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Abstract: Titanium oxide (TiO2) has been widely used in many fields, such as photocatalysis,
photovoltaics, catalysis, and sensors, where its interaction with molecular H2 with TiO2 surface
plays an important role. However, the activation of hydrogen over rutile TiO2 surfaces has not been
systematically studied regarding the surface termination dependence. In this work, we use density
functional theory (PBE+U) to identify the pathways for two processes: the heterolytic dissociation
of H2 as a hydride–proton pair, and the subsequent H transfer from Ti to near O accompanied by
reduction of the Ti sites. Four stoichiometric surface orientations were considered: (001), (100),
(110), and (101). The lowest activation barriers are found for hydrogen dissociation on (001) and
(110), with energies of 0.56 eV and 0.50 eV, respectively. The highest activation barriers are found
on (100) and (101), with energies of 1.08 eV and 0.79 eV, respectively. For hydrogen transfer from
Ti to near O, the activation barriers are higher (from 1.40 to 1.86 eV). Our results indicate that the
dissociation step is kinetically more favorable than the H transfer process, although the latter is
thermodynamically more favorable. We discuss the implications in the stability of the hydride–proton
pair, and provide structures, electronic structure, vibrational analysis, and temperature effects to
characterize the reactivity of the four TiO2 orientations.
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1. Introduction

Titanium oxide (TiO2) has been widely used in numerous fields, from everyday applications (paint,
inks, toothpaste, makeup) to technological devices, such as dye-sensitized solar cells (DSSCs) [1,2],
photoelectrochemical cells [3], photocatalysts [4], catalysis [5,6], sensors [7,8], biomedical treatments [9],
lithium ion batteries [10], or photovoltaics [11,12]. The interaction of hydrogen with TiO2 surfaces plays
an important role in many reaction processes [13–20] and has been widely studied [21–27]. Despite
the high interest generated by hydrogen-titania interfaces, the nature of the species involved is still
poorly understood—protons are generally reported as being stable in hydrogenated rutile (110) [28],
atomic surface hydrogen has been found to prevent electron-hole recombination on an Au-TiO2

photocatalyst [14], and very recently hydride species have been characterized as being stable on its
surface [29,30]. In this work, we investigate the role of the surface termination in the H2 dissociation
and migration on rutile surfaces. We focus on the characterization of the stability of surface Ti-H
species formed by interaction with H2 and their subsequent transfer to neighboring oxygen sites in
order to provide a comprehensive picture of the adsorption, desorption, and diffusion mechanisms
occurring at H-TiO2 interfaces.

In recent years, H2 dissociation over metal oxides has attracted great interest [31–38]. Two main
mechanisms are proposed: homolytic and heterolytic dissociation [39]. It is widely thought that

Nanomaterials 2019, 9, 1199; doi:10.3390/nano9091199 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-6760-6176
https://orcid.org/0000-0003-0555-8938
http://www.mdpi.com/2079-4991/9/9/1199?type=check_update&version=1
http://dx.doi.org/10.3390/nano9091199
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 1199 2 of 17

non-reducible metal oxides follow the heterolytic pathway forming MH/OH pairs, while reducible
metal oxides proceed homolytically forming OH/OH pairs together with the metal site reduction.
However, in recent years deviations from this rule have been proposed to explain experimental
observations. Thus, García-Melchor et al. and Fernandez-Torre et al. reported that H2 dissociation on
CeO2 (111) follows a heterolytic path, with H being transferred from Ce to a neighboring O, generating
the homolytic product [34,40]. Chen and Pacchioni reported that on nanostructured MgO (001),
the dissociation pathway depends on the choice of the support—on MgO/Ag (001), the heterolytic
pathway is preferred, while with Au support, it follows the homolytic dissociation [31]. Very recently,
Liu et al. reported the surface characteristics of anatase TiO2 after reduction with H2. In their study,
they proposed that H2 can dissociate on oxygen vacancies—one H atom binds with a Ti to form the
Ti-H bond, whereas the other one bonds with O to form Ti–OH [41]. Moreover, Hu et al. reported H2

dissociation on three TiO2 polymorphs [35], which showed that homolytic activation barriers are all
high (1.48–1.68 eV), with rutile showing the highest activity.

It is well known that the surface properties strongly vary with different crystallographic
orientations, which can greatly affect their reactivity [42–46]. For rutile TiO2, the main exposed
low energy surface is the (110) surface, which is also the most studied [23,28,47–51]. There are also
other terminations of rutile TiO2 that are experimentally accessible, such as (100) facet [52–55], (001)
facet [56–62], (101) facet [8,60,63,64], and (011) facet [65–67]. Herein, we systematically study the
hydrogen dissociation over four rutile TiO2 facets (001), (100), (110), and (101) by using density
functional theorywith PBE+U(Perdew–Burke–Erzenhof functional with the Hubbard U correction).
We consider a two-step mechanism for H2 dissociation: first, heterolytic dissociation to form TiH/OH
pairs, and second, H transfer from Ti to O to form OH, accompanied by a two-electron transfer of the
hydride to the Ti sites. We provide the structures of the reaction intermediates, the energetic profile of
the two steps, the electronic structure of the systems involved, and the temperature effects to evaluate
the barriers at room temperature for stoichiometric slab models. Vibrational frequencies for TiH and
OH are also reported as a guide to identify relevant species on the different terminations.

2. Materials and Methods

Density functional theory (DFT) calculations were performed using the Vienna ab initio simulation
package (VASP) version 5.4.4 [68]. Projector-augmented wave (PAW) pseudopotential was used to describe
the core electron representation with 1, 4, and 6 valence electrons for H, Ti, and O, respectively [69,70].
The generalized gradient approximation (GGA) approach was used for the exchange and correlation
potential with the Perdew–Burke–Erzenhof (PBE) functional [71,72]. The GGA+U approach of Dudarev et al.
was used to treat the 3d orbital electrons of Ti with the effective Hubbard on-site Coulomb interaction
parameter (U’ = U− J) [73]. We chose U’ = 4 according to the proposed value from previous works [24,28,74],
referred herein as U. A 400 eV cutoff energy for the plane-wave basis set was found to correctly treat the
rutile surface [28]. The dissociation of hydrogen on rutile TiO2 surfaces was investigated in the 1 × 1 unit
cell for (001), (100), and (101) and in the 2 × 2 unit cell for the (110) surface. The open shell systems were
treated with spin polarized calculations. The energy convergence was set to 3.0 × 10−2 eV for the ionic
loop and 1.0 × 10−4 eV for the electronic loop. The slab models were cut from the optimized structure
of bulk rutile (Figure 1). A vacuum layer of 20 Å was employed. The slab thickness used is given in
Table 1. The lower-half layers of the slab were kept frozen and the upper-half layers were allowed to relax.
We used the Monkhorst−Pack scheme to sample the Brillouin zone, and the distance between each k-point
was 0.033 Å−1 [18,35]. The constrained minimization and climbing-image nudged elastic band (CI-NEB)
methods were used to locate transition states (TS) [75,76]. In this work, the minimum energy pathway
for each elementary reaction was discretized by a total of four images between the initial and final states.
The imaginary frequency of every transition state was checked to connect initial and final states. The zero
point energy (ZPE) vibration energy was calculated from vibrational frequencies as one-half of the sum of
real-valued harmonic vibrational frequencies [77].
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Figure 1. Side views of rutile TiO2 (001), (100), (110), and (101) surfaces. Note: Ti, blue; O, red. 

Table 1. Size, composition, layers, and coordination numbers of atomic surface. 

Surface (001) (100) (110) (101) 
Supercell 1 × 1 1 × 1 2 × 2 1 × 1 

Composition (TiO2 units) 8.00 8.00 32.00 8.00 

TiO2 layers (frozen/relaxed) 
8 

4/4 
8 

4/4 
4 

2/2 
8 

4/4 

Coordination  
O(2) 
Ti(4) 

O(2,3) 
Ti(5) 

O(2,3) 
Ti(5,6) 

O(2,3) 
Ti(4,5) 

Parameter: a, b in Å 
a = 4.661 
b = 4.661 

a = 4.661 
b = 2.962 

a = 6.018 
b = 13.096 

a = 5.522 
b = 4.661 

Automatic k-point = 1/30 Å−1  5 × 5 × 1 5 × 8 × 1 4 × 2 × 1 5 × 5 × 1 
Esurf (J nm−2) 1.30 0.73 0.55 1.07 

We also consider the effect of temperature by calculating the Gibbs free energy at room 
temperature (298 K); in the solid system, the pressure volume term pV can be ignored, thus: 

G(T) = H − TS = U + pV – TS ≈ U(T) – TS(T) (1) 

It is reasonable to only consider the vibrational contributions, therefore: 

U(T) = EDFT + EZPE + Uvib(T) (2) 

S(T) = Svib(T) (3) 

For vibrational spectra, the density-functional perturbation theory (DFPT) linear response 
approach was used [78,79]. The matrix of Born effective charges (BEC) is obtained and indicates the 
change of involved atom’s polarizabilities. The infrared intensity can be described as in the 
following formula containing Born effective charges and the eigenvectors ( )e sβ υ : 
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solids (PBESOL)), cut-off (300, 400, 500, 600, and 700 eV), choice of U (3, 4, 5, 6, and 7 eV), and the 
inclusion of dipole corrections were tested (see Supplementary Tables S1–S4 and Figures S7–S10). 
Although the numerical values are affected by computational settings, the trends between the 
different orientations are maintained. 

Dispersion effects were evaluated for the heterolytic path for the intermediates and TS1 (the 
latter as a single-point calculation) by means of dispersion corrections (Grimme D3) (zero) [80] and 
the results are displayed in Supplementary Table S7 and Figure S12. Dispersion corrections were 

Figure 1. Side views of rutile TiO2 (001), (100), (110), and (101) surfaces. Note: Ti, blue; O, red.

Table 1. Size, composition, layers, and coordination numbers of atomic surface.

Surface (001) (100) (110) (101)

Supercell 1 × 1 1 × 1 2 × 2 1 × 1

Composition (TiO2 units) 8.00 8.00 32.00 8.00

TiO2 layers (frozen/relaxed) 8 8 4 8
4/4 4/4 2/2 4/4

Coordination
O(2) O(2,3) O(2,3) O(2,3)
Ti(4) Ti(5) Ti(5,6) Ti(4,5)

Parameter: a, b in Å
a = 4.661 a = 4.661 a = 6.018 a = 5.522
b = 4.661 b = 2.962 b = 13.096 b = 4.661

Automatic k-point = 1/30 Å−1 5 × 5 × 1 5 × 8 × 1 4 × 2 × 1 5 × 5 × 1

Esurf (J nm−2) 1.30 0.73 0.55 1.07

We also consider the effect of temperature by calculating the Gibbs free energy at room temperature
(298 K); in the solid system, the pressure volume term pV can be ignored, thus:

G(T) = H − TS = U + pV − TS ≈ U(T) − TS(T) (1)

It is reasonable to only consider the vibrational contributions, therefore:

U(T) = EDFT + EZPE + Uvib(T) (2)

S(T) = Svib(T) (3)

For vibrational spectra, the density-functional perturbation theory (DFPT) linear response approach
was used [78,79]. The matrix of Born effective charges (BEC) is obtained and indicates the change of
involved atom’s polarizabilities. The infrared intensity can be described as in the following formula
containing Born effective charges and the eigenvectors eβ(s|υ ):

f (υ) =
∑
α

∣∣∣∣∣∣∣∣
∑
sβ

Z∗αβ (s)eβ(s|υ )

∣∣∣∣∣∣∣∣
2

(4)

where α and β are Cartesian polarization, eβ(s|υ ) indicates the normalized vibrational eigenvector,
and Z∗αβ indicates the effective charge tensor. To assess how the frequencies obtained depend on
the computational setting, the performance of four different density functionals (PBE, Local Density
Approximation (LDA), Perdew-Wang (PW91), Perdew-Burke-Ernzerhof revised for solids (PBESOL)),
cut-off (300, 400, 500, 600, and 700 eV), choice of U (3, 4, 5, 6, and 7 eV), and the inclusion of
dipole corrections were tested (see Supplementary Tables S1–S4 and Figures S7–S10). Although the
numerical values are affected by computational settings, the trends between the different orientations
are maintained.
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Dispersion effects were evaluated for the heterolytic path for the intermediates and TS1 (the latter
as a single-point calculation) by means of dispersion corrections (Grimme D3) (zero) [80] and the
results are displayed in Supplementary Table S7 and Figure S12. Dispersion corrections were found to
slightly stabilize adsorbates with respect to the non-corrected calculation and significantly decrease the
barriers. However, they did not significantly alter the trends of the terminations, nor the vibrational
frequencies (Supplementary Table S7 and Figure S12).

No dipole correction was used to account for the asymmetry of the slabs in the perpendicular
direction. As our work is mainly based on the comparison of terminations, and as all of them should
be affected in a similar manner by the spurious dipole, we do not expect it to have a significant impact
on the conclusions. As can be seen in Supplementary Table S6 and Figure S11, the inclusion of dipole
corrections did not have a significant effect in the vibrational frequencies.

Slab Model

We optimized the bulk TiO2 rutile unit cell obtaining values of a = b = 4.661 Å and c = 2.961 Å,
in agreement with experimental parameters of a = 4.593 Å and c = 2.958 Å [23]. The calculated lattice
parameters for bulk rutile TiO2 were overestimated by 1.46% for a and only 0.10% for c with respect to
the experimental value, and the optimized values were used to build the slab models.

The four rutile TiO2 surface (001), (100), (110), and (101) stoichiometric terminations are represented
in Figure 1 and the main structural parameters are reported in Table 1. As we can see, the facets (001)
and (110) are roughly flat, while (100) and (101) facets are uneven. On the surfaces, the coordination
number of titanium sites vary from 4 to 6(001) has only Ti4C; (101) possesses Ti4C and Ti5C; (100) has
only Ti5C; and (110) has Ti5C and Ti6C. Regarding oxygen, the surface coordination varies from two- to
three-fold—(001) has only O2C, while the other three exhibit O2C and O3C. The surface energy Esurf,
calculated as the difference in energy between the slab and the bulk divided by twice the area, follows
the trend of coordination—the lower the surface atomic coordination, the higher the surface energy.
Thus, (001), where Ti and O are poorly coordinated, shows Esurf 1.30 J nm−2, whereas (110), where the
atoms are more coordinated, shows Esurf 0.55 J nm−2.

3. Results and Discussion

3.1. H2 Dissociation

Firstly we investigated the heterolytic pathway for H2 dissociation on the four selected rutile TiO2

selected. In the first step, the H2 molecule physisorbs on the surface forming the adduct H2*. Then,
the heterolytic H2 dissociation takes place between the Ti site and a neighboring O atom through a
transition structure (TS1), generating a pair of O−H and Ti−H bonds (H+-H− species). The second step
involves the transfer of the hydride (H−) on the Ti site to a nearby O, leading to 2 O-H hydroxyl groups
(H+-H+) and a two-electron transfer to surface titanium sites that become reduced. The transition
state associated with this step is labeled as TS2. The reaction pathway involving these two steps is
schematized in Figure 2, and the calculated energies are reported in Table 2. The energy profile of H2

dissociation over the four surfaces is shown in Figure 3.
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pathway of H2 over TiO2 surface (step 1) and sequential H transfer from Ti to near O (step 2). Ti, O,
and H atoms are depicted by blue, red, and white spheres, respectively.
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Table 2. Reaction energy (∆E), dissociation activation energy (E f orw
act ), and backward activation energies

(Eback
act eV) for step 1, and the H transfer barrier of step 2 (Eact2). Values in brackets are energies without

U correction (see below and Supplementary Information). All energies are referred to the physisorbed
TiO2-H2 system. * indicates adsorption state.

(001) (100) (110) (101)

H2 * 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
TS1 0.56 (0.63) 1.08 (1.15) 0.50 (0.70) 0.79 (1.10)

(H+-H−) −0.08 (0.15) 0.68 (0.98) 0.12 (0.50) −0.08 (0.28)
TS2 1.78 (1.98) 2.38 (2.52) 1.80 (1.86) 1.22 (1.50)

(H+-H+) −0.61 (0.03) 0.15 (0.78) −1.32 (−0.79) −1.56 (−0.22)
∆E1 −0.08 (0.15) 0.68 (0.98) 0.12 (0.68) −0.08 (0.28)

E f orw
act

0.56 (0.63) 1.08 (1.15) 0.50 (0.70) 0.79 (1.10)
Eback

act 0.64 (0.48) 0.40 (0.17) 0.38 (0.20) 0.87 (0.82)
∆E2 −0.53 (−0.12) −0.53 (−0.20) −1.44 (−1.47) −1.48 (−0.50)
Eact2 1.86 (1.83) 1.70 (1.54) 1.68 (1.18) 1.40 (1.22)
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surface sites. For the heterolytic step, on (001) there is a unique possible pathway with only one 
kind of O2c site and one Ti4c site on the surface. On (100), besides the pathway reported in 
Supplementary Figure S1, there is also one additional combination of Ti5C and O2C sites 
(Supplementary Figure S6a), in which the direction of the OH bond is almost perpendicular to the 
direction of the TiH bond, which makes this combination less stable than the one selected. For (101), 
two other possible structures involving Ti5C and O2C (Supplementary Figure S6b) and Ti4C and O3C 
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Ti4C, Ti5C, and O2C upon hydrogenation, and in some cases the formation of hydrogen bonds. 

Figure 3. The energy profile of hydrogen dissociation and H transfer from Ti to near O on four rutile
TiO2 surfaces, namely (001), (100), (101), and (110). Inset images show the pathway (side view and top
view) on TiO2 (001); the three other pathways are depicted in Supplementary Figures S1–S3. The bond
distance is in Å.

Here, all adsorption energies are referred to the energy of physisorbed TiO2-H2. The path for the
TiO2 (001) surface is illustrated, and those corresponding to the other three terminations are provided
in Supplementary Figures S1–S3. Several pathways were considered involving different surface sites.
For the heterolytic step, on (001) there is a unique possible pathway with only one kind of O2c site
and one Ti4c site on the surface. On (100), besides the pathway reported in Supplementary Figure S1,
there is also one additional combination of Ti5C and O2C sites (Supplementary Figure S6a), in which the
direction of the OH bond is almost perpendicular to the direction of the TiH bond, which makes this
combination less stable than the one selected. For (101), two other possible structures involving Ti5C

and O2C (Supplementary Figure S6b) and Ti4C and O3C (Supplementary Figure S6c) resulted in less
stable systems than the one retained. The model structures retained are stabilized as a consequence
of the saturation of poorly coordinated sites of Ti4C, Ti5C, and O2C upon hydrogenation, and in some
cases the formation of hydrogen bonds.



Nanomaterials 2019, 9, 1199 6 of 17

The stability of the (H+, H−) intermediate is slightly exothermic for the (001) and (101) terminations
(−0.08 eV), whereas it is slightly endothermic for the (110) by 0.12 eV, and for the (100) by 0.68 eV.
Hydrogen bonds between TiH and OH species form in all the terminations except (101). Whereas the
terminations showing the poorest coordination exhibit the most exothermic adsorption energy for
the (H+, H−) intermediate, the most highly coordinated slabs show less exothermic values. However,
the most highly coordinated (110) slab exhibits a significantly lower adsorption energy than (100).
The activation barriers of heterolytic H2 dissociation on the four TiO2 surfaces follow the trend (110)
0.50 eV < (001) 0.56 eV < (101) 0.79 eV < (100) 1.08 eV. As for the adsorption energy, a trend appears
between coordination and kinetic barriers for (001), (101), and (100), whereas (110) presents lower
values than expected (its higher coordination should lead to the most endothermic values). Our results
are consistent with previous studies. For the (001) surface, our activation energy (0.56 eV) is consistent
with the one reported previously (0.68 eV) [14]. The difference comes from the use of a different
Hubbard parameter (U = 7 eV) and unit cell (2 × 1). Our activation energy for the (110) surface, 0.50 eV,
is larger than the 0.37 eV reported for a much narrower slab (3-TiO2-layer thick slab model [34]),
highlighting the important role of slab thickness in the construction of a model.

According to our results, the (H+, H−) intermediate is more likely to be formed on (001) and
(101) terminations, however the poor stability and the low barriers could induce the inverse reaction,
i.e., the recombination and desorption as H2 (see below). These results suggest that the rutile TiO2

(001) exhibits the most likely H2 heterolytic dissociation path in the series, with the lowest activation
energy and a slight stabilization of the product. This specific reactivity could be associated with the
low coordination of the surface titanium site—the four-fold coordinated Ti site in the (001) termination
stabilizes the hydride Ti-H species to increase the number of neighbors. In the transition structure 1
(TS1) displayed in Figure 3, the Ti-H distance is 1.93 Å (1.74 Å in the intermediate), and the species
appears in interaction with the OH group (H-H distance of 1.17 Å) with an imaginary frequency of
992.39 cm−1. The charge density difference analysis shows that there exists a tight ion pair in TS1
where the H on Ti gains electronic density and the H on O is deprived, forming a H+-H− pair (Figure 4).
This is consistent with a moderate polarization of the H2 moiety, as shown in the Bader analysis
discussed below. In this TS1 structure, the four atoms involved Ti-H . . . H-O are coplanar.
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Figure 4. Charge density difference of transition state 1(TS1)illustrating the formation of the Hδ+-Hδ−

tight ion pair on the (001) surface. Yellow and green iso-surfaces show an electronic density gain and
depletion, respectively.

For the other three facets, similar structures are found for TS1 involving coplanar Ti-H . . . O-H
geometries. For the (100) termination, the transition state of this dissociation process shows −1106.91
cm−1 Ti-H vibration mode, with 1.83 Å for Ti−H and 1.10 Å for the H-H distance. For the (110) and
(101) facets, the Ti-H vibration modes are −704.20 cm−1 and −1289.80 cm−1, respectively. The Ti-H
bond distances are both 1.95 Å, and the O-H distances are 1.22 Å and 1.33 Å, respectively.
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The second step in the mechanism is the transfer of the H− on the Ti site to the nearest
two-fold-coordinated O site, finally yielding two hydroxyls on the surface and a reduction of the Ti sites.
The final products (H+-H+) are thermodynamically the most stable ones in the path: (001) −0.61 eV,
(110) −1.56 eV, (101) −1.09 eV, and (100) 0.15 eV. H-bonds are formed in some of the structures, which
results in larger stabilization. In the cases of (001) and (100), the final products involve a rearrangement
of the surface bonds—a Ti-O-Ti breaks to form a Ti-OH moiety. The activation barriers are significantly
higher than for the first step, ranging from 1.30 to 1.80 eV. These results indicate an unfavorable
evolution to the homolytic product from the heterolytic intermediate. Thus, the hydride TiH species
could be kinetically stabilized on TiO2 surfaces with a possible recombination to regenerate and desorb
H2 at low temperatures, whereas the reduction step would require much higher energies to occur.
Nevertheless, the most thermodynamically stable product is found for step 2 and involves the presence
of two hydroxyl groups and two Ti3+ sites; the latter originate from the electron transfer from the
hydride to two titanium sites. This transfer results in open-shell systems that can be characterized by
the presence of two unpaired electrons.

We have looked for correlations between adsorption energy, barrier heights, and geometry
(TiH, HH, and OH distances), as well as Bader charges in TSs, and our results indicate no clear
relationship. This is very interesting, as for CeO2 those correlations do appear [81]. This might point to
an ionocovalent character of Ti-O bond compared to the more ionic Ce-O bond, which would facilitate
the formation of the H+-H− ionic pair, or to the important role of the local topology in stabilizing
intermediates and transition structures. As a general trend, the activation barriers seem related to the
coordination numbers of Ti and O on the surfaces, with the (110) termination behaving in a different
way than is expected from its highly coordinated surface sites.

3.2. Electronic Structure

In order to characterize in more detail the electronic structure of the structures involved in the
hydrogenation mechanisms, we have computed the density of states (DOS); Figure 5 and Supplementary
Figure S4) for step 1 and step 2 of the four terminations considered. As unpaired electrons are involved,
especially in H transfer process step 2, spin up and spin down are represented. The features of these
four facets are similar and only the (001) and (100) facets are displayed in Figure 5. The other two facets
are shown in Supplementary Figure S4. At the bottom of the plot a hydrogen molecular band appears
as a sharp narrow peak in the valence region due to H2 physical adsorption. In TS1, we observe a
splitting in two bands associated with H+ and H− species that overlap with the slab levels. For the
product of heterolytic dissociation (H+-H−), the H− band is the highest occupied energy level, with a
sharp peak at the Fermi level. For the TS2 of subsequent H transfer from Ti to nearby O, there still exists
one H+ band and one H− band, but the intensity decreases. The existence of wide, weak peaks in the
gap indicates an early reduction of the Ti site in TS2 on (100) and (110) facets, while no corresponding
peak appears on (001) and (101). For the H transfer process product (H+-H+) species, we observe the
H+ levels corresponding to OH groups in O-H bonds in the valence band, which appear as two distinct
peaks if they correspond to inequivalent hydroxyl groups. Also, Ti states appear in the gap below
the Fermi level, indicating the reduction of the Ti sites. This is consistent with the picture of the spin
density plots (Figure 6 and Supplementary Figure S5), indicating that the unpaired electrons from the
hydride transfer are trapped by two Ti ions that get reduced, confirming the nature of Ti3+ sites. Note
that the approach used in the present work does not allow one to state unambiguously which Ti sites
are reduced—it only confirms qualitatively that two distinct Ti sites are involved.

Bader charge analysis [82] was carried out to complement the characterization of the electronic
structure of the systems studied. In Table 3, we can follow the electronic charges during the two
processes, whereas Table 4 shows the Bader analysis for the spin density. In step 1, the adsorbed
hydrogen species shows a slightly polarized H-H bond. In TS1, the H-H bond is more polarized,
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generating a tight ion pair with charges in the range 0.35-0.48 |e| for the H+ and −0.31 to −0.41 |e| for the
H− species. The intermediate (H+, H−) species is characterized by charges in the range 0.65–0.70 |e| and
−0.30 to −0.41 |e| for H+ and H−, respectively. Moreover, the oxygen involved in this hydrogen transfer
process shows electron gain of about +0.15–0.30|e| compared to the same O in the slab. The Bader
charge of the products (H+-H+) show values from 1.78 to 1.87 |e| for the surface Ti sites carrying
the electrons. Actually, based on our spin density results (see Figure 6, Supplementary Figure S5
and Table 4) two Ti are reduced for every facet. For the TS2, one of the Ti on the surface partially
decreases its positive charge, indicating partial reduction. Finally, in the H+-H+ species the two H
are characterized as protons, whereas two Ti sites decrease their positive charge, indicating that they
host the reduction electrons, and the integrated spin density varies from 0.90 to 1.05 |e| (See Table 4).
It is worth stating that the O site involved in the H transfer process also contains a small amount of
unpaired electrons of 0.24 |e| for TS2 of both (001) and (101) facets, as can be seen in Figure 6 for the
(001) case.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 18 
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Figure 5. Total and projected densities of state (PDOS) of the TiO2 slab, *H2, TS, *(H+, H−), and
*(H+-H+) for the (001) (left) and (100) (right) surfaces. For the PDOS, only the Ti and O involved in
the two processes are projected. Positive density of states (DOS) correspond to spin up and negative to
spin down.
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Table 3. Bader charges (|e|) of H and involved Ti and Oa in the H2 dissociation process, and involved
H, Ti, and Ob in subsequent H transfer from Ti to O process for H2 *, TS and (H+-H−), and (H+-H+).
For step 1, the O involved was labeled Oa, and Ob in step 2.

qTi+

/qO−
qH+/qH−

qTi+/qOa−
qH+/qH−

qTi+/qOb
−

qH+/qH+

/qTi+/qOb
−

Slab H2 * TS1 (H+-H−)-Oa (H+-H−)-Ob TS2 (H+-H+)

(001) 1.98/−1.00 0.02/−0.01
/1.98/−1.00

0.48/−0.41
/1.97/−1.02

0.67/−0.42
/1.95/−1.22

0.67/−0.42
/1.95/−0.98

0.63/−0.10
/1.90/−0.97

0.65/0.61
/1.79/−1.26

(100) 2.03/−1.07 0.04/−0.02
/2.01/−1.07

0.43/−0.32
/1.96/−1.12

0.65/−0.30
/1.90/−1.24

0.65/−0.30
/1.90/−0.98

0.64/−0.01
/1.77/−1.10

0.60/0.60
/1.78/−1.27

(110) 2.01/−0.90 0.04/−0.02
/2.04/−0.92

0.35/−0.31
/2.01/−0.97

0.70/−0.34
/1.93/−1.22

0.70/−0.34
/1.93/−0.91

0.67/0.00
/1.95/−0.92

0.64/0.62
/1.87/−1.15

(101) 1.99/−0.96 0.04/−0.03
/1.98/−0.96

0.38/−0.40
/1.97/−1.03

0.67/−0.40
/1.96/−1.20

0.67/−0.40
/1.96/−0.93

0.60/−0.10
/1.90/−1.25

0.60/0.66
/1.83/−1.30

Table 4. The number of unpaired electrons of TS2 and (H+-H+) species. Only involved atoms are shown.

Slab (001) (100) (110) (101) Slab (001) (100) (110)

Species TS2 (H+-H+) TS2 (H+-H+) TS2 (H+-H+) TS2 (H+-H+)

Total 1.70 2.00 1.90 2.00 1.92 2.00 1.70 2.00
Ti 0.80 0.97 0.99 0.91 0.24 0.90 0.80 0.99
Ti 0.16 1.00 0.11 1.05 0.24 0.90 0.16 0.99
O 0.24 0.00 0.02 0.00 0.00 0.00 0.24 0.00

H1 0.44 0.00 0.87 0.00 0.97 0.00 0.44 0.00
H2 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00

3.3. Effect of the Hubbard Correction U

The values without U correction were considered to analyze the effect of U in the energetic profile,
which is reported in Table 2. The profile is similar to the one obtained for U = 4 eV (see Figure 7 for the
(001) case and Supplementary Materials for the others). In step 1, the heterolytic dissociation leads to
(H+-H−) products stable at 0.15 eV (001), 0.28 eV (101), 0.98 eV (101), and 0.50 eV (110), and barriers of
0.63 eV, 1.10 eV, and 1.15 eV, 0.70 eV, respectively, which is ~0.20 eV higher in energy than for the U
= 4 eV case (Table 2, Figure 3). The increase in the values is significantly higher in step 2, where the
(H+-H+) product is higher in energy by ~0.60 eV in the absence of U correction, and is associated with
the stabilization of the localized solution favored by the U = 4 eV term with respect to the U = 0 eV
case. In general, the activation barriers are not significantly affected by the U value, with the exception
of (110) and (100) in step 1 (formation of H+-H−), where the U = 0 eV leads to a TS1 very close in
energy to the H+-H− intermediate. The backward reaction i.e., recombination desorption of H2, would
thus be barrierless and the intermediate would not be stable at all. The overall profile and the trend of
the activity for H2 dissociation and subsequent H transfer for the four TiO2 surfaces is maintained.
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3.4. Vibrational Spectrum

We computed the vibration frequency and IR spectra of H2 heterolytic dissociation products
(H+-H−) for the four terminations. No scaling factor was applied. The vibration modes are shown
in Table 5 and Figure 8, and present three main regions: Ti−H and O−H bending modes at low
frequencies (below 1000 cm−1); the vibration frequencies of Ti−H lie in the range of 1500–1800 cm−1;
the stretching OH modes are characterized by higher frequencies (between 2900 cm−1 and 3800 cm−1).
Ti−H stretching modes of the four species are seen in the calculated spectrum at 1644 cm −1 (001),
1768 cm−1 (100), 1653 cm−1 (110), and 1577 cm−1 (101), corresponding to the expected Ti−H IR spectral
region (around 1600 cm−1) [83].The hydrides of (001) and (101) facets are Ti4C-H, while they are Ti5c-H
on (100) and (110) surfaces, as displayed in Figure 9. Previous studies using electron-stimulated
desorption (ESD) [84] and low-energy ion scattering (LEIS) [85] reported that the annealed TiO2 surface
is compensated by H, which is bonded in the Ti−H as well as O−H with bridging O or a subsurface,
but no specific frequencies were provided. Recently, Yan et.al indicated the formation of Ti-H species
on the P25 TiO2 surface [86].

Table 5. Computed IR wavenumbers (cm−1) and intensities (in brackets) of Ti−H and O−H stretching
modes of (H+, H−) species for the four terminations studied.

Stretching Modes (001) (100) (110) (101)

(Ti-H) 1644.78 (0.39) 1768.74 (0.52) 1653.87 (0.32) 1577.45 (0.76)
(O-H) 3742.87 (0.05) 2976.54 (1.56) 3606.59 (0.22) 3622.37 (0.44)
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For the (O-H) vibrations, there are many experimental reports by various authors (see selected
ones in Supplementary Table S5), showing that the vibrations can be greatly influenced by the nature of
the site, the surface topology, the presence of defects and coverage [87], as well as the polymorph [88].
In the present work, we perform an analysis of OH vibrations for the four terminations considered
(see Table 5, Figure 9) as a guide for qualitative assignment. It is found that the OH stretching vibrations
are different between these four facets. The calculated IR results of TiO2 (100) surface (2976.54 cm−1)
correspond to a Ti5C-O3CH exhibiting an H bond with one O site nearby. An experimental value
of 3550 cm−1 for OH on (100) [89] was reported for the adsorption of water on the surface, most
likely assigned to terminal hydroxyl groups. Our value is consistent with a higher coordination
of the hydroxyl group (three-fold in our case), as well as with the presence of a hydrogen bond,
both blue-shifting the vibration with respect to the experimental value. For the TiO2 (101) surface
(3622.37 cm−1) it corresponds to a Ti4C-O2CH. Experimentally, the OH stretching vibrations from water
adsorption are observed at 3680 and 3610 cm−1 [89]. For the TiO2 (110) surface (3606.59 cm−1) the
vibration corresponds to Ti6C-O2CH, which is lower than in a previous theoretical study by Wöll
(3700 cm−1) [90]. Note that the model used in the work of Wöll et al. involves a hydroxyl perpendicular
to the slab, whereas in our work the hydroxyl is tilted. Other experimental works report 3665 and
3690 cm−1 measured by High-Resolution Electron Energy Loss Spectroscopy (HREELS) [91,92], and
3711 cm−1 by IR [93] on systems obtained by H2O adsorption on a clean single-crystal TiO2 surface.

As a general remark, the lack of experimental data in well-controlled structures and conditions
make an assessment of the vibrational spectra of surface hydroxyl and hydride species difficult,
although several trends can be observed. First, the vibrations are dependent on the surface topology
due to specific local chemical environments. Second, the coordination of oxygen and titanium sites
seems to play a role, as well as hydrogen bonds formed between TiH/OH pairs and neighboring O
sites. Overall, our results are consistent with previous experimental and theoretical data published
in the literature and provide a set of spectra to stimulate the search of TiH/OH species on different
rutile terminations.

3.5. The H2 Recombination-Desorption Reaction

We studied the energy barriers for hydride TiH/OH species recombination to regenerate and
desorb H2 on four facets (Figure 10, Table 2). The corresponding barrier for that process, Eback

act , requires
0.64 eV for (001), 0.87 eV for (101), 0.38 eV for the (110), and 0.40 eV for the (100) slabs. The backward
activation energies for the facets (001) and (101) are larger than those found for facets (110) and (100),
probably due to the higher stability of the (H+-H−) species. Contrary to the dissociation process,
the desorption of H2 is slightly endothermic for the (001) and (101) terminations (0.08 eV), whereas
it is exothermic for the (110) by −0.12 eV, and for the (100) by −0.68 eV. On (101) and (001) facets,
hydrogen dissociation, and therefore (H+-H−) formation, is slightly more favorable than H2 desorption:
0.79 eV vs. 0.56 eV for (101), 0.87 eV vs. 0.64 eV for (001). H2 dissociation and desorption occur with
similar barriers on (110), with 0.50 eV and 0.40 eV, respectively. Thus, it is expected that the (H+-H−)
intermediate involving Ti-H species is more likely to be observed in (001), and to a lesser extent (101),
where the (100) and (110) would lead to recombination and desorption.
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3.6. Zero-Point Energy Correction and Effect of Temperature

The energy profiles with Zero Point Energy (ZPE) correction are also studied together with
the Gibbs free energies for T = 298 K (Figure 11). With ZPE correction, the energy for these two
steps increases, while it does not affect the kinetic barriers. Temperature has almost no effect on this
reaction profile.
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As a final remark, many other factors may have a deep influence on the behavior of TiO2 regarding
hydrogenation—the presence of surface and subsurface defects [94], the nature of the bulk phase [95],
nanostructuring [96,97], interfacial water [98], or reduction [99]. More fundamental works to elucidate
the structure of hydrogenated surfaces are needed to build a robust scenario for the complex behavior
observed [100].

4. Conclusions

The mechanisms of H2 dissociation on four different rutile TiO2 facets by means of density
functional theory (PBE+U) calculations have been investigated. The results showed that the topology
of the surface has a moderate effect on H2 dissociation on TiO2 kinetically and also thermodynamically.
We found that for all four surfaces, the heterolytic dissociation pathway towards hydride–hydroxyl
surface pairs is kinetically more favorable than the H transfer process towards substrate reduction,
although the reduction product, with only surface hydroxyl groups, is thermodynamically more
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favorable. On (110) and (100), the hydride–hydroxyl pair formed can recombine and desorb as
molecular dihydrogen, whereas the (001), and to a lesser extent (101), stabilize the hydride–hydroxyl
pair. The energetics of the reaction seems related to the coordination numbers of Ti and O on the surfaces,
although (110) shows a specific behavior. No clear trend relating adsorption energies and barriers
with local geometry or charges was found. The electronic structure analysis allows characterization of
charge and electron transfers. The IR spectra of the (H+-H−) pair species were also computed indicating
the vibrational region of Ti-H species on TiO2 facets in the range of 1550–1750 cm−1. The frequencies
are found to depend on the facet exposed and could be used as a qualitative guideline to identify
them experimentally.
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