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Introduction: Depression is a common, though heterogenous, comorbidity in late-
onset Alzheimer’s Disease (LOAD) patients. In addition, individuals with depression
are at greater risk to develop LOAD. In previous work, we demonstrated shared
genetic etiology between depression and LOAD. Collectively, these previous studies
suggested interactions between depression and LOAD. However, the underpinning
genetic heterogeneity of depression co-occurrence with LOAD, and the various genetic
etiologies predisposing depression in LOAD, are largely unknown.

Methods: Major Depressive Disorder (MDD) genome-wide association study (GWAS)
summary statistics were used to create polygenic risk scores (PRS). The Religious
Orders Society and Rush Memory and Aging Project (ROSMAP, n = 1,708) and National
Alzheimer’s Coordinating Center (NACC, n = 10,256) datasets served as discovery and
validation cohorts, respectively, to assess the PRS performance in predicting depression
onset in LOAD patients.

Results: The PRS showed marginal results in standalone models for predicting
depression onset in both ROSMAP (AUC = 0.540) and NACC (AUC = 0.527). Full
models, with baseline age, sex, education, and APOEε4 allele count, showed improved
prediction of depression onset (ROSMAP AUC: 0.606, NACC AUC: 0.581). In time-
to-event analysis, standalone PRS models showed significant effects in ROSMAP
(P = 0.0051), but not in NACC cohort. Full models showed significant performance
in predicting depression in LOAD for both datasets (P < 0.001 for all).

Conclusion: This study provided new insights into the genetic factors contributing to
depression onset in LOAD and advanced our knowledge of the genetics underlying the
heterogeneity of depression in LOAD. The developed PRS accurately predicted LOAD
patients with depressive symptoms, thus, has clinical implications including, diagnosis
of LOAD patients at high-risk to develop depression for early anti-depressant treatment.

Keywords: polygenic risk scores, depression, late-onset Alzheimer’s disease, neuropsychiatric symptoms,
heterogeneity, major depressive disorder
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INTRODUCTION

Neuropsychiatric symptoms (NPS) are common in Late-onset
Alzheimer’s Disease (LOAD), characterized by heterogeneity
with highly variable onset duration and severity. Amongst
LOAD with comorbid NPS, depression and anxiety are the most
prevalent (Lyketsos et al., 2011; Lyketsos, 2015; Zhao et al., 2016;
Hallikainen et al., 2018; Banning et al., 2021). Furthermore,
individuals with depression are at greater risk to develop
LOAD, suggesting that treating depression may delay LOAD
(Lyketsos et al., 2011; Lutz et al., 2020). In addition, distinct
trajectories of increasing risk of depression were associated
with LOAD pathology such as, lower cerebrospinal fluid (CSF)
Aβ42 and higher CSF total and phosphorylated tau, highlighting
the heterogeneity of depression within LOAD (Banning et al.,
2021). Interestingly, we previously identified shared genetic
etiology between LOAD and major depressive disorder (MDD)
(Lutz et al., 2020). Moreover, several groups have investigated
the mechanisms underlying the genetic interaction between
depression and dementia (Chi et al., 2014; Brzezińska et al., 2020).
Their findings implicated genes regulating the inflammatory and
immune responses, and genes in the endocytosis pathway in
both depression and LOAD (Chi et al., 2014; Lutz et al., 2020).
Noteworthy, APOEε4, known as the strongest genetic risk factor
for LOAD, has been associated with increased risk for depression
in several studies (Geda et al., 2006; Chi et al., 2014; Feng et al.,
2015; Wang et al., 2019). Collectively, this evidence lends support
for inter-relationships between LOAD and depression disorders
(Lutz et al., 2020).

Polygenic risk scores (PRS) offer a method to explore such
relationships that may exist between LOAD and depression. The
current LOAD polygenic risk scores (PRS) landscape focuses on
predicting LOAD diagnosis (Escott-Price et al., 2015, 2017, 2019;
Tasaki et al., 2018; Leonenko et al., 2019; Altmann et al., 2020),
with a few studies applying pathway and functional analysis to
the selection of SNPs for PRS calculation (Darst et al., 2017;
Tesi et al., 2020). LOAD PRS have been tested to predict mild
cognitive impairment (MCI) to LOAD progression (Leonenko
et al., 2019; Altmann et al., 2020; Daunt et al., 2021). Additionally,
studies have tested PRS association with LOAD phenotypes in
CSF biomarkers (Darst et al., 2017; Tasaki et al., 2018; Leonenko
et al., 2019; Altmann et al., 2020; Tesi et al., 2020; Daunt et al.,
2021; Zettergren et al., 2021) and motor-function impairment
(Tasaki et al., 2019). Other than associations with biomarker
data, the effectiveness of PRS to predict LOAD heterogenous
endophenotypes especially comorbid NPS, including depression,
has yet to be thoroughly examined.

In this study we generated and tested the effectiveness of
PRS to predict depression risk and onset time course in LOAD

Abbreviations: LOAD, Late-onset Alzheimer’s Disease; PRS, Polygenic Risk Score;
CSF, Cerebrospinal Fluid; GWAS, Genome-Wide Association Studies; MDD,
Major Depressive Disorder; APOE, Apolipoprotein E; NPS, Neuropschiatric
Symptoms; MCI, Mild Cognitive Impariment; ROSMAP, Relgious Orders Study
and Rush Memory and Aging Project; NACC, National Alzheimer’s Coordinating
Center; SNP, Single Nucleotide Polymorphism; AUC, Area Under the Cruve;
DSM-III, Diagnostic and Statistcal Manual of Mental Disorders, 3rd edition; GDS,
Geriatric Dementia Scale; ADRC, Alzheimer’s Disease Research Center; MAF,
Minor Allele Frequency; SD, Standard Deviation; PC, Principal Component.

patients. We created a novel PRS based on MDD genome-wide
association study (GWAS) summary statistics and examined its
utility in predicting the risk to develop depression symptoms
in LOAD patients using two well-characterized LOAD cohorts
from the Religious Orders Study and Rush Memory and
Aging Project (ROSMAP) (Bennett et al., 2012a,b, 2018) and
National Alzheimer’s Coordinating Center (NACC) (Beekly et al.,
2004) projects.

MATERIALS AND METHODS

Study Cohorts
Two cohorts were used to evaluate the performance of the PRS
in predicting risk of depression onset: ROSMAP and NACC,
whereas ROSMAP cohort was used for discovery and NACC
dataset was used for validation. We used only the samples
that had available genetic data and information on depression
phenotypes. All samples were LOAD patients. Cases were defined
as LOAD with depression symptoms, and controls were LOAD
individuals who did not experience depression (Figure 1). To
further control for APOE as a cofounding factor, we repeated the
analyses using sub-cohorts stratified into APOEε3 homozygotes
(Figure 1). Of note, the ROSMAP sample is also included in the
NACC data. Table 1 summarized the descriptive statistics for the
ROSMAP and NACC samples used in this study.

Rush Memory and Aging Project
The discovery sample was derived from two ongoing cohort
studies, the Religious Orders Study (ROS) and Rush Memory
and Aging Projects (MAP) (Bennett et al., 2012a,b, 2018).
ROS began recruiting nuns and brothers from across the
United States in 1994, while MAP started recruiting individuals
from northeastern Illinois in 1997. Both studies were conducted
by the same team of investigators (Bennett et al., 2012a,b, 2018).
Thus, the studies used similar data collection procedures and
shared a common set of examinations, allowing for a combined
analysis. Study participants were free of known dementia at
enrollment, underwent annual clinical and neuropsychological
evaluations, and agreed to brain donation at the time of death.
The studies were approved by the Institutional Review Board
of Rush University Medical Center. Written informed consent
was acquired from each participant. LOAD cases were defined
using the final consensus cognitive diagnosis variable, where
an Alzheimer’s disease diagnosis with or without another cause
of cognitive impairment (cogdx = 4 or 5) was considered a
LOAD case. LOAD cases comprised the sample for further
analysis, specifically prediction of risk and onset of depression.
The variable r_depres (Bennett et al., 2004) indicated MDD, or
depression, diagnosis by a physician. The depression criteria from
the Diagnostic and Statistical Manual of Mental Disorders, 3rd
Edition, Revised (DSM-III-R) (American Psychiatric Association
[APA], 1987), a clinical interview with the patient, and patient’s
responses to questions from the Diagnostic Interview Schedule
were employed by physicians to diagnose clinical depression,
with final endpoints of highly probably, probable, possible, and
not possible clinical depression. A diagnosis of highly probable,
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FIGURE 1 | Sample selection flowchart. The total samples from both ROSMAP and NACC datasets were divided into LOAD and non-LOAD groups, where the
non-LOAD group was not studied. Depression case and controls were identified in the LOAD sample of both datasets. APOEε3 homozygotes were then selected
from the LOAD sample to account for potential confounding by the APOEε4 allele.

TABLE 1 | Sample demographics.

ROSMAP (n = 1,708) NACC (n = 7,627)

Sample Full LOAD sample APOEε3 Homozygote sample Full LOAD sample APOEε3 Homozygote sample

Subjects n = 517 n = 284 n = 2,968 n = 1,092

Female % 68.0% 70.4% 52.1% 50.3%

Mean education in years (SD) 16.2 (3.7) 16.2 (3.8) 15.6 (6.9) 15.7 (7.4)

Mean baseline Age (SD) 81.5 (6.7) 81.8 (6.7) 76.3 (9.1) 78.0 (9.9)

Race, White % 99.8% 100% 99.7% 100%

APOEe4 count

0 333 1,226

1 168 NA 1,355 NA

2 15 376

Depression

Cases 187 112 1,083 409

Controls 330 172 1,885 683

LOAD, Late-onset Alzheimer’s Disease; ROSMAP, Relgious Orders Study and Rush Memory and Aging Project; NACC, National Alzheimer’s Coordinating Center; APOE,
Apolipoprotein E; SD, Standard Deviation.

probable, or possible depression (r_depres = 1, 2, or 3) in any
study visit was deemed a depression case. Thus, one instance of
depression in the study duration was considered a depression
case. The classification of the cohort and number of subjects
in each category (LOAD with depression and LOAD only) are
described in a flowchart (Figure 1). Other variables included
were age at baseline (age_bl), sex (msex), years of education
(educ), financial_need, and apoe_genotype. The educ variable
represents years of education (Bennett et al., 2005), and the
financial_need variable estimates financial need during childhood
(Wilson et al., 2006). This variable is only available in the MAP
data. The inclusion of this variable was based on the hypothesis

that chronic stress due to financial need, especially during the
critical period of childhood, may have psychosocial effects later in
life (Wilson et al., 2006). The apoe_genotype variable specifies the
subject’s APOE genotype (Yu et al., 2017); this variable was then
converted to another variable to count the number of APOEε4
alleles (0, 1, 2).

Overall, 517 LOAD cases from the ROSMAP cohort (total
n = 1,708) were used in our study, out of which there were 187
depression cases and 330 controls (i.e., only LOAD) (Figure 1).
The sample consisted of 68% female, with an average age at
baseline of 81.5 (SD = 6.7) and years of education of 16.2
(SD = 3.7) (Table 1). A total of 284 entire LOAD cases
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were APOEε3 homozygote, with 112 cases (LOAD comorbid
depression) and 172 controls (LOAD only) (Figure 1). 70.4%
of which were females and average baseline age of 81.8
(SD = 6.7) (Table 1).

National Alzheimer’s Coordinating Center
The validation sample used was obtained from the National
Alzheimer’s Coordinating Center (NACC) (Beekly et al., 2004).
The NACC is composed of 29 Alzheimer’s Disease Research
Centers (ADRC) located throughout North America. The data
collection and management vary between centers, with each
center enrolling based on specific research interests. Some
ADRCs require subjects to agree to autopsies. Written informed
consent was acquired from each subject. The primary diagnosis
variable (dx) was used to select LOAD cases, with dx = 050
corresponding to Alzheimer’s Disease. The variable DEP was
employed to select depression cases, with a value of 1 indicating
a depression diagnosis within the last 2 years and value of
0 noting no depression diagnosis. These values result from a
clinical diagnosis of depression using the Geriatric Depression
Scale (GDS) (Sheikh and Yesavage, 1986). Cases were defined
as participants with a diagnosis for depression at least once
within the study duration, while controls were those that did
not have a depression diagnosis. As with ROSMAP, any instance
of depression throughout the study course was marked as a
depression case. The classification of the cohort and number of
subjects in each category (LOAD with depression and LOAD
only) are described in a flowchart (Figure 1). Other variables
included were age at baseline (NACCAGEB), sex, years of
education (EDUC), and APOE genotype.

Overall, 2,968 LOAD cases from the entire NACC data (7,627)
were used in our study. Out of which were 1,083 depression
cases and 1,885 controls (i.e., only LOAD) (Figure 1). The
sample consisted of 52.1% female, with an average baseline age
of 76.3 (SD = 9.1) and years of education of 15.6 (SD = 6.9)
(Table 1). A total of 1,092 NACC LOAD subjects were APOEε3
homozygotes, with 409 cases and 683 controls (Figure 1), 50.4%
of which were females, and average baseline age was 78.0
(SD = 9.9) and years of education of 15.7 (SD = 7.4) (Table 1).

Genome-Wide Association Study Data
for Polygenic Risk Scores Construction
The MDD GWAS (PGC-MDD2) conducted by Wray et al. (2018)
included summary statistics of P-values, odds ratios, standard
errors, reference and alternate alleles, imputation quality score
(INFO), and direction of effect from the Psychiatric Genomics
Consortium. Data for 6 cohorts described by Wray et al. (2018)
were acquired (PGC29, deCODE, Generation Scotland, GERA,
iPSYCH, and UK Biobank) and used in this study. These results
included genotyped and imputed data on 13,554,489 SNPs from
59,851 MDD cases and 113,154 controls. Primary manuscripts
for the MDD GWAS (Wray et al., 2018) further describe details
regarding genotyping procedure, quality control, and GWAS
analysis. Constraining to SNPs with high quality imputation
scores (INFO > 0.9) lead to 8,209,158 SNPs remaining. All
resulting SNPs passed quality control metrics, as described by

Wray et al. (2018). All genomic coordinates are based on NCBI
Build 37/USCS hg19.

Genotype Data for Polygenic Risk
Scores Construction
Genotype data from 1,708 subjects in ROSMAP and 10,256
subjects in NACC were then retrieved for the target samples used
for testing the PRS. For NACC, genotype data from Alzheimer’s
Disease Centers 1–7 were downloaded. For both datasets,
imputation was performed with minimac4 on the Michigan
imputation server.1 For the imputation reference panel, the HRC
panel (Version r1.1 2016) was used. This panel is composed of
64,940 haplotypes of mainly European ancestry. High quality
SNPs were used for imputation, using the following parameters:
MAF > 0.01; call rate > 95%, Hardy-Weinberg equilibrium test
P > 10−6; allele frequency difference ≤ 0.20 between the sample
data and the reference panel. PLINK 1.9/2 (Purcell et al., 2007)
was used to process the genotype data.

Polygenic Risk Scores Calculation
Two formulas were used to calculate PRS. Formula 1 describes
the method of calculating PRS by multiplying beta values (β) by
the number of effect alleles (X) then summing these values, which
will be referenced as PRS. Formula 2 utilizes the risk allele (G), or
the allele with the positive beta value, which will be referenced as
risk-increasing PRS (Bellenguez et al., 2020). The number of risk
alleles is multiplied by its respective beta value. This term is then
multiplied by the total number of SNPs (T) divided by the sum
of all the beta values. This term allows for the risk-increasing PRS
to represent the average of risk alleles, providing an interpretable
result in terms of risk allele (Chouraki et al., 2016; Bellenguez
et al., 2020). ∑

β ∗ X (1)

∑
β ∗ G ∗

T∑
β

(2)

The APOE region, defined as the ± 300 Kb around the
APOE epsilon coding SNPs (chr19:45,111,942–45,711,941), was
not included in the PRS calculation. PRSice-2 (Choi and O’Reilly,
2019) was used to produce the PRS. SNPs were selected from the
MDD GWAS data using multiple p-value thresholds (0.5, 0.4, 0.3,
0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001, 10−5, 10−6, 10−7, 10−8).
Then, the genotyped data of both ROSMAP and NACC was
scanned to select SNPs from the MDD GWAS data at respective
p-value thresholds. Since all SNP genotypes were not present in
both datasets, dosages for missing genotypes were set to zero,
with the assumption that most of the population have at least one
copy of the major allele, which is best approximated with a score
of zero. ROSMAP had 5,543,088 SNPs found in the MDD GWAS
data. NACC contained 3,633,901 SNPs matching selected SNPs
from the MDD GWAS data. Clumping was done on the resultant
SNPs to account for linkage disequilibrium (LD Parameters:
R2 > 0.1, P = 1.0, window = 250 kb). The total number of

1https://imputationserver.sph.umich.edu
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variants after clumping for ROSMAP and NACC were 315,079
and 243,437, respectively. Supplementary Table 1 details the
total number of SNPs used for each p-value threshold and dataset.

Statistical Analysis
Logistic regression and Receiver Operating Characteristic (ROC)
curves were calculated to assess the performance of the PRS
to predict depression within the LOAD only samples. These
analyses were completed for all p-value thresholds to determine
the optimum threshold for prediction, which then was then
utilized in subsequent analyses. For ROSMAP, performance was
assessed of a statistical prediction model that included the
covariates APOEε4 allele count, childhood financial need, sex,
and the 0.005 p-value SNP selection threshold PRS. This was
subsequently replicated in NACC, where a similar prediction
model was created that included covariates education, APOEε4
allele count, sex, and 0.005 p-value SNP selection threshold
PRS. Prediction models excluding PRS were constructed in both
ROSMAP and NACC and compared with respective models
including PRS using the DeLong test (DeLong et al., 1988).
Additionally, time-to-event analysis was conducted, with left-
truncated (age at entry) and right censored (age at depression
onset or age at last visit) data (Altmann et al., 2020). Age
at depression onset was defined as the age at first depression
diagnosis. Subsequently, principal component analysis (PCA)
was conducted on both datasets to account for population
structure, with principal components (PC) 1, 2, and 3 sufficiently
accounting for the majority of the variance (Supplementary
Figures 1, 2). Models from both datasets were subsequently
adjusted for population structure using PC1-3. Statistical analysis
was completed in JMP Pro 15 (JMP R©, 2021) and the DeLong tests
were run in the MedCalc application (MedCalc R©, 2021).

RESULTS

Polygenic Risk Scores Selection and
Distribution
We created 14 PRS, for each dataset, using multiple p-value
thresholds (hereafter PThreshold). SNPs were selected according
to each p-value threshold (SNPs counts by PThreshold are
summarized in Supplementary Table 1). Logistic regression plots
of PRS and depression phenotype were then used to select the
optimal PThreshold in ROSMAP, with the same PThreshold used
subsequently in NACC for validation. In ROSMAP, the logistic
regression analysis with a PThreshold of 0.005 resulted in the
greatest effect size for the PRS term (beta = 0.153, P = 0.089;
Supplementary Table 2). Thus, PRS generated with SNPs
selected for PThreshold of 0.005 were then employed in further
evaluations in ROSMAP and validation in NACC. In NACC, the
logistic regression analysis improved, with the PThreshold of 0.005
meeting significance (beta = 0.092, P = 0.0149; Supplementary
Table 3). Additional logistic regression results for other PThreshold
in NACC can be found in Supplementary Table 3, where these
results were not considered in SNP selection.

Next, the distribution of the PRS calculated with SNPs
selected for PThreshold = 0.005, hereafter PRS (PThreshold = 0.005),

was evaluated. The PRS (PThreshold = 0.005) distribution
demonstrated that depression cases in ROSMAP had a
significantly higher mean PRS compared to controls (0.084
vs. -0.076, P = 0.048; Figure 2A). This was replicated in NACC
(0.033 vs. -0.60, P = 0.008; Figure 2B).

Prediction of Onset of Depression in
Late-Onset Alzheimer’s Disease
The PRS distribution and logistic regression analysis test the
ability of the PRS and covariates to classify cases and controls.
Further evaluations were done in ROSMAP and validated in
NACC to assess the predictive ability using standalone PRS
models and full prediction models.

Rush Memory and Aging Project
A model using only the PRS (PThreshold = 0.005) resulted in an
AUC of 0.540 (Table 2). We applied the full model, which, in
addition to the PRS (PThreshold = 0.005), included baseline age,
sex, years of education, and APOEε4 allele count (Supplementary
Table 5). The model resulted in an AUC of 0.606 and was
improved to an AUC of 0.680 with the inclusion of childhood
financial need as an additional variable (Figure 3A and Table 2).
Noteworthy, education had a significant effect in the full model
(beta = –0.134, P = 0.033), while the PRS (PThreshold = 0.005) had a
marginal contribution (beta = 0.249, P = 0.126) (Supplementary
Table 5). Both models, with and without childhood financial
need, were then compared to the respective model without
PRS (PThreshold = 0.005) (Supplementary Table 4) to assess the
increase in model performance attributed to the addition of PRS
(PThreshold = 0.005). In both models, there was no significant
increase in model performance when comparing AUCs (With,
without childhood financial need: P = 0.377, P = 0.774;
Supplementary Table 8). Upon adjusting for population
structure, both full models using the PCs, with and without
financial need, improved (AUC = 0.700, AUC = 0.629; Table 2
and Supplementary Table 10). The PRS (PThreshold = 0.005) had
a similar marginal contribution (beta = 0.250, P = 0.129), with
no significant addition to model performance when compared to
model without PRS as assessed using DeLong test (With, without
childhood financial need: P = 0.522, P = 0.854; Supplementary
Tables 9, 13).

We repeated the analyses in the subgroup stratified for
APOEε3 homozygotes to exclude a potential confounding
effect of APOEε4 on the PRS. In this subgroup, the PRS
(PThreshold = 0.005) showed an AUC of 0.535, with an improved
AUC of 0.624 in the full model, which was further improved
to an AUC of 0.721 with the addition of childhood financial
need (Figure 3B, Table 2, and Supplementary Table 7). Baseline
age (beta = –0.115, P = 0.014) and childhood financial need
(beta = 0.595, P = 0.0097) had significant effects in the full
model, but the PRS (PThreshold = 0.005) did not reach significance
(beta = 0.349, P = 0.138) (Supplementary Table 7). Using
the DeLong test to compare both models, with and without
childhood financial need, to their respective models excluding
PRS (PThreshold = 0.005) (Supplementary Table 6) resulted in
no significant increase in the AUC, or model performance,
with the addition of PRS (With, without childhood financial
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FIGURE 2 | Distribution of PRS (PThreshold = 0.005) in ROSMAP and NACC. Distribution of the PRS was compared between cases and controls in ROSMAP and
NACC. (A) For ROSMAP, the mean of the PRS (PThreshold = 0.005) in cases and controls was 0.084 and -0.076, respectivley. Signficance difference was found using
a two sample one sided t-test (P = 0.048). (B) For NACC, the mean of the PRS (PThreshold = 0.005) in cases and controls was 0.033 and -0.060, respectively. There
was a significant difference amongst the means using a two sample one sided t-test (P = 0.008).

need: P = 0.237, P = 0.377; Supplementary Table 8). Both full
models improved when adjusting for population structure using
PC1-3 (with, without childhood financial need: AUC = 0.728,
AUC = 0.648; Table 2 and Supplementary Table 12). The PRS
(PThreshold = 0.005) did not have a significant contribution in the
full model (beta = 0.385, P = 0.110), which was further supported
by the DeLong test when comparing with the model excluding
PRS (With, without childhood financial need: P = 0.361,
P = 0.200; Supplementary Tables 11, 13). These results suggested
that other factors have a greater contribution to prediction
performance, while the PRS had a moderate contribution.

TABLE 2 | Assessing PRS ability to predict risk of depression onset.

ROSMAP NACC

Sample Full LOAD
sample

APOEε3
Homozygote

sample

Full LOAD
sample

APOEε3
Homozygote

sample

Case-control (p-value) 0.088 0.277 0.015* 0.649

Full model (AUC) 0.606a 0.624b 0.581 0.587

Full model + PC1-3 (AUC) 0.629c 0.648d 0.591 0.612

PRS (AUC) 0.540 0.535 0.527 0.507

Full Model included covariates of PRS, APOEε4 allele count, sex, baseline age,
and education. Logistic regression analyses and receiver operating characteristics
(ROC) curves were created to assess PRS ability to predict risk of depression onset.
a Improved to 0.680 with addition of childhood financial need.
b Improved to 0.721 with addition of childhood financial need.
c Improved to 0.700 with addition of childhood financial need.
d Improved to 0.728 with addition of childhood financial need.
*Statistical signifiance met.
LOAD, Late-onset Alzheimer’s Disease; ROSMAP, Relgious Orders Study and Rush
Memory and Aging Project; NACC, National Alzheimer’s Coordinating Center;
APOE, Apolipoprotein E; SNP, Single Nucleotide Polymorphism; AUC, Area Under
the Curve; PRS, Polygenic Risk Score; PC, Principal Component.

National Alzheimer’s Coordinating Center
To validate results from ROSMAP, the generated PRS
(PThreshold = 0.005) was tested in NACC dataset. The model
that included only the PRS (PThreshold = 0.005) showed
an AUC of 0.527 and the full model showed an AUC of
0.581 (Figure 4A, Table 2 and Supplementary Table 15). In
addition, the results of the full model demonstrated significant
contributions from the PRS (beta = 0.010, P = 0.0194) as well as
baseline age (beta = –0.016, P = 2e−4), and sex (beta = –0.231,
P = 4.3e−9) (Supplementary Table 15). However, the DeLong
test comparing the full model with full model excluding PRS
(Supplementary Table 14) demonstrated no significant gain
of model performance (P = 0.285; Supplementary Table 18).
The full model was improved when adjusting for population
structure by applying the PCA (AUC = 0.591; Table 2 and
Supplementary Table 20). However, the PRS (PThreshold = 0.005)
had no significant contribution to the full model (beta = 0.068,
P = 0.088). Additionally, the DeLong test demonstrated no
significant model improving effects of the PRS comparing
to the model without the PRS (P = 0.637; Supplementary
Tables 19, 23).

We repeated the analysis using a subgroup of APOEε3
homozygotes for the NACC cohort. The PRS (PThreshold = 0.005)
alone resulted in an AUC of 0.507, and application of the
full model reached an AUC of 0.587 (Figure 4B, Table 2,
and Supplementary Table 17). In this full model analysis,
baseline age (beta = –0.018, P = 0.0049) and sex (beta = –
0.251, P = 9e-5) showed significant effects (Figure 4B), but PRS
(PThreshold = 0.005) did not reach statistical significance (beta = –
0.038, P = 0.551; Supplementary Table 17). Furthermore, the
DeLong test demonstrated that the PRS (PThreshold = 0.005)
did not improve the model performance when comparing
to the model excluding PRS (P = 0.362; Supplementary
Tables 16, 18). When adding PC1-3 to account for population
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FIGURE 3 | ROC analysis of PRS and full model in ROSMAP. Receiver operating characteristic (ROC) curves were used to assess diagnostic ability, with the Area
Under the Curve (AUC) providing a quantitative measure. The models illustrated are PRS (PThreshold = 0.005) alone, the full model consisting of PRS
(PThreshold = 0.005), age, sex, education, APOEε4 allele count, full model with childhood financial need (Full Model + Financial Need), and full model with financial
need and principal components 1–3 (Full Model + Financial Need + PC1-3). (A) Models using the full LOAD ROSMAP sample. Full model including financial need
had superior results (AUC = 0.680) than the full model (AUC = 0.606) and PRS (PThreshold = 0.005) alone (AUC = 0.540). (B) Similar analyses were repeated in an
APOEε3 homozygote sample to assess model performance independent of APOEε4. Both full model with financial need had greater results (AUC = 0.721) and full
model (AUC = 0.624) had greater results than in the full LOAD sample. The PRS (PThreshold = 0.005) alone saw a slight decline in perfromance (AUC = 0.535)
compared to the full LOAD sample.

FIGURE 4 | ROC analysis of PRS and full model in NACC. Receiver operating characteristic (ROC) curves were used to assess diagnostic ability, with the Area
Under the Curve (AUC) providing a quantitative measure. The models illustrated are PRS (PThreshold = 0.005) alone and the full model consisting of PRS
(PThreshold = 0.005), age, sex, education, and APOEε4 allele count, and full model with principal components (Full Model + PC1-3). (A) Models using the entire NACC
LOAD sample. Full model had greater results (AUC = 0.583) than PRS (PThreshold = 0.005) alone (AUC = 0.527). (B) Similar analysis was done in an APOEε3
homozygote sample to measure PRS effectiveness in a large dataset independent of APOEε4. Full model results were comparable to the full LOAD sample
(AUC = 0.587), wheras PRS alone performed worse (AUC = 0.507).
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structure, prediction accuracy of the full model improved
(AUC = 0.612; Table 2 and Supplementary Table 22), but the
PRS (PThreshold = 0.005) did not show a significant contribution
(beta = -0.076, P = 0.253). Moreover, the PRS did not improve
model performance when compared to a model without the PRS
(P = 0.351; Supplementary Tables 21, 23).

Predicting Time to Depression Onset
Identifying individuals at risk of developing depression earlier
in the course of LOAD may serve to indicate severity of the
disease, informing future treatment plans. Thus, time-to-event
analysis was conducted to assess the PRS ability to predict
those at risk for developing depression early in their LOAD
trajectory by examining the time interval between age at entry
of respective study and age at depression onset (or age at last
visit if no depression occurred). We tested PRS calculated by
the two formulas (see “Materials and Methods” section): (1) PRS
and, (2) risk-increasing PRS. PRS uses the standard calculation
approach, while risk-increasing PRS utilizes alleles with positive
betas, or risk alleles, providing an interpretable score in terms of
the number of risk alleles.

Rush Memory and Aging Project
Models using both formulas, PRS (PThreshold = 0.005) and
risk-increasing PRS (PThreshold = 0.005), reached statistical
significance (Table 3). In each of the full statistical models that
included the covariates sex, baseline age, education and APOEε4
allele count, the term for the PRS (beta = 0.146, P = 6e-4) and
the risk-increasing PRS (beta = 0.006, P = 6e-4) had statistically
significant effects in their respective models (Supplementary
Tables 24, 25). Both PRS (PThreshold = 0.005) and risk-increasing
PRS (PThreshold = 0.005) maintained significant contributions
when adding PC1-3 to adjust for population structure (PRS:
beta = 0.149, P = 0.001; risk-increasing PRS: beta = 0.006,
P = 0.001; Supplementary Tables 28, 30). As age at baseline
had a strong contribution to the full model (beta = –0.115,
P = 1.7e-50), a model without age at baseline was subsequently
calculated. The full models remained significant, with both PRS
and risk-increasing PRS having significant contributions (PRS:
beta = 0.141, P = 0.001; risk-increasing PRS: beta = 0.006,
P = 0.001; Supplementary Tables 29, 31).

Upon stratification for APOEε3 homozygotes, the models
using PRS and risk-increasing PRS (PThreshold = 0.005), each
alone, did not produce significant results (Table 3). Of note,
the risk-increasing PRS performed comparably to its use in the
full LOAD sample when comparing risk ratios. Nonetheless,
the full models for both PRS formulas showed significant
results (Table 3), with baseline age having a significant
effect (Supplementary Tables 26, 27). Furthermore, both PRS
(beta = 0.139, P = 0.011) and risk-increasing PRS (beta = 0.006,
P = 0.010) had significant contributions to their respective full
models (Supplementary Tables 26, 27, respectively). Both full
models remained significant when adding PC1-3, with both PRS
(beta = 0.137, P = 0.013) and risk-increasing PRS (beta = 0.005,
P = 0.013) having significant contributions (Supplementary
Tables 32, 34). However, after excluding age at baseline, both
full models failed to meet significance (P = 0.058 for both).

TABLE 3 | Assessing both PRS and risk-increasing PRS ability to predict time
interval of depression in LOAD.

ROSMAP NACC

Sample Full LOAD
Sample

APOEε3
Homozygote

Sample

Full LOAD
sample

APOEε3
Homozygote

Sample

Full model (p-value) <0.001* <0.001* <0.001* <0.001*

PRS alone (p-value) 0.005* 0.075 0.004a 0.025b

PRS: risk-ratio
[95%CI]

1.126
[1.036,
1.222]

1.102 [0.990,
1.225]

0.991
[0.957,
1.027]

0.987 [0.930,
1.046]

Risk-increasing
PRS: risk-ratio
[95%CI]

1.005
[1.001,
1.008]

1.004 [1.000,
1.008]

0.999
[0.999,
0.9998]

0.999 [0.999,
0.9999]

Full Model contained covariates of PRS, APOEε4 allele count, sex, baseline age,
and education. Time-to-event analysis was performed using left-truncated (age at
entry) and right censored (age at depression onset or age at last visit) data.
ap-value noted with risk-PRS. With standard PRS, p-value = 0.631.
bp-value noted with risk-PRS. With standard PRS, p-value = 0.658.
*Statistical signifiance met.
LOAD, Late-onset Alzheimer’s Disease; ROSMAP, Relgious Orders Study and Rush
Memory and Aging Project; NACC, National Alzheimer’s Coordinating Center;
APOE, Apolipoprotein E; SNP, Single Nucleotide Polymorphism; PRS, Polygenic
Risk Score.

Nonetheless, both PRS (beta = 0.115, P = 0.035; Supplementary
Table 33) and risk-increasing PRS (beta = 0.005, P = 0.035;
Supplementary Table 35) had significant contributions to their
respective models.

Additionally, survival probability curves of both full LOAD
and APOEε3 homozygote samples were created (Figure 5). Each
sample was divided into three groups based on PRS score
distribution, 0–33, 33–67, and 67–100%. Both ROSMAP samples
demonstrated that individuals with higher PRS scores had earlier
age of depression onset, supported by the log-rank test (Full
LOAD: P = 0.019, APOEε3 homozygote: P = 0.036).

National Alzheimer’s Coordinating Center
We utilized PRS (PThreshold = 0.005) and the risk-increasing PRS
(PThreshold = 0.005) in the time-to-event analyses. The model
employing the PRS, alone, did not produce significant results.
However, the risk-increasing PRS met statistical significance, but
lacks practical utility with the 95% confidence interval of the risk
ratio narrowly excluding 1 (P = 0.004; Table 3). The full models,
using each of the two PRS formulas with other covariates, showed
significant results (Table 3 and Supplementary Tables 36, 37).
The full model using the PRS had significant contributions
from baseline age, sex, education, and PRS (beta = 0.050,
P = 0.009), while the full model using risk-increasing PRS had
significant contributions from baseline age, education and risk-
increasing PRS (beta = 0.0006, P = 0.003) (Supplementary
Tables 36, 37, respectively). Both full models remained significant
after adjusting for population structure by PCA, with PRS
(beta = 0.050, P = 0.010) and risk-increasing PRS (beta = 0.0007,
P = 0.002) continuing to have significant contributions to their
respective models (Supplementary Tables 40, 42). Both full
models sustained significance after removing age at baseline.
The PRS did not have a significant effect on its full model
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(Supplementary Tables 36, 37), but the risk-increasing PRS had
a significant effect (beta = –0.0006, P = 0.009; Supplementary
Table 43), although in the negative direction.

Repeating the analyses for the APOEε3 homozygote subgroup
did not show significant results for PRS alone model. The
risk-increasing PRS alone model saw significance, but the
95% confidence interval of the risk ratio narrowly excluded 1
(P = 0.025; Table 3). The full models for both PRS and risk-
increasing PRS resulted in significant results (Supplementary
Tables 38, 39) with major contributions from the covariates
baseline age, sex, and education. However, neither the PRS
nor the risk-increasing PRS had significant effects in their
respective full models. Accounting for population structure, both
full models reached significance, but neither PRS nor the risk-
increasing PRS had significant contributions to their respective
models (Supplementary Tables 44, 46). After excluding age at
baseline, both full models maintained significance (Full model
with: PRS P = 0.004, risk-increasing PRS P = 0.0008), with no
significant effects from either the PRS or the risk-increasing PRS
(Supplementary Tables 45, 47).

To further assess PRS ability in predicting age of depression
onset, survival probability curves were calculated for both
NACC full LOAD and APOEε3 homozygote samples (Figure 6).
Each sample was broken into three groups based on PRS
score distribution, 0–33, 33–67, and 67–100%. Both samples
failed to meet significance using the log-rank test (Full LOAD:
P = 0.704, APOEε3 homozygote: P = 0.433), supporting
time-to-event analysis finding non-significant results from the
PRS alone models.

DISCUSSION

LOAD is a heterogenous disease with various genetic etiologies
(Nacmias et al., 2018; Lo et al., 2019) and diverse phenotypes
including: heterogeneity of biomarkers (Dujardin et al., 2020),
coexisting pathologies (Lam et al., 2013), and clinical symptoms
(Komarova and Thalhauser, 2011; Lam et al., 2013; Devi and
Scheltens, 2018; Ferreira et al., 2018). Clinical heterogeneity is
manifested also by comorbid neuropsychiatric symptoms (NPS),
amongst which depression is very common. However, why some
LOAD patients develop depression while others do not remain
elusive. Previously, we found genetic pleiotropy between MDD
and LOAD (Lutz et al., 2020), suggesting that genetics may
contribute to the risk of depression symptom in LOAD. In this
study to test this hypothesis, we performed the first genetic
comparison analysis between LOAD patients with and without
depression to explore the genetic heterogeneity of the risk and
onset time of depression in individuals with LOAD. We derived
a PRS that showed small to moderate effects in predicting
depression onset in LOAD patients. That is to say, the PRS
developed in our study resulted in an odds ratio (OR) of 1.1–1.4,
which is small to moderate compared to the large effect size of
OR = 3.09 for APOEε4 heterozygosity for LOAD risk (Neu et al.,
2017). The PRS predictive ability was improved with the inclusion
of the covariates age, sex, education, APOEε4 allele count, with
the addition of childhood financial need further enhancing the
predictive performance of the model.

PRS are a well-established approach for the study of the
genetics of complex diseases including LOAD and the utility of
PRS to predict LOAD risk has been investigated by different
groups (Escott-Price et al., 2015, 2017, 2019; Darst et al., 2017;
Tasaki et al., 2018, 2019; Leonenko et al., 2019; Altmann et al.,
2020; Tesi et al., 2020; Daunt et al., 2021; Zettergren et al.,
2021). However, to our knowledge, this is the first study that
progresses the use of PRS to predict clinical endophenotypes
in LOAD, in particular depression. Our study is innovative
in several ways: (1) The study was uniquely designed such
that all subjects are LOAD patients where case-control status
was defined by the manifestation of depression symptom. (2)
Most prior LOAD PRS studies focused on LOAD prediction
employing LOAD GWAS summary statistics. Here we tested the
utility of PRS based on GWAS data from a particular disorder
(MDD) to predict risk for a shared phenotype (depression) in
individuals with another disorder (LOAD). (3) While previous
work identified unique trajectories of depression and apathy
in LOAD subjects and biomarkers associated with LOAD-
specific depression progression (Banning et al., 2021), the
current work focused on a genetic based prediction model of
depression in LOAD. Collectively, our approach generated PRS
to identify LOAD subjects with greater genetic risk of developing
depression and those at risk to develop depression earlier in the
time course of LOAD.

PRSs were calculated in ROSMAP and then replicated in
NACC cohorts. The results obtained for the two cohorts were
generally consistent showing a moderate predictivity of the PRS.
However, there are some differences. In the NACC cohort, the
PRS alone was more effective in classifying depression cases as
evidenced by the logistic regression analysis, and it made more
significant contributions to the full prediction model than in
ROSMAP. However, the overall model performance was greater
in ROSMAP. A possible explanation might be that ROSMAP is
more homogenous than NACC, as ROSMAP contains a reduced
range of baseline ages and is disproportionately female (Bennett
et al., 2012a,b, 2018) resulting in greater homogeneity compared
to NACC. Furthermore, the study selection criteria of ROSMAP
may further contribute to the homogeneity in ROSMAP, with
ROS enrolling priests and MAP selecting within the northeastern
Illinois region. Therefore, the covariates, such as baseline age and
education, would be expected to have greater effects in ROSMAP.
Thus, statistical models would be expected to show predictive
ability that would appear stronger in ROSMAP. NACC’s diversity
and sample size led to greater classification ability, and greater
contribution in the full model. In both datasets, the PRS did
not add significant improvement to model performance, with
the greatest statistical increase in performance attributable to
PRS observed in the full LOAD NACC sample. As the PRS
had promising results in two different criteria, prediction and
classification, the PRS demonstrated generalizability, although
with small effects. Similar results were observed for the time-to-
event analysis, which tested PRS ability to distinguish individuals
more at risk of developing depression earlier in their LOAD
trajectory. A risk-increasing PRS was calculated to provide an
interpretable score, where a unit increase in risk-increasing PRS
corresponds to an additional risk allele. In ROSMAP, both PRS
versions performed effectively, both as standalone models and
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FIGURE 5 | Survival analysis of PRS in ROSMAP. The sample was divided into three groups based on 0–33, 33–67, and 67–100% PRS distribution. The 0–33%
group had low PRS scores indicating lower predicted risk of developing depression, the 67–100% group had higher PRS scores with higher predicted risk, and the
33–67% group falling in the middle. Survival curves were used to assess effect of higher PRS scores on age of depression onset. (A) Survival curves in the full LOAD
sample demonstrated that individuals within the high PRS score group had earlier onsets of depression, meeting significance using the log-rank test (P =0.019) (B) In
the APOEε3 homosygote sample, individuals within higher PRS score groups had eariler depression onset, meeting signficance with the log-rank test (P =0.036).

FIGURE 6 | Survival analysis of PRS in NACC. The sample was divided into three groups based on 0–33, 33–67, and 67–100% PRS distribution. The 0–33% group
had low PRS scores indicating lower predicted risk of developing depression, the 67–100% group had higher PRS scores with higher predicted risk, and the
33–67% group falling in the middle. Survival curves were used to assess effect of higher PRS scores on age of depression onset. (A) Survival curves in the full LOAD
sample illustrated no effect of PRS score distribution group on age of depression onset, failing to meet signficance using the log-rank test (P =0.704) (B) In the
APOEε3 homosygote sample, there was no signficanct effect of PRS score distribution group on age of depression onset using the log-rank test (P =0.433).

within the full models. In NACC, both PRS types had significant
contributions to their respective full statistical models, but not as
PRS term only models.

APOEε4 genotype, is the strongest genetic risk factor for
LOAD. APOE genotype may influence not only LOAD risk and
age of onset but also the disease severity, progression, and the
presence of certain comorbid endophenotypes, including NPS.
For example, several studies have found associations between
increased risk for depression and the APOEε4 allele (Geda
et al., 2006; Feng et al., 2015; Wang et al., 2019), while other

studies have not replicated these findings (Slifer et al., 2009). To
consider the potential confounding effect of APOEε4 genotype
on the occurrence of depression in LOAD, we repeated the
analyses with sub samples of APOEε3 homozygotes only. In
terms of predicting depression onset, the PRS saw a slight
decline in predictive performance relative to the analysis that
included all APOE genotypes for the ROSMAP sample and
equivalent performance in the NACC sample. The full model
including childhood financial need in ROSMAP lead to the
most predictive model, with a moderate effect of the childhood
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financial need variable. This result highlights that childhood
struggles may translate into risk of depression later in life,
consistent with previous report that childhood adversity have
lower psychosocial capabilities late in life (Wilson et al., 2006).
Additionally, the moderate effect of childhood financial need
points to environmental factors contributing to depression risk.
Unfortunately, this variable was not available in the NACC cohort
for further assessments. The time-to-event analysis did not
find significant results from standalone PRS models. However,
in ROSMAP, both PRS types played significant roles in the
full models. The APOEε3 homozygote study demonstrated that
APOEε4 does not have a significant role in the risk of depression
onset in individuals with LOAD, with small declines in PRS
performance and stable or improved full model results.

LIMITATIONS

Our study has some limitations. First, the scales used to assess
depression were different among ROSMAP and NACC, which
introduced challenges to compare between the cohorts. Further,
the treatment of depression in ROSMAP participants increased
the number of participants defined as co-occurring depression
cases. However, treating depression to determine case-control
status resulted in similar proportions of depression cases in
the two datasets. Second, the binary treatment of depression
introduced another limitation. The current method treats
depression as either being present or not present throughout the
individual’s course in either ROSMAP or NACC. This fails to
account for the possibility that depression may occur numerous
times within the course of the study and might have varying
degrees of severity. Further work can expand upon the number
of instances of depression to enrich genetic models. Additionally,
sub-threshold depression symptoms may confound the results,
as some control subjects may manifest relatively mild depressive
symptoms and thus were undiagnosed. The method ROSMAP
coded depression had more endpoints for depression, allowing
us to overcome, at least in part, this limitation. Third, the
current study focusses on depression comorbid with LOAD.
Thus, this study is unable to explore the role of depression
prior to LOAD diagnosis. Future study would include depression
history preceding to LOAD diagnosis and examine its possible
confounding effect. Fourth, not all SNP genotypes were available
in both datasets, which introduced a challenge to compare
the results between ROSMAP and NACC. Fifth, the ROSMAP
participants are included within the NACC cohort. While it
was rigorous to exclude the ROSMAP samples from the NACC
validation cohort, due to privacy concerns the ROSMAP subjects
were not identifiable and therefore it was not possible to exclude
them from the larger NACC cohort. However, the ROSMAP
sample represents only a small group within the larger sample
size of the NACC cohort. Sixth, the ROSMAP and NACC
cohorts differ greatly in terms of sample size and demographic
characteristic. Therefore, comparing PRS effects between these
datasets has inherent limitations, nonetheless, on the other hand,
it demonstrated the generalizability of the PRS performance
within a European ancestry sample. Seventh, PRS was only tested

in primarily European ancestry individuals and thus results may
not hold true for other ancestries. Eighth, while we viewed
this work as a continuation of our previous study (Lutz et al.,
2020), and thus used the same MDD GWAS summary statistics
(Wray et al., 2018) to construct the PRS, we acknowledge that
two new MDD GWAS were published. The first is a European
ancestry MDD GWAS (Howard et al., 2019) and the second is
an East Asian ancestry MDD GWAS (Giannakopoulou et al.,
2021). These studies will be used in future work to evaluate
the risk of depression in LOAD and to replicate our findings.
Ninth, the PRS and other covariates had small effect sizes,
especially for models tested in NACC. The smaller estimated
effects resulting from models using NACC data, could be due
to larger, genetically heterogenous data. Despite small estimates
in NACC, the PRS made significant contributions. Nevertheless,
this study advances the current work on PRS and further explores
the performance of MDD genetic factors in predicting risk of
depression development in LOAD subjects.

CONCLUSION

The results of this study indicate that the PRS for depression
is an effective genetic tool to predict risk or onset time
interval for depression in individuals with LOAD. This would
facilitate greater prognostic capabilities to assess LOAD patients
with potential disease trajectories predisposing depression.
Furthermore, current prescribed antidepressants in patients with
dementia show little or no effect on depressive symptoms,
cognitive functioning, and activities of daily living in LOAD
patients. Additionally, some antidepressants might even cause
adverse events (Lanctôt et al., 2017; Dafsari and Jessen, 2020).
Thus, the treatment of depression in LOAD needs a critical
approach. Due to this lack of effective anti-depressants for LOAD
patients, the importance of this study lies in the ability of the
present depression PRS to enrich future clinical trials tasked with
identifying a potential new antidepressant treatment for LOAD
patients. Importantly, additional studies are needed to confirm
and replicate our findings prior to progressing the use of the
depression risk PRS towards clinical settings.
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