The implementation
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of the track in a fixed base driving simulator is shown in the Supplementary
Video 1. Simulations of the DRF model in normal and sport parameter settings are
shown in Supplementary Videos 2 and 3.

The parameters can be segregated into three types: first, the DRF parameters
that determine the shape of DRF, and are specific to each person. Second, the
driver model parameters that connect the risk estimated by the DRF to the control
inputs of the vehicle. Third, the environment parameters that describe the
consequences of being in a particular state (position, velocity, etc.).

DRF parameters (Table 1): As explained in the ‘Results’ section, the six
parameters (p, tla, m, c, k1, k2) define the DRF. Parameter c, which represents the
initial width of the DRF can be directly calculated from the width of the ego car
(2.0 m). The remaining five parameters were estimated using the grid search
algorithm.

Driver model parameters (Table 2): The driver model parameters include the
speed controller gains (kvc, kv), the risk threshold (Ct), and the desired speed (Vdes).
Parameters Vdes and kv can be directly estimated by driving on a long straight
section of a wide road, where the driver reaches his/her unbounded desired speed
(Vdes) while accelerating (proportional to kv) from a standstill. kvc and Ct were
estimated using the grid search algorithm.

Environment parameters (Table 3): The environment parameters define the
consequence of being in a particular state (restricted to position, in this study).
These parameters are independent of the driver and hence are the same for
everyone. Personalised driving behaviour is obtained by changing the parameters

of the DRF and the driver model. In this paper, we assumed the cost (consequence)
of being in the ‘ego lane’ (Croad)= 0, and outside the lane boundary (Cenv)= 500.
The costs of all other objects in the environment were identified relative to Cenv.
Different objects have different costs; for example, a car in traffic may be assigned a
cost of 4000, and a roadside tree may be assigned a cost of 8000. However, since the
focus of this paper is to demonstrate the working of the model, and not identifying
the costs of different obstacles, all the obstacles in our simulation were identical: a
sedan (1.8-m wide and 5-m long). This ‘obstacle car’ traversed with different speeds
(for overtaking, oncoming and car-following scenarios), or was parked alongside
the road (for obstacle avoidance, asymmetric and symmetric road furniture). In all
these scenarios, the same cost (Cobs) was assigned to the car, as identified using the
grid search algorithm. The overtaking lane (Covt lane) was ‘modelled’ as rectangular
obstacles with a ‘very low cost’ (identified using grid search), while the oncoming

Table 1 Driver’s Risk Field parameters.

p tla m k1 k2 c

Normal and Sport 0.0064 3.5 0.001 0 1.3823 0.5

Table 2 Driver model parameters.

Ct Vdes kvc kv
Normal 3000 21.6 1.5 × 10−4 0.14
Sport 5200 26.0 1.5 × 10−4 0.30
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Fig. 7 Driver model. A simple driver model that utilises the estimated risk metric to generate control actions is shown. a Driver model control structure:
The driver model uses the cost map of the driving scene (information about the environment), and the vehicle states (position: xcar, ycar; heading: ϕcar; and
speed: (v) at kth time step to generate the steering angle (δ) and speed (v) for k+ 1th time step. b The zoomed-in driver model block: The DRF is a dynamic
field and changes its shape with vehicle state, which are inputs to the driver model block. The DRF is multiplied with the cost map of the driving scene and
summed over all grid points to generate the quantified perceived risk (cost function). The driver model algorithm uses the computed cost function, and the
vehicle states to generate the speed (v) and steering angle (δ) for next time step. The DRF model algorithm is based on the risk-threshold theory and
compares quantified perceived risk (C) with risk threshold (Ct). The DRF can be individualised based on DRF parameters while the driver model parameters
determine how the cost (perceived risk) is converted to control actions (speed and steering). c Driver model algorithm: At each time step (k), we compare
the risk (Ck) to risk threshold (Ct), and speed (vk) to the goal (Vdes). This results in four distinct cases of inequality.

Table 3 Driving scene parameters.

Croad Cenv Covt lane Ccar
Normal and sport 0 (assumed) 500 (assumed) 3.5 2500
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lane was assumed to be four times as dangerous (four times the cost) as the
overtaking lane.

The grid search algorithm tried to minimise
P3

i¼1 ðyimodel � yi experimentÞ2, where
i= 1: steering angle, i= 2: speed, i= 3: lateral deviation from the lane centre. All the
signals were a function of the distance travelled along the lane centre. Tables 1, 2 and
3 report the estimated parameter values for the ‘normal’ and ‘sport’ condition. It has
to be noted that, to personalise the DRF model to an individual, only seven
parameters need to be estimated (p, tla, m, c, k1, k2, kvc and Ct). DRF parameters
(Table 1) and the driving scene parameters (Table 3) were estimated only from the
‘normal’ condition and were used for ‘normal’ and ‘sport’ parameter setting of the
DRF driver model, since neither the driver nor the driving scene changed. Only the
task instruction had changed, due to which (we assume) that the manner in which the
driver translates his/her perceived risk into steering and speed-control action changes,
which is dictated by the driver model parameters (Table 2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The driving simulator experiment data, the simulation data that support the findings of
this study, and the source data for Figs. 3, 4 and 5 are available in the 4TU.Centre for
Research Data with the identifier (https://doi.org/10.4121/uuid:8132bccd-e900-4ba0-
942e-c3114502bda2).

Code availability
The DRF Model MATLAB code that supports the findings of this study and a MATLAB
GUI that helps explain the DRF are available in the 4TU.Centre for Research Data with
the identifiers: DRF model: https://doi.org/10.4121/uuid:ec0f2742-e665-4af9-bf37-
8fe1761a8a62 and DRF GUI: https://doi.org/10.4121/uuid:1230ca50-4120-47b2-b6de-
35d41c0a4d8a.
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