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Access to affordable, objective and scalable biomarkers of brain function is needed to

transform the healthcare burden of neuropsychiatric and neurodegenerative disease.

Electroencephalography (EEG) recordings, both resting and in combination with targeted

cognitive tasks, have demonstrated utility in tracking disease state and therapy response

in a range of conditions from schizophrenia to Alzheimer’s disease. But conventional

methods of recording this data involve burdensome clinic visits, and behavioural tasks

that are not effective in frequent repeated use. This paper aims to evaluate the technical

and human-factors feasibility of gathering large-scale EEG using novel technology in

the home environment with healthy adult users. In a large field study, 89 healthy

adults aged 40–79 years volunteered to use the system at home for 12 weeks, 5

times/week, for 30 min/session. A 16-channel, dry-sensor, portable wireless headset

recorded EEG while users played gamified cognitive and passive tasks through a tablet

application, including tests of decision making, executive function and memory. Data

was uploaded to cloud servers and remotely monitored via web-based dashboards.

Seventy-eight participants completed the study, and high levels of adherence were

maintained throughout across all age groups, with mean compliance over the 12-week

period of 82% (4.1 sessions per week). Reported ease of use was also high with mean

System Usability Scale scores of 78.7. Behavioural response measures (reaction time

and accuracy) and EEG components elicited by gamified stimuli (P300, ERN, Pe and

changes in power spectral density) were extracted from the data collected in home,

across a wide range of ages, including older adult participants. Findings replicated

well-known patterns of age-related change and demonstrated the feasibility of using

low-burden, large-scale, longitudinal EEG measurement in community-based cohorts.

This technology enables clinically relevant data to be recorded outside the lab/clinic,

from which metrics underlying cognitive ageing could be extracted, opening the door

to potential new ways of developing digital cognitive biomarkers for disorders affecting

the brain.
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INTRODUCTION

Recent advances in digital technologies provide a wealth
of opportunity in the management of health conditions.
In neurological disease the heterogeneity and complexity
of conditions, along with continuing reliance on traditional
subjective measurement tools, have presented a challenge for
the development of data-driven biomarkers for diagnosis,
monitoring and prediction of therapeutic response (1–7). The
suite of tools described in this paper was designed to enable
longitudinal, in-home data collection of brain electrophysiology
and cognitive performance. The platform comprises (1) a
dry sensor, wireless electroencephalography (EEG) headset that
records brain activity, (2) gamified versions of cognitive tasks,
and (3) cloud-based storage and automatic processing—with the
aim of identifying potential digital biomarkers with utility in
neuropsychiatric and neurodegenerative disorders.

EEG directly reflects neural synaptic function, with similar
patterns from animal to human (8–10) and thus has substantial
potential as a brain-based, translatable biomarker for diseases
such as schizophrenia (11–18), depression (19–21) and
Alzheimer’s disease (AD) (22–29). However, traditional
research EEG setups are effortful and time-consuming, requiring
expensive equipment and the support of personnel with technical
training. Single or infrequent lab-based EEG recording sessions
may be affected by a range of factors including fluctuations in
levels of participants’ mental alertness, fatigue and task-induced
mental workload (30, 31). Similarly, cognition as traditionally
measured in therapeutic research and practise tends to take the
form of clinician administered batteries of neuropsychological
tests [e.g., (32, 33)] which, whilst low burden and relatively
inexpensive, are subject to variability in scores on repeated
testing occasions (34). Infrequent, “snapshot” assessments are
subject to measurement error arising from multiple factors,
such as practise effects (35–37), the “white-coat effect” related
to anxiety about suspected cognitive impairment (38), and day-
to-day fluctuations in context (39), in mood and in perceived
stress (40–44).

The adoption of modern technology into medicine allows
for more innovative forms of data collection (e.g., wearable
devices), increasing objectivity and taking advantage of powerful
analytical tools to probe complex diseases. Further, digital tools
may allow for more frequent sampling and detection of subtle
daily fluctuations, at minimal disruption to the patient since data
may be collected both inside and outside of the clinic. Progress in
modern electronics and dry sensor technology means that EEG
is emerging from amongst standard brain imaging methods as a
mobile technology, suitable for deployment to very large cohorts
for convenient at-home use (45). Likewise, neuropsychological
testing can now be completed outside of the clinic through the
use of automated, web-based assessments (46–49).

Mobile EEG systems are advancing quickly. Several studies
have shown that it is possible in principle to collect EEG
recordings using consumer-grade hardware, and from the data
extract potentially useful neuronal signals, including spectral
band-power measures (45, 50, 51) and task-evoked event-
related potentials (ERPs) (52–55). However, studies using such

devices have typically required some specialist equipment (e.g.,
a computer running bespoke software to present stimuli and
record EEG), and a specialist experimenter to set up and
supervise the recording. In addition, most consumer-grade EEG
platforms operate using low numbers of electrodes, leaving
some research questions and certain types of analysis out of
reach for researchers. To the authors’ knowledge, there exists
no prior example of large-scale, unsupervised in-home, repeated
sampling ERP research using a dry-sensor, portable, user-friendly
EEG platform.

Innovative solutions can be deployed to enable us to
carry out unsupervised data collection without placing undue
burden on the user, such as ‘dry’ sensors (i.e., eschewing the
conductive gel used in the laboratory in favour of an easier
electrode setup) and automated user-facing stepwise tutorials
and notifications (to compensate for reduced environmental
control outside the laboratory). Similarly, for use at home over
repeated sessions, EEG/ERP tasks as used in research may not
be particularly exciting or motivational for the user, but applying
gamification can make these tasks more engaging and rewarding
for participants (56) and gamified cognitive tasks can facilitate
global data gathering on an unparalleled scale (57).

The study presented here was a first, proof-of-concept, field
study to test the human-factors and technical feasibility of
an early version of the Cumulus Neuroscience platform in a
cohort of healthy adults spanning an age range up to 79 years
old. In this paper we investigate the potential of this platform
to capture in-home, frequent repeated measurement of EEG
and behavioural metrics of cognitive ageing, metrics that also
have broader appeal as potential cognitive biomarkers for the
diagnosis and treatment of disorders affecting the brain. Use
of the platform on a regular basis over 3 months assesses
the acceptability of long-term use for future use cases where
longitudinal progression tracking is required, avoids dependence
on a single “snapshot” measurement, and allows for improved
signal quality through aggregation of EEG data collected in the
home (an unsupervised environment).

Analyses are presented that quantify reported ease-of-use, and
resultant levels of weekly adherence over a period of 3 months
of unsupervised at-home use. The gamified cognitive tasks are
evaluated for face-validity, by comparing key known behavioural
effects with data gathered in the home, and examining effects
of age that have been reported in the literature. Similarly the
EEG data is examined at grand-average level to confirm that it
replicates the main features (waveform morphology and timing,
frequency content, scalp topography) of the neural signatures
that the gamified tasks are designed to elicit.

METHOD

Participants
89 healthy adult volunteers (67 female), aged between 40 and
79 years (mean 58.78, s.d. 8.86) with a Montreal Cognitive
Assessment (MoCA) score ≥24 gave informed consent to
take part in the procedures approved by Queen’s University
Belfast Ethics Committee. Recruitment channels included “Join
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FIGURE 1 | Flow of EEG and behavioural data.

Dementia Research,” local community groups and use of print
media and social media.

The Platform
The platformwas designed to enable frequent, objective sampling
of brain-based markers of cognition inside and outside of the
clinic/lab setting, using a dry sensor, wireless encephalography
(EEG) headset that records brain activity, accompanied by
gamified versions of cognitive tasks presented via a tablet-based
app. Upon logging into the app, a stepwise tutorial guides the
user through setup of the headset (covering placement on the
head, positioning of the detachable mastoid sensors and feedback
on sensor impedances) in preparation for recording data during
the gamified tasks. Cloud-based secure methods are used for
collection and automatic processing, as well as integration
with other data streams (in this study participants wore a
fitness tracker, the Withings Go) and web-based dashboards for
monitoring and data visualisation on a daily, session-by-session
basis (Figure 1).

EEG
The wireless EEG headset (Figure 2) consists of dry flexible
Ag/AgCl coated polymer sensors at 16 channels (O1, O2, P3,
Pz, P4, Cz, FT7,FC3, FCz, FC4, FT8, Fz, AF7, AF8, FPz). The
left and right mastoids are used for reference and driven-bias,
with single-use, snap-on electrodes attached to wires extending
from the headset. The electronics and sensors are mounted
on flexible neoprene, and the stretchable structure incorporates
anatomical landmarks in the form-fit of the headset to encourage

consistent placement by users in line with the 10–20 sensor
system. The analogue headset has high input impedance of 1 G�,
a configurable driven bias function for common-mode rejection,
built-in impedance checking, and configurable gain and sampling
rates. An onboard processor and Bluetooth module transmit
250Hz EEG data to the tablet, from where it is transferred to
a cloud server for storage and processing. EEG recording and
behavioural events are timestamp synchronised to±2 ms.

Cognitive Tasks
The gamified tasks (Figure 3) are based on well-known
paradigms from experimental electrophysiology and cover a
range of core cognitive functions. Cognitive/electrophysiological
tasks were gamified with the aim of improving motivation,
i.e., to enhance attentiveness during testing and to prevent
boredom over repeated plays, while maintaining the core
cognitive components of the original task. Feedback on gameplay
performance was provided (e.g., points awarded for speed
of responses where appropriate), along with personalised
leaderboards to promote long-term adherence to the study
schedule. Each daily session comprised a resting state plus two of
the four other games (alternating between sessions). Participants
also answered a daily health and lifestyle questionnaire to further
contextualise the daily recordings. Daily sessions were designed
to take <30min total time from start to finish.

Two-Stimulus Visual Oddball
This gamified version of the classic 2-stimulus visual oddball
paradigm (58), presents target stimuli (aliens—requiring the
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FIGURE 2 | Sixteen-channel wireless headset designed with pliable sensors and the sensor signal quality check.

FIGURE 3 | Images of 2-stimulus visual oddball, flanker, n-back, and delayed match-to-sample gamified tasks.

participant to tap on the screen, n = 30) and non-target
stimuli (visually different aliens—requiring no response from
the participant, n = 70) across five levels of gameplay, as
well as 15 “bonus” stars throughout the game (to enhance
gameplay and not included for analysis). Behaviour (reaction
time and response accuracy) and corresponding EEG correlates
are indicative of neural dynamics of the decision-making process
and the attention and working memory on which it relies (59–
61). Using EEG, a positive voltage deflection can be observed over
the parietal cortex starting∼300ms following presentation of the
stimulus, known as the P300 event-related potential (ERP). With
advancing age, the amplitude of the P300 is known to decrease,
and its latency known to increase (62–64).

Flanker
Inhibition and error awareness were probed using a gamified
version of the Erikson Flanker task (65). Fish served as directional
stimuli and were presented across five levels with a shoal of
fish (flanking stimuli) appearing first, followed by the central
(target) fish. The participant was asked to tap on the side of
the screen corresponding to the direction of the central fish,
ignoring the flanking fish (either congruent or incongruent
stimuli, split evenly between the 150 trials), presenting a
cognitive challenge reflected in behavioural responses (accuracy
and reaction time) and EEG. The relevant EEG metric
extracted from this task is the Error-related negativity (ERN)—
a negative voltage deflection observed on error trials most
prominently over the fronto-central scalp, followed by a
subsequent positive rebound in the signal (the Error Positivity,
or Pe) (66). Previous studies have consistently reported a
decrease in the negative amplitude of the ERN with progressing
age (67).

N-Back
The visual n-back paradigm (68) taxes working memory and
executive function with age-related differences in behavioural
performance, according to recent meta-analysis (69). In the
current study, this game had a continuous short-sequence
memorisation of 4 different playing cards where the participant
was asked whether the current card is a “match” or “no-
match” to the card seen 2 trials before. This 2-back paradigm
consisted of 100 trials presented across two levels, with a 33%
match rate.

Delayed Match-to-Sample
A visual delayed match-to-sample task, this task targets
recognition memory, a key cognitive function known to be
affected by age (70), across 50 trials, presented in blocks of 5, with
50% overall match rate (71). Each level is set in a specific location
(beach, jungle, etc) where the user is presented with a variety of
objects which must be encoded into memory to be retrieved after
a brief (10-s) distractor game which involves connecting dots.
Points are earned by identifying previously presented items at
retrieval and rejecting unseen items.

Resting State
In this passive task (72) participants selected a relaxing scene
(forest, park or beach) for 1min of restful eyes open followed by
1min eyes closed. This task elicits resting electrocortical activity
and seeks to produce an increase in the neural oscillatory power
of the alpha frequency band (7–13Hz) when eyes are closed
relative to eyes open, a physiological measure sensitive to a range
of neurocognitive and psychiatric disorders, ageing, as well as
sleep quality and caffeine intake (22, 73–75).
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Procedure
Participants attended two in-lab sessions, at baseline and
following 12 weeks of at-home use of the platform.

Lab Sessions
Lab sessions consisted of neuropsychological testing followed by
in-lab use of the platform. Neuropsychological assessment was
carried out for screening and to facilitate potential longitudinal
follow-up and/or comparison with other datasets, and is not
analysed in this paper. The MoCA (76) was selected as a
screening tool using a cut-off of ≥24 to be representative of
normal cognitive function, in line with findings reported in
the Irish older adult general population (77, 78). Participants
then completed tasks from the Cambridge Neuropsychological
Test Automated Battery (CANTAB) covering multiple domains
including psychomotor skills, executive function, memory and
attention domains before completing a session with the platform.
Participants provided ratings of the usability of the platform at
baseline, 6 and 12 weeks into the study on the System Usability
Scale (SUS), a 10-item industry standard questionnaire designed
specifically to assess use of technology (79).

Home Sessions
Participants were asked to use the platform as described in
section The Platform, at home, over the course of 12 weeks.
These sessions were ∼25–30min and participants were asked
to contribute 5 sessions per week (one session per day, days
unspecified for participant convenience). Throughout the 12-
week period, participants wore a fitness tracker to monitor their
step count and sleep, and answered questions about daily well-
being and lifestyle habits (not analysed in the current paper).

Analysis
To measure usability of the platform across age groups and
feasibility of extracting features reflecting cognitive ageing,
participants were assigned to three groups for analysis: those
aged 40–54 (n = 26), 55–66 (n = 35), and 67–79 (n = 17)
years. Usability measures used for analysis were adherence and
participant-reported SUS scores, as well as technical measures
of signal reliability. To investigate feasibility and explore
effects of cognitive ageing, behavioural and EEG metrics were
extracted across age groups. Additionally, event-related potential
waveforms were plotted for comparison based on single game-
play median epoch, single-participant averaged epochs and
whole-sample grand averaged epochs. Validity of the approach
can be established by confirming that behavioural and neural
patterns observable in the literature (e.g., differences in timing
between congruent and incongruent trials; the waveform and
scalp topography of ERP components) are seen in the data
recorded unsupervised in the home, and that age-related changes
in these variables reflect the published consensus. Ninety five
percentage confidence intervals are reported throughout using
the upper and lower bounds.

Behavioural Analysis
Measures of accuracy and speed of response were extracted
from the cognitive games played using the platform (2-
stimulus oddball, flanker, n-back and delayed match-to-sample)
to establish face validity against that which the literature
leads us to expect. For this analysis, we averaged different
behavioural measures across game-plays. To investigate reaction
times, we chose the median reaction time per game-play,
taking the median-average per participant to calculate age group
mean comparisons and sample means. To compare rates of
accuracy, we calculated percentage accuracy per game-play. We
produced a mean accuracy rate per participant for age group
and sample mean comparisons. Additionally, we calculated
confidence intervals as an indication of variance. To visualise
age group differences across game plays, the log-transformed
game-play number was used as an explanatory variable of
the different behavioural metrics per group in a linear model
and a 95% confidence interval was calculated using 1,000
bootstrapping resamples.

EEG Analysis
The processing pipeline consists of filtering from 0.25 to 40Hz,
customised artefact removal, epoch extraction and baseline
removal. Metric-based methods for removing invalid ERPs and
PSDs were applied to outputs. Two event-related potential
(ERP) components, the P300 (a positive-going waveform
which peaks >300ms after the presentation of an attended
stimulus, associated with decision-making) and the Error-
Related Negativity (a negative-going, response-locked waveform
associated with error-awareness) were computed as the smoothed
pointwise median of epochs within each session. Power spectral
density (PSD) was computed using a 1,024 point Fast Fourier
Transform (FFT) with Welch’s method of averaging (using a
256 sample window) on the resting-state eyes-open and eyes-
closed data. For this analysis, time-series data was converted to
average reference to remove lateralised effects of the original
single-mastoid reference. Mean and 95% confidence intervals
were computed across all sessions from participants within each
age group.

RESULTS

Usability
Of the 89 healthy adult participants that enrolled in the study
(67 female, mean age = 58.78, mean MoCA score = 27.12), 11
participants withdrew and 78 (61 female) completed the study
(mean age = 58.99 mean MoCA score = 27.06), yielding an
attrition rate of 12.40%. Data from those who withdrew was
excluded from the following analyses reported.

Reasons for withdrawal cited were work/caring/other
commitments (n = 3) and/or illness/health-related issues (n =

6). Two participants cited both health and caring commitments.
One participant mentioned a faulty headset as an additional
factor in the decision to withdraw; this participant’s headset
had required repair. Four participants did not give any reason.
The mean number of sessions contributed by participants who
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FIGURE 4 | Weekly adherence. Mean number of sessions per week across all participants and by age group. Error bars show upper and lower 95% confidence

intervals.

TABLE 1 | System usability scale scores by age group at baseline, 6 and 12 weeks.

40–54 years 55–66 years 67–79 years

Mean 95% CI n Mean 95% CI n Mean 95% CI n

Baseline 81.35 ±5.99 26 77.94 ±4.60 34 66.62 ±9.01 17

6 weeks 81.56 ±5.81 24 85.44 ±3.69 34 72.81 ±7.08 16

12 weeks 80.50 ±6.04 25 81.50 ±4.62 35 68.38 ±8.05 17

withdrew was 16.82 [8.41–25.23], ranging from 1 (completed in-
lab) to 45 sessions. The mean duration of at-home involvement
by those who withdrew was 5.55 weeks [3.22–7.88].

Figure 4 shows the rate of weekly adherence for those who
completed the study (n = 78), including a breakdown of weekly
adherence by age group [40–54 years (n = 26), 55–66 years (n
= 35) and 67–79 years (n = 17)]. For those who completed,
mean number of sessions contributed per week was 4.10 [3.97–
4.23], out of a target of 5 per week and the mean total number
of sessions contributed per participant was 49.14 [46.54–51.74].
By age group, mean number of sessions per week was 3.56 [3.33–
3.78] for those aged 40–54, 4.31 [4.12–4.50] for those aged 55–66
and 4.48 [4.22–4.74] for those aged 67–79 years.

Participants were asked to evaluate usability via the System
Usability Scale (SUS) at 3 timepoints. Mean SUS scores were
76.59 [72.94–80.24] at baseline, 81.45 [78.33–84.57] at 6 weeks
and 78.28 [74.74–81.81] at 12 weeks (see Table 1). It is worth
noting that the mean SUS score at baseline from those who
subsequently withdrew was 75.23 [64.42–86.04] and of those who
were still enrolled at 6 weeks, mean SUS score was 74.64 [62.62–
86.67].

Ability to use the system to record usable EEG in the at-
home setting, reported in Figure 5, was considered by measuring
the percentage of time that individual sensors were connected

to the scalp (i.e., recording non-saturated data) for the different
age groups. Three thousand six hundred three sessions were
successfully uploaded to the cloud server. Of these, 95.81% (3,452
sessions) contained portions of EEG data that could be used for
analysis, even though certain sections of that session, or certain
sensors, may be very noisy. One hundred and fifty-one sessions
were rejected in their entirety, due to saturated data sections,
high variance sections or gaps. By comparison, the behavioural
data, where 99.03% (3,568 sessions) contained a complete set of
response measures for at least one of the two games assigned
per session. There were 116 sessions for which behavioural data,
but not EEG data, was suitable for analysis.

Behaviour
To establish face validity of the gamified behavioural tasks, key
metrics from each game were extracted to evaluate against what
would be expected from traditional lab paradigms described in
the literature. The temporal development of several illustrative
metrics, stratified by age-group, is displayed in Figure 6.

Two-Stimulus Oddball Game
Similar to lab versions of simple decision-making task which do
not challenge the accuracy of responses, the gamified version
demonstrated high accuracy, mean 97.71 [97.08–98.35]%. Age
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FIGURE 5 | Percentage of time each of 16 channels recorded non-saturated data, shown across age groups.

FIGURE 6 | Behavioural responses to gamified cognitive tasks over 12 weeks across age group. Shading indicates 95% confidence interval. (A) median correct RTs

to targets in 2-stimulus oddball task; (B) median correct RTs to congruent trials in flanker task; (C) percentage accuracy, all trials, n-back task; (D) percentage

accuracy, all trials, delayed match-to-sample task.

group means were 98.7 [98.32–99.08]% for 40–54 years, 98.05
[97.16–98.95]% for 55–66 years, and 95.5 [93.62–97.39]% for
67–79 years. As the game rewards speed of response (in its
scoring procedure), and due to learning/strategizing effects, we
expected reaction time (RT) to improve with repeated gameplays.
Figure 6A shows the temporal trend of speed of response over
consecutive sessions, and clear separation of the three age bands
is visible. Reaction time per group, averaged over all sessions, was

366.76 [352.68–380.84] milliseconds (ms) for 40–54 years, 414.85
[393.17–436.54] ms for 55–66 years and 449.58 [423.45–475.70]
ms for 67–79 years.

Flanker Game
This task is time-restricted, and encourages the player to
make a trade-off between speed and accuracy of response (as
erroneous response trials are those that yield the key EEG
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metric). Incongruent trials require inhibition and possiblemotor-
replanning relative to congruent trials, and this is seen in an
inhibition cost of 62.16 [56.62–67.7] ms. The inhibition cost per
age group was 55.87 [48.28–63.45] ms for 40–54 years, 64.67
[56.0–73.34] ms for 55–66 years and 66.89 [52.99–80.8] ms for
67–79 years.

Incongruent trials induced many more errors [8.45 (7.06–
9.84)] than congruent trials [2.02 (1.66–2.68)]. Looking at the
temporal development of the congruent condition reaction times
alone (Figure 6B), a pattern of learning from session to session,
and separation of age bands, is visible.

N-Back Game
This game requires cycling of information in and out of short-
termmemory. RTs were slower for non-match [1,075.83 (990.77–
1,160.9) ms] than match trials [919.56 (857.76–981.36) ms],
however accuracy rates were higher for non-match [87.71 (86.41–
89.01)%] vs. match trials [74.76 (71.91–77.60)%]. Accuracy rate
was 76.49 [72.96–80.02]% for 40–54 years, 75.56 [70.57–80.55]%
for 55–66 years and 70.46 [64.6–76.32]% for 67–79 years on
match trials and 87.51 [85.73–89.29]% for 40–54 years, 89.29
[87.41–91.16]% for 55–66 years and 84.77 [81.47–88.08]% for 67–
79 years on non-match trials. Figure 6C shows accuracy rates on
all trials, by age group, across repeated game-plays.

Delayed Match-to-Sample Game
This is not a speed challenge task, however, RTs to match trials
were faster than non-match trials 886.99 [847.27–926.71] ms vs.
1,060.31 [1,013.4–1,107.22] ms, a pattern reflected in RTs by age
group: 796.27 [754.02–838.52] ms, 890.05 [840.75–939.35] ms
and 1,027.89 [914.95–1,140.83] ms for match trials compared
to 944.11 [898.82–989.41] ms, 1,079.58 [1,007.6–1,151.56] ms
and 1,208.17 [1,102.96–1,313.39] ms for non-match trials, for
40–54, 55–66, and 67–79 years. Memory performance is known
to decrease with age, and divergence can be seen in Figure 6D

for the oldest age-band, though again not between the younger
and middle bands. Separate examination of the accuracy for
match and non-match trials showed that this difference in
performance was primarily driven by the non-match trials. Over
the sample, accuracy was 93.16 [92.04–94.28] for match vs.
81.82 [79.35–84.30] for non-match trials, while accuracy rates
across the age groups showed more difference for non-match
compared to match trials: 85.67 [82.61–88.72], 80.98 [76.72–
85.24], and 77.38 [72.51–82.24], compared to 93.85 [92.41–
95.28], 93.12[91.24–94.99], and 92.12 [89.44–94.81] for non-
match and match trials, respectively, for the age groups 40–54,
55–66, and 67–79 years. These results suggest that the non-match
trials acted as effective lures.

EEG
For the resting-state task, power spectral density (PSD) was
plotted at occipital sites to explore the effectiveness of the
platform to measure change in alpha power between the eyes-
open and eyes-closed conditions of resting-state task, across
the three different age bands (Figure 7). Data from all 78
participants was included in the analysis. The number of sessions
per comparison at electrode site O1 for eyes-open/eyes-closed

were 904 for 40–54 years, 1,511 for 55–66 years, and 791 for
67–79 years. For electrode site O2, number of sessions were
903 (40–54 years), 1,513 (55–66 years) and 792 (67–79 years).
The eyes-open data clearly shows the expected 1/f pattern of
signal power falling with increasing frequency, and an alpha band
peak around 10Hz. As expected, the alpha peak amplitude is
increased in the eyes-closed condition, as well as in the lower
beta band (15–20Hz). Figure 7A displays the effect of age group
on absolute band power. There is a clear monotonic decrease in
power with age in the difference condition with the largest eyes-
open/eyes-closed difference for those aged 40–54 and the smallest
difference for those aged 67–79 in the alpha and lower beta
range. Furthermore, it can be seen that the average peak alpha
frequency is highest for younger participants, and lowest for older
participants. No consistent pattern is apparent in alpha power for
the eyes-open and eyes-closed conditions alone, although there
are clear distinctions between groups in the gamma range (30–
35Hz). This may indicate a difference in noise floor between the
age groups. We applied a suitable normalisation by taking the
relative power on this analysis (80). Relative power is shown in
Figure 7B, again demonstrating a stratified pattern of age group
on alpha power and peak frequency, most evident in the graph
of the eyes-closed condition. It is noticeable that there is more
fluctuation in the higher frequencies for the oldest age group
(67–79 year olds).

Evoked and event-related potentials elicited in the gamified
2-stimulus oddball and flanker tasks were also extracted at a
single-session, single-participant and grand average level (shown
in Figures 8, 9). Figure 8C illustrates the grand average ERP
for target trials on the 2-stimulus oddball, at the centro-parietal
location CPz, where the P300 is centred. This is a robust
average over multiple sessions contributed by 77 participants,
time-locked to the presentation of the stimulus (data from one
participant, n = 26 sessions, did not meet quality thresholds for
inclusion at this channel). Interpolated topographies (Figure 8D)
across all 16 channels at ERP peaks are shown at 0, 200 and
420ms post-stimulus onset. The principal waveform features of a
P300 ERP are visible in the early sensory processing components
(∼0–250ms with an occipital focus) and the P300 component
(∼300–500ms, with a centro-parietal focus). A strong readiness
potential can also be seen before stimulus presentation (−500–
0ms). The other two panels show the median stimulus-locked
epoch from 29 correctly identified target trials from a single
game-play session (Figure 8A), and the median-average across
18 out of a total of 21 game-play sessions (3 did not meet
quality thresholds), contributed by a participant aged 44 years
(Figure 8B). Figure 8E demonstrates examples of successful
session-level ERPs evoked during a single game-play session,
representing 6 users across the different age groups in the study
(2 participants from each age group). Unsuccessful sessions yield
waveforms that show a discernible ERP overlaid with noise, flat-
line signals (e.g., due to an unconnected sensor), or noise of
various heterogenous types.

Figure 9C illustrates the grand average difference ERP for
error trials on the flanker task, at the central Cz location,
where the ERN is observed (total 1,004 sessions). This is
a robust average over multiple sessions contributed by 76
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FIGURE 7 | Resting state task. (A) power spectral density (PSD) in decibels (dB) at O1 and O2 by age group in eyes-open and eyes-closed conditions, and the

difference condition; (B) relative power at O1 and O2 by age group in eyes-open and eyes-closed conditions with logarithmic scaling for display only.
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FIGURE 8 | P300. (A) single-session median; (B) single-participant mean; (C) grand mean; (D) grand mean topographies selected at ERP peak timepoints; (E)

examples of single-session median ERPs successfully recorded from game plays from 6 different participants (2 participants per age group).
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FIGURE 9 | ERN. (A) single-session median; (B) single-participant mean; (C) grand mean; (D) grand mean topographies selected at ERP peak timepoints.

participants, time-locked to touch-response (single-channel data
was excluded from 2 participants, who contributed 6 and 8
sessions). Grand average topography (Figure 9D) across all 16
channels at ERP peaks are shown at 30 and 260ms post-
stimulus onset. The event-related negativity (ERN) waveform is
clearly represented (peaking at ∼50ms), with a central focus,
as is the error positivity (Pe) with a centro-parietal focus (peak
∼250ms). Figure 9A shows the correspondingmedian response-
locked epoch across 12 error trials following a single game-play
session, contributed by a participant aged 52 years. Figure 9B
displays that participant’s median-average across 14 out of 16
game-play sessions.

The P300 and ERN components were also compared by
age group. Figure 10A shows grand-averaged epochs per age
group on single channel CPz for the stimulus-locked ERP
from the visual oddball, and Figure 10B shows these at Cz for
the response-locked ERP of the flanker task. The number of
participants and sessions per comparison at electrode site CPz
were 26 and 397 for 40–54 years; 34 and 515 for 55–66 years;
17 and 240 for 67–79 years. For electrode site Cz, number of
participants and sessions were 23 and 339 (40–54 years); 35 and
473 (55–66 years); 17 and 182 (67–79 years). The impact of signal
variability from individual sessions (both noise, and genuine

inter-individual differences) is quantified in the 95% confidence
intervals illustrated.

The P300 shows early differences in latency in sensory
processing, and separation in amplitude among the groups,
where disruption increases with age. In the Flanker task ERP, the
early ERN component is attenuated in both older groups, relative
to the youngest group, and the later Pe component is reduced for
the oldest group.

DISCUSSION

Usability
This proof-of-concept paper reports findings from the first time
that this novel EEG platform was deployed in-field. After a
single training session, participants, including older adults up
to the age of 79 years, were able to use the technology at
home to successfully perform EEG and behavioural recordings
without the supervision of trained technicians. This study yielded
3,603 uploaded sessions, >95% of which contained usable data
(i.e., EEG and behavioural metrics could be extracted from
the submitted data), providing encouraging evidence supporting
the feasibility of this technological approach to cognitive
neuroscience research.
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FIGURE 10 | Showing age-related differences in event-related components recorded using the platform. (A) P300; (B) ERN.

Users were asked to trial and evaluate this new system for
monitoring brain health at home and to contribute five 30-
min recording sessions per week, which was a considerable
effort given that no extrinsic incentives or disincentives were
applied to promote adherence to this schedule. Adherence to
this schedule was remarkably high, relative to other reports of
in-home monitoring devices in older populations over similar
time courses [∼55% (81, 82)]. For the current study, attrition
was low (12.4%) and the average contribution was >4 sessions
per week (>80% adherence to schedule). Older adults had
the highest rates of adherence, indicating that age was no
impediment to using the system regularly. A high level of
adherence was maintained throughout the 3-month period
without substantial decline in the latter weeks of participation,
testament to both the power of gamification and usability of
the system motivating and facilitating repeated play, and the
level of commitment from the study participants. Maintaining
adherence in unsupervised environments is challenging and
may be particularly so for psychiatric populations (83), however
widespread evidence from other diseases, where there has been a
broad uptake in new technologies, indicates that patient-centric
digital monitoring provides more objective, frequent tracking
with clear healthcare benefits (84–86) and have been shown to
lead to better compliance relative to paper based assessments
(86, 87).

Reported usability was somewhat lower for the oldest age-
band, although it is worth noting that their lowest average
score still falls within the range between “ok” and “good”
(88). Contrary to our expectations, this did not result in
reduced adherence, suggesting that many challenges of manual
dexterity or familiarity with digital technologies had been

successfully mitigated during the initial user-focused design
process. However, signal reliability measures indicated that the
oldest age band experienced the greatest difficulty in obtaining
good sensor connectivity, particularly around themidline sensors
(Cz) located at the top of the head. Younger participants achieved
slightly better connectivity at Cz but also better connectivity on
adjacent sensors. Head shape is variable at the crown, meaning
that generic headset sizing options are not always optimal.
That location may also require additional manual dexterity and
adjustment, which is more difficult for older populations. In
the light of these findings from the first deployment of this
technology in-field, subsequent incremental improvements to
the headset, app and enrolment training procedures have been
deployed which have resulted in superior sensor connectivity and
data quality (89, 90).

In addition to investigating the overall usability of the
platform, empirical data collected in this study was used to assess
the potential of collecting scientifically valid neurocognitive data
from remote, fully autonomous participants.

Behaviour
All gamified cognitive tasks exhibited some degree of a learning
effect. Reaction times generally decreased rapidly over the first
five sessions of a given task (see Figure 6). This likely reflects
the development of task-specific perceptual-motor skill, rather
than a change in the underlying cognitive function probed by the
task (i.e., “brain training”). Time spent developing task strategies,
and learning the layout of the task environment, is likely to have
enabledmore effective allocation of visual attention and therefore
faster responding (91). Age-related effects on speed of response
were generally preserved throughout this learning phase and
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into asymptote, with the oldest participants consistently making
their responses more slowly than other age groups, consistent
with the literature. Regarding accuracy over time, participants
on average improved very slowly and consistently on the n-back
task throughout the study, as expected since n-back variants
are typically included with brain training suites due to their
inherent learnability (92). Participants, regardless of age band,
demonstrated less of a learning effect in the visual delayed
match-to-sample task, potentially reflecting the simplicity of this
basic old/new matching task for healthy adults however again,
the oldest participants scored lowest on this task throughout
the study, consistent with age-related decline in memory
performance. These learning curves themselves (Figure 6),
enabled through the ability to collect multiple assessments over
time, may be a rich source of data and potentially informative
measures of underlying cognitive function (93), with recent
research showing that rate of learning, in the context of a
cognitive task conducted over multiple days, can differentiate
groups by age (94) and neuropathology (95).

EEG
EEG signals described in this paper (resting-state spectral
activity and the P300 and ERN ERPs) demonstrate morphology
consistent with those elicited by non-gamified, laboratory
paradigms described in the literature. Furthermore, grand
average visualisations of P300 and ERN ERPs across age
bands replicate classic electrophysiological patterns of age-
related change.

The study design included repeated use to permit aggregation
of EEG data collected in the home, as a means of improving
reliability and signal to noise ratio. The focus in this paper is
on group level grand-average analyses, common in cognitive
neuroscience literature. Although, as can be seen in the data
presented in this paper, it is feasible to obtain cognitive ERP
components from users (across different age groups) based
on single, home-based sessions. As might be expected, not all
sessions were available for analysis with factors such as saturated
signal or high variance rendering the data unusable. However,
over 95% of sessions contained EEG fromwhich at least a portion
of the data was usable, even though certain sections of that
session, or certain sensors, may have been noisy. In order to
support participants to achieve good signal quality, the system
included a sensor signal check step at the beginning of every
session to give feedback on impedance levels to encourage self-
adjustment for a good connection.

EEG devices that offer miniaturisation of the EEG amplifier,
use of Bluetooth technology to transmit EEG data, precise
stimulus event-marking, and a choice of wet or dry sensor
set-ups, have been extensively evaluated in the literature [e.g.,
(54, 96–99)]. These demonstrate reduced set-up times and
greater portability while generally maintaining good signal-to-
noise ratio [e.g., (52, 53, 100, 101); but see Duvinage et al. (102),
Maskeliunas et al. (103)]. However, the authors are not aware
of reports of any other mobile EEG system for which repeated
ERP data collection has been demonstrated in participants’ home
environment without a researcher present, as was the case in
this study.

The P300 elicited from the 2-stimulus oddball task exhibited
reduced amplitude and latency for the older age groups,
consistent with previous studies (62–64). Whilst the underlying
mechanisms are yet not fully elucidated, recent evidence points
toward the P300 reflecting the accumulation of information
leading to a decision (60), the ability to do this effectively being
impaired by ageing and cognitive decline (104). ERP components
evoked from the Flanker task also demonstrated sensitivity to
ageing with a smaller ERN for the older age groups and a
weak Pe for the oldest age band, reproducing known effects in
the literature, reflecting a general weakening of the processes
underpinning cognitive control in ageing populations (67, 105).
Resting state EEG PSD demonstrated alpha band increase in the
eyes closed condition relative to eyes open as expected. In the
absolute power analyses differences in noise levels were observed.
Grummet et al. (106) discusses variability in noise floor in dry
EEG, which in this case may potentially be driven by factors such
as systematic variation in the use of the headset, and age-related
changes in skin condition (107). However, having controlled for
differences in noise floor levels, we observed alpha band power
and peak frequency stratification across that age groups that align
with the effects of ageing on brain activity during resting state
typically reported in the literature (74, 108, 109).

CONCLUSION

In this paper we have described the first large scale field trial
of a new suite of tools to collect clinically relevant domain-
specific markers of brain function and cognitive performance
unsupervised in the home. Human-factors feasibility was
demonstrated by high reported usability, low levels of
withdrawal, and adherence of >80% over a 5-day-per-week,
3-month long, uncompensated participation. Newly gamified
versions of established tasks were trialled and were successful
in replicating key aspects of behaviour from their lab-based
counterparts. Widespread learning effects were observed, as
would be expected on repeated plays, but age-related differences
were preserved over many weeks of repeated play. Grand average
EEG data from the resting state, visual oddball and flanker tasks
all illustrated core features of frequency content, waveform
morphology and timing, and scalp topographies to confirm
that they faithfully replicate the lab-based tasks on which they
were modelled.

Challenges of data quality were encountered. On an average
session, 14 or 15 sensors (of 16) provided EEG signals that
could be analysed, the remainder lost due to issues with
contact reliability with particular scalp locations and age cohorts.
Certain sessions were evaluated as too noisy for inclusion in
grand average analyses and early behavioural sessions proved
more variable than later ones. Since this study was completed,
incremental improvements to the headset, tablet-based app and
participant familiarisation procedures have been made that have
increased signal quality (89, 90).

While the focus of this paper is on ageing, and cognitive
functions of relevance to Alzheimer’s disease and other
pathologies underlying dementia, this suite of tools can also
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include additional tasks (e.g., emotional face processing, passive
auditory oddball) suitable for use in mood disorders, psychosis
(110), and measurement of treatment response in psychiatry
(89, 111).

Advances in wearable electronics, dry sensors and user-
facing interactive technologies enable EEG as an easy-to-
use affordable biomarker of cognition, grounded directly in
brain function. Decades of scientific literature support EEG
as an emerging translational biomarker for disease cases in
neuropsychiatric (schizophrenia, depression) (20, 112, 113)
and neurodegenerative (e.g., Alzheimer’s) disease (114–116).
Sampling a broad suite of cognitive functions (including
memory, attention, and executive function) offers coverage
of multiple cognitive domains, which has greater predictive
accuracy for disease progression (117, 118). Cloud computing
can securely collect data from distributed locations, automatically
evaluate quality, and use machine learning techniques to
derive composite markers based on neural activity and
behavioural performance from single and multiple cognitive
domains (119). These innovations in technology, supported
by scientific literature, make it possible to use large-scale
longitudinal sampling of real-world data, to support potential
future use-cases in early detection, personalised medicine,
progression tracking, and measurement of treatment response
for neuropsychiatric disorders.
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