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Abstract: A novel, two-parameter modification of a Drude model, based on fractional time deriva-
tives, is presented. The dielectric susceptibility is calculated analytically and simulated numerically,
showing good agreement between theoretical description and numerical results. The absorption
coefficient and wave vector are shown to follow a power law in the frequency domain, which is a
common phenomenon in electromagnetic and acoustic wave propagation in complex media such as
biological tissues. The main novelty of the proposal is the introduction of two separate parameters
that provide a more flexible model than most other approaches found in the literature. Moreover,
an efficient numerical implementation of the model is presented and its accuracy and stability are
examined. Finally, the model is applied to an exemplary soft tissue, confirming its flexibility and
usefulness in the context of medical biosensors.

Keywords: digital filters; electrodynamics; electromagnetic propagation; finite difference methods;
optical surface waves; physics computing; propagation

1. Introduction

Fractional calculus, the branch of mathematics devoted to studying non-integer-order
derivatives and integrals, has become an increasingly popular tool for analysis of various
problems in physics, ranging from quantum mechanics and cosmology [1] to electric
circuits [2] and electromagnetic wave propagation [3]. An extensive review of recent
developments is presented in [4].

The application of fractional derivatives in theoretical [5] and numerical [6] descrip-
tions of mechanical waves has been extensively studied, including the propagation of
acoustic waves [7]. One of the key motives behind the development of fractional mod-
els is the observation that wave attenuation in many systems follows a power law with
a non-integer exponent [8,9], which cannot be described with the use of standard time
domain partial differential equations. Such power laws are especially prevalent in acoustic
wave propagation in biological tissues [10]. Furthermore, many physical media exhibit
hereditary features [11], where some physical property is dependent on the history of its
previous values. The fractional derivative provides a tool with which to analyze such
systems that carry information about their present as well as past states [12–14].

Motivated by these developments, we propose an extension of the Drude model, which
is one of the basic tools for describing the electric permittivity of metals. To better fit the
experimental observations in complex media, several extensions of the Drude model have
been proposed, ranging from the introduction of frequency-dependent parameters [15]
to the use of fractional derivatives [16]. These models can be used in various numerical
approaches to calculate the wave propagation in such media. One of the most popular
methods is the finite-difference time-domain (FDTD) [17]. Usually, a direct numerical
implementation of fractional derivatives is problematic. For the so-called Cole–Cole model,
which is a popular choice for the description of soft tissue, multiple simplifications have
been proposed [18,19]. Another similar relation is the Havriliak–Negami medium, which
is also applied to soft tissues as well as to liquid dielectrics and polymers [20]. Fractional-
derivative-based models are particularly valuable in the description of electromagnetic
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wave biosensors. Depending on the applications, these devices are designed in a wide
range of frequencies, from radio frequencies up to the optical spectrum [21] and use the
permittivity spectrum of the sample as a unique dielectric signature that can be utilized for
sensing purposes. For proper description of the multiple polarization mechanisms that
contribute to the total permittivity of the tissue, one has to apply a complex model with
many relaxation terms [21]. Fractional derivatives offers a simpler approach to modeling
the electromagnetic response of such media. Finally, it should be noted that the results
are also applicable to acoustic wave propagation in soft tissues and the related medical
imaging sensors [22–24].

The approach presented here introduces two fractional derivatives to the equations of
motion describing the polarization of the medium, resulting in a more general and flexible
model. It is shown that by using the truncated Grunwald–Letnikov derivative [25], one
can achieve a good accuracy while retaining low calculation complexity, roughly on the
same level as in [18–20]. The detailed, novel implementation of the medium description
in FDTD is presented and the accuracy of simulation results is discussed. In addition to
the comparison between analytical and FDTD results, an example fit to the experimental
data regarding soft tissue [26] is presented, demonstrating that our approach offers more
flexibility than a regular Drude model.

2. Drude Model

We assume that the medium (usually a metal) contains some concentration n of free
charges e, of effective mass m. The equation describing their motion under the influence of
external field E is

m~̈r + Γ~̇r = e~E, (1)

where~r is the charge position and Γ describes dissipative processes. By introducing the
polarization vector ~P = ne~r, the damping constant γ = Γ/m and the plasma frequency
ω2

p = ne2/m, one obtains
P̈ + γṖ = ω2

pE (2)

which, in the time domain, for a harmonic wave E = E0e−iωt, P = P0e−iωt yields

P0 = χ(ω)E0 =
−ω2

p

ω2 + iγω
E0, (3)

which is a standard expression for modeling the electric susceptibility of metals [15]. In our
modified model, we introduce the fractional derivative operator D to the Equation (2) in
all instances where the time derivative is used. In particular, we transform the Equation (2)
into the form

γαDα+1P + γβDβP = ω2
pE, (4)

where Dβ denotes fractional derivatives of the order β and α, and β are real parameters. In
particular, we use a Grunwald–Letnikov derivative [25]. For a polynominal function of time
f (t) = tn, Dα f = 0 for α > n; for harmonic waves considered here, Dαeiωt = (iω)αeiωt.
Standard relation (2) is obtained from (4) by taking γα = α = β = 1. In the frequency
domain, the above relation leads to the susceptibility

χ(ω) =
P0

E0
=

ω2
p

γα(−iω)α+1 + γβ(−iω)β
. (5)

Note that the constants γα, γβ ensure the proper dimensionality of the equation, e.g.,[
γαωα+1] = [ω2] and

[
γβωβ

]
=
[
ω2], so that χ remains a dimensionless quantity. Note

that we assume that the frequency ω > 0, so that electrostatic fields are not modeled. Thus,
the polarization P that is induced by a changing electric field is also always changing
in time.
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In contrast to other extensions of the Drude model, where the dissipation constant
and/or plasma frequency are frequency-dependent quantities [15], we introduce addi-
tional frequency dependence by directly modifying the exponent of the frequency. The
susceptibility is connected with the complex medium permittivity

ε(ω) = ε∞ + χ(ω) +
iσ

ωε0
, (6)

where σ is the conductivity, ε0 is the vacuum permittivity and ε∞ is the permittivity in
the limit of a very high frequency. Real and imaginary parts of ε are responsible for the
dispersion and absorption, respectively.

The Equation (4) can be easily adapted to model the Debye relation [18]

ε(ω) = ε∞ +
δε

1 + iωτ
, (7)

by taking β = 0, α = 0, ω2
p < 0, γb = 1. Usually, multiple terms as in Equation (7) are

used to model various relaxation processes [21]. However, due to the use of two separate
parameters α, β, the Equation (5) provides more flexibility than a simple Debye model.
In fact, it can be used to approximate some other fractional-derivative-based models. In
particular, the Cole–Cole model is given by [18]

ε(ω) = ε∞ +
∆ε

1 + (iωτ)1−α
+

σ

iωε0
. (8)

One can have a direct correspondence between Equations (5) and (8) by taking β = 0.
However, in the Havriliak–Negami model [20]

ε(ω) = ε∞ +
∆ε

(1 + (iωτ)α)β
, (9)

there are two parameters that do not correspond exactly to α, β in Equation (4).

3. Numerical Implementation

The finite-difference time-domain method (FDTD) consists of dividing the simulation
space into grid points and calculating the values of the electric and magnetic fields at those
points with evolution equations derived directly from Maxwell’s equations, with some
finite time step ∆t [17]. Due to the facts that the algorithm is based on first principles, has
well-known sources of numerical errors, and is easy to implement in parallel computing, it
is one of the leading tools for analysis of complex optical and plasmonic systems. One of the
methods used to include complex media in FDTD simulations is the auxiliary differential
equation (ADE) approach [27]; the medium polarization P is computed by numerically
solving a partial differential equation describing its evolution in time. For the regular
Drude model, one can derive the evolution equation for P from Equation (2). In the FDTD
scheme, one has a set of discrete values of polarization Pt, t = 1, 2, 3 . . . . To obtain the
first-order approximation of the first time derivative, one can use the relations

Ṗt+1/2 ≈
Pt+1 − Pt

∆t
,

Ṗt−1/2 ≈
Pt − Pt−1

∆t
,

Ṗt ≈
1
2
(Ṗt+1/2 + Ṗt−1/2). (10)

In a similar manner, one can define the second derivative as

P̈t ≈
1

∆t
(Ṗt+1/2 − Ṗt−1/2). (11)



Sensors 2021, 21, 4974 4 of 11

In our modified approach, the first step is to define the fractional derivative operator;
from the standpoint of computation with a discrete time step ∆t, the most convenient
definition is the truncated Grunwald–Letnikov derivative [25]

Dα f (t) = lim
∆t→0

1
∆tα

N

∑
k=0

(−1)k Γ(α + 1) f (t− k∆t)
Γ(k + 1)Γ(α− k + 1)

, (12)

where in numerical implementation ∆t is set to some finite value and N is a suitably large
number such that the components of the sum are negligibly small. Note that the left-sided
derivative is used, where only previous values of f (t) are needed. In other words, the
model is causal. In terms of discrete values of P, one obtains

DαPt− 1
2
=

1
∆tα

N

∑
k=0

(−1)k Γ(α + 1)
Γ(k + 1)Γ(α− k + 1)

Pt−k,

=
1

∆tα

N

∑
k=0

αkPt−k. (13)

By applying the above definition and the averaging procedure in Equations (10) and (11)
to the Equation (4), one obtains the relations for derivatives

Dα+1Pt =
1

∆t∆tα

N

∑
k=0

αkPt−k+1 − αkPt−k

DβPt =
1

2∆tβ

N

∑
k=0

βkPt−k+1 + βkPt−k (14)

and the equation of motion

γα

∆t∆tα

N

∑
k=0

αk(Pt−k+1 − Pt−k)

+
γβ

2∆tβ

N

∑
k=0

βk(Pt−k + Pt−k+1)−ω2
pEt = 0. (15)

After expanding and rearranging the terms, one obtains the evolution relation

Pt+1 = −
γα(α1−α0)

∆t∆tα +
γβ(β0+β1)

2∆tβ

γαα0
∆t∆tα +

γβ β0

2∆tβ

Pt

−
−γαα1
∆t∆tα +

γβ β1

2∆tβ

γαα0
∆t∆tα +

γβ β0

2∆tβ

Pt−1

−
γα

∆t∆tα

γαα0
∆t∆tα +

γβ β0

2∆tβ

N

∑
k=2

αk (Pt−k+1 − Pt−k)

−
γβ

2∆tβ

γαα0
∆t∆tα +

γβ β0

2∆tβ

N

∑
k=2

βk (Pt−k+1 + Pt−k)

+
ω2

p

γαα0
∆t∆tα +

γβ β0

2∆tβ

Et . (16)

which relates the new value of Pt+1 to the current value of Pt, the electric field Et and the
history Pt−k. For the case of α = β = 1, αk = βk = 0 for k > 1 the relation simplifies to the
standard form presented in [27].
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4. Results
4.1. Calculation of Susceptibility

Figure 1 shows the real part of the susceptibility calculated from the analytical
solution (5) and obtained from FDTD simulation. The medium parameters are set to
ωp = 0.3, γβ = 0.1, γα = 1. In Figure 1a the value of β is set to 1 and 0 ≤ α ≤ 1.5. Like in
the standard Drude model, the susceptibility is negative and for α ≤ 1, χ → −∞ when
ω → 0. For higher values of α, a distinct minimum of susceptibility occurs. One can see that
the accuracy is excellent in the medium frequency range, e.g., ω ≈ ωp; at the low frequency
limit, the large susceptibility corresponds to short wavelengths, which approaches the
finite spatial step of the simulation. Additionally, waves are highly absorbed in this region,
further decreasing prediction accuracy. In the very high frequency regime, accuracy is
limited by the fact that the wave period approaches the finite time step. In this region,
χ → 0 and the value of α has a significant effect on the speed at which this asymptote is
approached. Figure 1b shows the susceptibility calculated for 0 ≤ β ≤ 1 and α = 1. Here,
one can observe a transition from a pure Drude model β = 1 to a resonant model with
resonance frequency of ω = ωp (β = 0). Again, the calculations become inaccurate in the
regions of high absorption at ω → 0 and near the resonance. Overall, one can conclude that
the model allows for a very significant alteration of the dispersion relation while retaining
good stability and accuracy.

(a) (b)

Figure 1. Real part of susceptibility calculated analytically from (5) and numerically for various values of (a) α and (b) β.

An important factor for efficient implementation of the proposed model is the number
of terms N in the sums in Equation (16). Figure 2 shows the relative error of the numerical
susceptibility as a function of frequency, calculated with various numbers of the memory
terms Pt−k. One can observe that in general the error initially quickly decreases with fre-
quency for ω < 0.5ωp with a further, slower decrease at higher ω. The number of terms has
a high impact on the low frequency accuracy. In the solutions with low numbers of terms,
the error has a significant minimum; the calculated values below and above the frequency
where the minimum occurs are overestimated or underestimated, accordingly. This can be
attributed to the so-called numerical dispersion [17], which introduces a small frequency-
dependent term to the susceptibility regardless of the medium model. The effect is easily
visible in Figure 1a for the case of α = 1.5; the numerical results (dots) overestimate the
susceptibility for ω < ωp and underestimate it beyond this frequency. In the majority of the
spectral range, the error is greater than in the case of the standard Drude model (Figure 2,
green line) by a factor of 2–3. Apart from the large minimum, the error also exhibits a slight
oscillatory behavior, with the amplitude of oscillations reducing with an increasing number
of terms. One may conclude that the minimum number of summation terms that provide
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satisfactory accuracy is N ∼ 15, with relatively little gain from increasing N further. More-
over, the smooth error function with no short-term changes indicates that the model can be
easily tuned to maintain a very high accuracy within a chosen, limited spectral range; in
the standard FDTD implementation, it is straightforward to add a frequency-independent
term ε∞ to the dielectric susceptibility ε(ω) = 1 + χ(ω) [17], regardless of the medium
model introduced with ADE. By doing this, one can shift the spectral region where the
numerical results exactly match the theory. Alternatively, an additional Drude-like term
can be introduced to ADE to counteract the numerical dispersion. Finally, due to the fact
that parameters α and β can be changed continuously, one can optimize the accuracy by
using slightly different values for theoretical and numerical calculations.

Figure 2. Relative error of the model for α = 0.8, β = 0.8. Standard Drude model (green line) added
for reference.

The stability and accuracy estimations for various values of parameters α, β and ∆t
are shown in Table 1.

Table 1. Mean relative error η, in percent, between theoretical and simulated susceptibility, calculated in the range
ω ∈ (0.3ωp, 1ωp), for various values of parameters α, β and the time step ∆t; infinity (∞) indicates that the approach loses
stability and no results are obtained.

α ∈ 〈0, 2〉, β = 1, ∆t = 0.5
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
η ∞ 89 37 26 19 16 13 11 9 6 4 3 1 2 5 9 16 27 48 110 ∞
β ∈ 〈0, 1〉, α = 1, ∆t = 0.5
β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
η 9 11 12 13 13 12 12 12 11 10 9 12 690 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 117
∆t ∈ 〈0.05, 1.1〉, α = 1, β = 1
∆t 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.1
η 0.5 1 1 2 2 3 3 3 4 4 6 6 7 8 9 10 11 12 14 16 ∞
∆t ∈ 〈0.05, 1.1〉, α = 1.2, β = 0.9
∆t 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.1
η 0.5 0.8 0.7 0.7 0.6 0.5 0.1 0.4 1 2 3 4 5 6 7 9 10 12 14 17 ∞

In general, the approach is the most accurate for parameters α, β that are close to
unity. For stable operation, the parameter 0 < α < 2, while 0 ≤ β < 1.3. The error is
roughly proportional to the size of the time step, which needs to be chosen to obtain a
desired compromise between the calculation accuracy and speed. As in the nondispersive,
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one-dimensional FDTD, the approach loses stability for ∆t > 1. One can see that the loss of
stability is preceded by a significant increase in the error. Interestingly, for integer values
α = 1, β = 2 the approach is stable despite the fact that β is significantly larger than its
maximum stable value of ∼1.2.

The importance of the memory terms and hereditary properties of the medium
decreases as the parameters α, β approach the limit of the standard Drude model, e.g.
α = β = 1; in such a case, the necessary number of memory terms for the accurate com-
putation is reduced. In many applications, only a small modification of the medium is
considered [16]. In this study, we focus on the frequency response of the modeled medium
to monochromatic waves; the above-mentioned hereditary properties are more pronounced
in the time domain studies, especially in the context of mechanical stress–strain relations
and viscoelasticity [5,11,13,28]. In the field of electromagnetism, Gomez [14] has studied
the step response of the fractional-derivative Drude model in the time domain, discussing
the memory effects.

In the standard, two-dimensional implementation of FDTD, one has to define three
scalar field values at every grid point (for example, two components of the magnetic field
vector Hx, Hy and one component of the electric field Ez perpendicular to the simulation
plane) [17]. The inclusion of Drude or Drude–Lorentz dispersion models, as described
in [27], adds the medium polarization P. Particularly, one current (Pt) and one previous
(Pt−1) value of polarization is needed, resulting in 5 scalar values per grid point. The
example implementation of the fractional Drude model with 12-term memory adds another
10 scalar values, increasing the memory requirement by a factor of 3. However, it should
be noted that the increase is needed only for the part of the computational domain that
contains the fractional model medium.

Finally, it should be mentioned that the coefficients αk, βk in the sums in Equation (16)
need to be computed once for any given values of α, β and the calculation of the weighted
sum in Equation (13) is essentially a discrete convolution operation, which can be subject
to various numerical optimizations. An extensive discussion of the numerical application
of convolution to calculate a fractional derivative is presented in [29].

Another advantage of the presented model is its tunability. By allowing adiabatic
changes of α and β in the time domain simulation, one can achieve a dynamical tuning of
the optical properties of the medium.

4.2. Wave Propagation in Fractional Medium

Dispersive properties of the medium described by the function χ(ω) influence the
propagation of electromagnetic waves through the material. It directly affects the permit-
tivity ε = 1 + χ, refraction index n =

√
ε and the value of the wave vector k = ωn/c.

Assuming a harmonic wave with frequency ω and wavevector~k, from the relation (5)
one obtains

k2 =
ω2

c2

(
1 +

ω2
p

γα(−iω)α+1 + γβ(−iω)β

)
. (17)

The above relation is nontrivial for real parameters α, β due to the fact that both terms
in the denominator introduce separate, frequency-dependent contributions to both real
and imaginary parts of~k. One can simplify the problem by assuming that the medium is a
small modification of the Drude model, with α = 1 and β ∼ 1; in such a case, in the high
frequency limit one obtains

k ≈ ω

c

(
1−

ω2
pγαω2

2γ2
αω4 + i

ω2
pγβωβ

2γ2
αω4

)
. (18)

Thus, the imaginary part of k fulfills

Im k ∼ ωβ−3. (19)
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In a similar manner, one can derive the limit for α = 0, which is Im k ∼ ω0. As
mentioned in [7,9], there is a demand on dispersion models where the attenuation (which
is proportional to Im k) follows a frequency power law. Figure 3 shows the numerically
calculated imaginary part of the wave vector in the whole spectral range. The discussed
limiting cases are shown with colored lines, while the transitional spectra with fractional
values of α, β are shown in gray.

Figure 3. Imaginary value of the wave vector as a function of frequency, calculated for various values
of α and β.

There are two distinct regions ω < ωp and ω > ωp; below the plasma frequency, the
susceptibility is negative and correspondingly ε ≈ 0, Re~k ≈ 0; the wavevector is thus
purely imaginary, which corresponds to highly absorbed, evanescent waves. The parameter
β has a negligible impact on the absorption in this range. Above the ωp, the absorption
follows a power law (straight line), with the results consistent with Equation (19). The
dependence on the parameter α is more complicated; the steep reduction of absorption
at ω ≈ ωp for α = 1 becomes more gradual for smaller values of α. In the limit of
α → 0, the absorption becomes almost constant. In contrast to β, the parameter α has a
significant impact on the imaginary part of k in the region ω < ωp. While waves with such
frequencies are highly attenuated when propagating through the medium, the negative
value of permittivity (see Figure 1) allows for formation of surface plasmons. These
collective electron oscillations are highly sensitive to changes in medium properties [30],
which makes them a particularly promising field of study, where the proposed model could
be applied. One of the prospective applications of the fractional derivative model and
resulting power-law dissipation are metallic nanoparticle chains [9].

The above mentioned power-law dependence extends to other material functions such
as conductivity

σ = ε0ωIm χ. (20)

In the paper [16] the author proposed a fractional-derivative model based on Equation (2),
which is transformed to a dimensionless, first-order differential equation describing particle
velocity. Our model is consistent with the results in [16] when one sets β = 1 and α ≈ 1,
resulting in a small modification of the standard Drude model. Calculation results for
such parameters are shown in Figure 4. One can see that while a small modification of
α has a little impact on the σ for ω ∼ ωp, it dramatically changes the high-frequency
behavior of the medium. As the order of the fractional derivative decreases, the slope of
the high-frequency asymptote increases, which agrees with [16]. The impact of β is much
smaller in the high-frequency range, but is more significant for ω < ωp.
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Figure 4. The electric conductivity as a function of frequency, calculated for various values of α and β.

4.3. Application to Soft Tissue

As a practical test of the usefulness of the proposed model, we take the data from [26],
where the susceptibility and conductivity of 17 soft tissue types has been presented. Specif-
ically, we focus on the dispersive characteristics of blood in the region of 107–1010 Hz.
A characteristic feature of this medium is anomalous dispersion in a wide range of fre-
quencies, e.g., ∂ε/∂ω < 0, which is a result of many relaxation processes taking place in
this frequency range [21]. The standard Drude model (3) can be used to describe such a
medium by taking ω2

p < 0. However, its accuracy is limited to a small part of the spectrum
(Figure 5). The greater flexibility of the Equation (4) allows for a much better fit. The
calculated fitting parameters are ε∞ = 61.6, σ = 1.33, ωp = 107 Hz, γa = 13, γb = 0.99,
α = 0.31, β = 0.04. We have confirmed that FDTD results are stable and consistent with
the model despite the negative value of ω2

p. It should be noted that the Cole–Cole model
used in [26] to fit the experimental data consisted of two separate terms of the form (8).
This, in turn, necessitates the introduction of two auxiliary arrays and several additional
calculation steps in FDTD computation [19]. As shown in Figure 2, our model provides
accuracy in the order of 1% with the introduction of 3 additional arrays (5 terms in total).

Figure 5. Dielectric susceptibility of blood as a function of frequency.

5. Conclusions

A novel, two-parameter modification of the Drude model based on the Grunwald–
Letnikov fractional derivative has been presented. The analytical formulas for basic optical
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functions such as susceptibility have been derived and discussed in the context of wave
propagation in the medium. A numerical implementation of the model in the FDTD ap-
proach has been realized, expanding a well-known ADE method and taking advantage
of efficient discrete convolution computation. The numerical complexity and accuracy
of the approach was discussed and the limits of its stability have been established. The
results indicate that the proposed model is highly flexible and applicable to a wide va-
riety of optical and plasmonic systems, allowing for modeling of other modified Drude
models, as well as many fractional-derivative-based descriptions of complex dielectrics,
including soft tissues. This property makes it particularly promising for application in
electromagnetic biosensors.
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