
 International Journal of 

Molecular Sciences

Review

Can Natural Products Exert Neuroprotection without Crossing
the Blood–Brain Barrier?

Manon Leclerc 1,2,3,4, Stéphanie Dudonné 3,4 and Frédéric Calon 1,2,3,4,*

����������
�������

Citation: Leclerc, M.; Dudonné, S.;

Calon, F. Can Natural Products Exert

Neuroprotection without Crossing

the Blood–Brain Barrier? Int. J. Mol.

Sci. 2021, 22, 3356. https://doi.org/

10.3390/ijms22073356

Academic Editor: Cristina Angeloni

Received: 25 February 2021

Accepted: 20 March 2021

Published: 25 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; manon.leclerc.4@ulaval.ca
2 Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2,

Canada
3 Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;

stephanie.dudonne.1@ulaval.ca
4 OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada),

Québec, QC G1V 0A6, Canada
* Correspondence: frederic.calon@crchudequebec.ulaval.ca; Tel.: +1-(418)-525-4444 (ext. 48697);

Fax: +1-(418)-654-2761

Abstract: The scope of evidence on the neuroprotective impact of natural products has been greatly
extended in recent years. However, a key question that remains to be answered is whether natural
products act directly on targets located in the central nervous system (CNS), or whether they act
indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are
typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that
peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is
receiving increasing attention as another indirect pathway for orally administered compounds to act
on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural
products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols
from plants. The former will be used as an example of a natural product with relatively high brain
bioavailability but with tightly regulated transport and metabolism, and the latter as an example
of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and
clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought
early in the development of natural products to help identifying relevant mechanisms and potential
impact on prevalent CNS disorders, such as Alzheimer’s disease.

Keywords: blood–brain barrier; central nervous system; bioavailability; polyphenols; omega-3
polyunsaturated fatty acids; gut–brain axis

1. Introduction

When it comes to clinical efficiency, natural products are not very different from
synthetic drugs. It is generally agreed that the ultimate clinical efficiency of a drug generally
depends on three main factors. The first is efficacy, which usually attracts the most the
attention of researchers. In a nutshell, this can be summarized as whether a drug interacts
with sufficient affinity with its receptor to induce a dose-dependent pharmacological effect.
The second is safety, which can only be fully determined in clinical phases after a wide
usage. It can be predicted in preclinical phases, but bad surprises are not the exception,
leading to rejection of drugs at late clinical stages. The third, and probably most often
neglected factor, is bioavailability, which by definition must be quantitative. These factors
are equality important for natural products as they are for synthetic drugs.

Bioavailability can be summarized as the actual concentration of the drug at the target
site, after taking into account ADME and PK (absorption, distribution, metabolism, excre-
tion, toxicology and pharmacokinetics), in relation to time. Bioavailability is quantitative,
and its determination thus requires adequate analytic capabilities [1]. For medical indica-
tions involving the central nervous system (CNS), the blood–brain barrier (BBB) stands
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as an additional barrier to be crossed. For most drugs, a low bioavailability within the
brain is more the rule than the exception [2,3]. Research on disease-modifying treatments
for CNS diseases have generated a cemetery of failed drugs, rejected in part because of
their incapacity to cross the BBB [3–7]. Thus, it is crucial that the biodistribution of a
natural or a synthetic product is known early in its development in order to anticipate its
therapeutic efficacy and limit adverse effects, particularly when a bioactivity in the CNS is
considered essential.

In the face of the bulk of evidence accumulated over the years, it is becoming difficult
to ignore that natural products have an impact on brain function [8,9]. However, their use
in disease conditions in a real clinical context, combined or not with currently approved
interventions, remains to be clarified. Besides legal considerations [10], poor understanding
of their exact mechanisms of action remain an obstacle to full development. Still, from
a pharmacoeconomic standpoint, it is obvious that benefit/(risk+cost) ratio of natural
products are often very high, compared to patented high-cost biopharmaceuticals available,
and thus deserve intense research efforts.

2. Omega-3 Polyunsaturated Fatty Acids: Effect on Cognition

There is a convincing volume of epidemiological studies showing associations be-
tween high omega-3 polyunsaturated fatty acids (n-3 PUFAs) consumption from marine
sources, high docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) blood levels
and lower risk of dementia/Alzheimer’s disease (AD) or better cognitive function [11–16].
Results from randomized controlled trials (RCTs) are more mitigated. While negative
in patients already diagnosed with dementia, the frequency of positive RCTs increases
when volunteers are recruited before AD diagnosis [13,14,17–21]. As with many other
natural products, confounding variables such as dietary intake, genetic background and
metabolism hinder the generalization of findings [17,22].

A strong trend noted in the AD field in the last decade is an increased recognition
of the importance of modifiable risk factors, such as nutrition. Omega-3 PUFAs and
other dietary factors are now a key part of most multidomain interventions aimed at
preventing dementia. Three such studies have been published so far showing no effect on
the incidence of dementia but significant benefit on cognitive tests [14,23–25]. Interestingly,
in the Multidomain Alzheimer Preventive Trial (MAPT) study, the inclusion of a higher n-3
PUFA intake in the intervention appeared to have an additive effect on Mini-Mental State
Examination (MMSE) and Cardiovascular Risk Factors, Aging, and Incidence of Dementia
(CAIDE) scores [23,26,27]. These multidomain intervention trials are the focus of large
investments worldwide at the moment [25].

A key unanswered question is whether n-3 PUFAs act on the progression of cognitive
deficits at the molecular level. Disease modification in AD and other neurodegenerative
diseases is very difficult to demonstrate in clinics, due to challenges in study design, but
also due to the lack of reliable biomarkers [28–30]. Structural MRI provides a way to
assess the volume of specific brain regions highly involved in cognitive performance. An
increasing number of MRI-based studies provide some evidence of an association between
fish intake and favorable changes in brain integrity [31,32].

Animal studies display a strong potential to provide additional insights on such
questions. There are in fact many reports on the effect of n-3 PUFA supplementation on
β-amyloid (Aβ) [33] and synaptic neuropathologies [34], but less on the accumulation
of tau (reviewed in [18,35,36]). Omega-3 PUFAs may also act more directly on neuronal
function by progressively integrating cell membranes, without necessarily targeting AD
neuropathology per se [37–40]. In animal models of the nigrostriatal denervation observed
in Parkinson’s disease (PD), not only neuroprotective [41,42] but also neurorestorative [43]
actions of DHA have been reported, with more limited effect on synucleinopathy [44]. It
should be noted that animal studies are not without conflicting results and may involve
some level of publication bias, given the difficulty of publishing results perceived as
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negative, which may blur the picture. Nevertheless, data accumulated so far provide
arguments to consider that n-3 PUFAs may exert disease modification.

3. Omega-3 Polyunsaturated Fatty Acids: Confirmed CNS Bioavailability

The capacity of dietary n-3 PUFAs to reach the brain has been demonstrated decades
ago, initially with deprivation studies, and then with supplementation studies, later repli-
cated numerous times [18,34,39,45–53]. Dietary investigations in animals consistently show
that DHA intake leads to a corresponding accretion of DHA in cerebral tissue, with limited
interindividual variability [33,34,37,42–45,54–59]. Additional studies have shown that
DHA, EPA or arachidonic acid (ARA) can cross the BBB through a nonsaturable uptake
mechanism [35,60–63]. This comes as no surprise to the eyes of a neuropharmacologist,
as the chemical structure of fatty acids (FAs) suggests free diffusion across lipid mem-
branes forming the BBB [35,48,64]. A relatively small molecular size, very few potential
hydrogen bonds and highly lipophilic moieties are all key characteristics of brain-penetrant
molecules [65,66]. Additional studies in animal models have confirmed the importance of
diffusion of plasma nonesterified DHA to supply the brain [63]. Still, an ability to cross the
BBB does not equate optimal bioavailability in the brain. Relatively few DHA molecules
are found as a free unbound form in the blood. Most DHA is incorporated in several more
stable circulating complexes, which may increase the area under the curve (AUC) and the
amount ultimately bioavailable for the brain [63,67,68].

The data summarized here form a solid basis to conclude that a proportion of n-3
PUFAs ingested in food or supplement will end up in the brain. However, these proportions
can be modulated, through BBB transport, peripheral metabolism and pathological status.
For instance, brain transport [69] and bioavailability [70] are decreased by the expression
of apolipoprotein ε4 (ApoE4) [51]. Brain uptake is also modulated by AD transgene
expression in the mouse brain [22,71]. Importantly, the levels of PUFAs in the CNS need
to be maintained. Uptake is just one of the many variables that ultimately determine
CNS concentrations of each fatty acid. Proteins like ACSL6, a member of the long-chain
acyl-CoA synthetase family, or FABP5, a fatty-acid-binding protein, have been shown as
essential for maintaining brain DHA levels [72–74]. In summary, there is overwhelming
evidence that dietary intake of a specific FA, such as DHA, can lead to brain concentrations
sufficient to interact with therapeutic targets in the brain. These concentrations, however,
are susceptible to variations due to pathological anomalies, genetic background and ADME-
related variability. It should be kept in mind that these factors may significantly impair
n-3 PUFA bioavailability and lead to unpredictability of the therapeutic response in a
clinical setting.

4. Polyphenols: Brain Health

Polyphenolic compounds are phytochemicals generally classified as flavonoids, in-
cluding flavonols, flavan-3-ols, flavones, flavanones, isoflavones and anthocyanins; and
nonflavonoids such as phenolic acids, hydroxycinnamic acids, lignans, stilbenes and tan-
nins [75]. Despite a large heterogeneity of data reported in literature, the mean total
polyphenol intake has been estimated at around 1g per day, the highest intake being
commonly associated with the now intensively studied Mediterranean-like diets [76–78].
The list of studies on the potential neuroprotective effects of various polyphenols is very
long, and they have been the subject of several comprehensive reviews [9,79,80]. Overall,
there is a compelling amount of epidemiological, clinical and preclinical evidence that
selected polyphenols could improve cognitive performance and be considered in a preven-
tive setting against age-related cognitive loss and neurodegenerative diseases [9,79,81–83].
The most compelling evidence documented so far are for coffee, cocoa and tea, the most
common sources of polyphenols, mainly flavonoids [14,16,81,84–87]. In addition, berries,
such as blueberry and grape, have shown potential to prevent neurodegeneration and
cognitive decline [82,83,88–92]. Recent studies emphasize the association between higher
dietary flavonoid intake and a lower incidence of AD dementia [93,94]. In contrast, a
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recent meta-analysis investigating a series of health endpoints found no significant as-
sociation between polyphenol intake and cognitive ratings, such as the AD Assessment
Scale–Cognitive Subscale (ADAS-Cog) [95]. As always, data from associative studies do
not readily transfer into intervention studies and many clinical trials do not report any
beneficial outcome, even with resveratrol [17,75,96]. For example, clinical trials with stan-
dardized ginkgo biloba extracts, which are rich in flavonoids, or curcumin formulations
have led to disappointing results in early AD [19,97–99]. Epigallocatechin gallate (EGCG)
is a flavan-3-ol extracted from green tea leaves that is being investigated in multiple-system
atrophy, AD and other diseases [25,75,100,101]. Although several mechanisms have been
proposed, EGCG inhibits the formation of toxic oligomers in vitro and may prevent the
aggregation of amyloidogenic proteins [101–105]. Clinical trials in AD are still ongoing,
but a phase III trial revealed no efficacy in multiple-system atrophy patients, and led to
liver damage in some participants [101,106]. More positive results were reported in smaller
RCTs focusing on berry extracts, in individuals with mild cognitive complaint [90,107].

As pointed out in many of the above-mentioned studies, discrepancies in associative
studies and failure in clinical trials could be due to the low bioavailability of polyphenols.
Most studies were reported without fully assessing the bioavailability and the chemistry
of polyphenols. Another limitation is the wide variation in response to polyphenols, due
to the interindividual variability of gut-microbiota composition. Indeed, a recent study
showed, for example, that a subgroup of volunteers experiencing a higher rate of age-
related cognitive decline also displayed a higher excretion rate of phenolic metabolites,
suggesting that some individuals are less likely to benefit from polyphenols consump-
tion [90]. Obviously, since polyphenols form a large family that includes over 8000 chemical
structures [108], it has to be anticipated that clinical trials will lead to different responses.
A key unescapable fact to note is that high intakes of berries and vegetables are not fully
dissociable from lifestyle patterns. Nevertheless, the evidence gathered so far is strong
enough that diets enriched in polyphenolic compounds are incorporated into ongoing
multidomain lifestyle intervention trials launched to prevent dementia [25].

5. Polyphenols: Low Bioavailability

The bioavailability of the most common dietary polyphenols has been addressed in
several reports [75,109–118]. Many of these cited reviews provide large tables comparing
bioavailability data of series of selected polyphenols. They reveal that interaction with
the food matrix, stability in the gastrointestinal tract, metabolic processes occurring in the
intestine and the liver (phase I and II metabolism) and bacterial biodegradation mediated
by gut microbiota are all key factors that lessen plasma bioavailability of most polyphenolic
compounds [75,110,113,115,116].

The diversity of potentially circulating phenolic compounds is greatly amplified by
the fact that they undergo massive metabolism after oral intake, leading to the generation
of arrays of metabolites [108,114,115]. The chemical structure of phenolic compounds
defines whether they are absorbed in the small intestine or reach the colon to be subjected
to microbial catabolism. Substrates may be absorbed in the gut, appearing in plasma un-
transformed or as methylated, sulfated and glucuronidated derivatives following intestinal
and hepatic phase II metabolism [108,115]. Such metabolic transformations occurring in
the gut or the liver generally render molecules more hydrophilic, and thereby less likely
to reach the CNS. Thus, the presence of phenolic metabolites in plasma or tissues is not
necessarily a proof of bioavailability and bioactivity. Unabsorbed compounds (such as
polymeric structures), along with phenolic metabolites released in the intestine through the
enterohepatic recirculation, reach the colon where they are catabolized by the gut-resident
microbes. Their chemical structure is considerably altered by the wide enzymatic reper-
toire of the intestinal bacteria, involving ring-fission and cleavage reactions of functional
groups [119]. The generated microbial metabolites are absorbed from the colon and sub-
jected to liver metabolism, resulting in circulating conjugated derivatives. This intensive
microbial metabolism ultimately reduces the structural diversity of phenolic compounds
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to a limited number of low-molecular-weight metabolites. Unabsorbed polyphenols have
been estimated at 90–95% of the ingested dose [120]. Bioactivities of phenolic compounds
have therefore been mostly attributed to their microbial metabolites, detected in plasma of
volunteers at concentrations similar to those shown to be effective in in vitro studies [108].
The gut microbiota is thus a key factor in regulating bioavailability of polyphenols and
modulating their biological activities [108,114,115,121]. Whether polyphenols act per se or
through their metabolites must be carefully considered in any efficacy studies.

To address this bioavailability issue, new formulations have been developed involv-
ing encapsulation or complexation of phenolic bioproducts [75,99,113,122]. For example,
complexing blueberry and grape polyphenols with a plant-based protein blend has led
to a significant improved stability in an in vitro gastrointestinal model [123]. Synergies
between phytochemicals to improve their bioavailability have also been suggested and
could be exploited. For example, enhancement of plasma concentrations of phenolic com-
pounds from blueberries has been achieved with concomitant ingestion of flavan-3-ol-rich
grape extract in rodents [124]. Similarly, conjugated metabolites of polyphenols from a
strawberry−cranberry blend were found in higher concentrations in the plasma following
a coingestion with a quercetin-rich onion extract in mice [125]. Additionally, combining
polyphenols and probiotics can enhance bioavailability. An animal study previously re-
ported such a synergy, in which plasma concentrations of cranberry phenolic microbial
metabolites were significantly increased with a cotreatment with Bacillus subtilis [126].
Formulation of such synbiotics is currently being highlighted as a promising strategy to
manage CNS disorders [127]. However, while such improved formulations may ameliorate
intestinal bioaccessibility and plasma bioavailability of polyphenols, whether they translate
to improved brain bioavailability is not established yet. Nevertheless, polyphenols are
normally ingested with other food nutrients, so their bioavailability has to be interpreted
globally [80,124,128].

Owing to the increased sensitivity of instrumentation [129,130], a rising number of
studies have sought to measure polyphenols and their metabolites in the brains of ro-
dents after systemic administration [75,112]. It is important to note that the determination
of brain bioavailability requires proper methodologies and correct data interpretation.
Studies inferring brain penetration are unfortunately not always well designed for that
purpose. For example, many studies use brain samples still containing blood contamina-
tion, which obviously may confound any estimation of actual concentration in the brain
parenchyma [1,131–134]. More advanced in vivo techniques to quantify transport through
the BBB, such as in situ brain cerebral perfusion, are rarely utilized [135–139]. Finally,
cerebrospinal fluid (CSF) levels are still used as a surrogate marker of brain penetration,
while it has been known for a long time that many compounds transit from the blood to the
CSF without entering the brain per se [3,131,140]. Although various quantitative methods
clearly show the CNS bioavailability of n-3 PUFAs [18,22,35,51,57,60–63,67,68,71,74], very
few have been applied to polyphenols [75,109,112,113]. In addition, reports on polyphenol
CNS bioavailability vary enormously in terms of models, methods of measurement, doses,
routes administration, incorporation within diets, extracts or lack thereof, correction for
residual blood, type of data generated (qualitative or quantitative), units, formulation and
excipients, etc. Such variability has been previously highlighted [75,112,113].

With these caveats in mind, brain concentrations ranging from pM to low nM concen-
trations are typically reported after high-dose administration of polyphenols, including
with flavonoids [109,113,116,132,141–143]. Whereas the capability of some polyphenolic
compounds to cross the BBB, such as sulfated and methylated phenolic acids, is supported
by some reports, there is still a global lack of information regarding the biodistribution of
phenolic microbial metabolites [109,113,144]. While we have a fairly good view of how n-3
PUFAs can cross the BBB, including their rate of transport [18,22,35,51,57,60–63,67,68,71,74],
the exact mechanisms that could mediate the uptake of polyphenols into the brain re-
main elusive [75,109,110,112,113]. In sum, although this remains controversial, most well-
designed studies show that most ingested phytochemicals can be found at best at very low
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levels at therapeutic sites in the brain, likely under the minimum effective concentration
(MEC).

6. How Can Polyphenols Act on the Brain?

If polyphenolic compounds and their metabolites act in the periphery without reach-
ing sufficient concentrations in the cerebral tissue, it is logical to assume they will not
trigger molecular mechanisms classically associated with disease modification and neuro-
protection. However, the body is not just an inert receptacle for the brain. All spheres of
brain integrity and function rely on constant communication with organs in the periphery.
Duly messengers include hormones and other circulating compounds that do not neces-
sarily cross the BBB. The brain also requires nutrients and sources of energy that can only
come from the periphery (Figure 1).

Polyphenols are a large family of compounds that, together with their metabolites, are
expected to exert a pleiotropic action on the body [145]. The possibility that they impact
brain functions, including complex ones like cognition, without reaching sufficient concen-
trations in the CNS must be considered. Although many studies have reported changes
in brain molecular endpoints after administration of polyphenols, no firm mechanism
has been pinpointed in a replicable fashion [79,81,109,118,143,146–148]. Reports in animal
models of AD or PD have shown CNS-related beneficial effects without detecting a specific
brain alteration, consistent with mechanisms located outside of the brain [79,81,88,148–151].

Maintenance of cardiovascular health and, more specifically at the level of the cere-
brovascular network, is essential to optimal brain function, given the reliance of the CNS
on oxygen, glucose and other bloodborne nutrients. It is becoming increasing clear that
a tighter control of cardiovascular risk factor decreases the risk of dementia [152–154].
Therefore, the reported effect of polyphenols, such as cocoa flavonoids, on blood pres-
sure provides a compelling example of such a mechanism not involving a direct CNS
action [76,81,82,95,155,156]. Regulation of cerebral perfusion is another road by which the
periphery is essential for brain function. Reduced cerebral blood flow is one of the common
early features of AD [157,158]. Vascular changes leading to enhanced blood flow have
received significant attention as mechanisms explaining brain health impact of polyphe-
nols [95,109,159]. Polyphenols have been linked to an enhancement of cerebral blood flow
and brain oxygenation in clinical trials [81,160–162]. Again, such vascular effects do not
require entry of polyphenols into the CNS.

Numerous studies in animal models or clinical trials have shown effects of polyphe-
nols on metabolic determinants. Attenuation of postprandial hyperglycemia, notably
through inhibition of α-amylases and α-glucosidases, as well as improvement of insulin
sensitivity, have been reported [156,163–168]. This is important because metabolic defects
are associated with brain diseases, particularly with AD. Type 2 diabetes (T2D), a condition
characterized by impaired insulin response, is now recognized as an important risk factor
for AD [169–174]. Induction of metabolic defects in the periphery of animal models of
AD has been shown to aggravate brain Aβ load and, in some studies, tau pathology as
well [175–181]. On the other hand, genetic induction of AD neuropathology leads to signs
of metabolic failure in the periphery, such as glucose intolerance [182–184], unveiling a
self-amplifying loop between T2D and AD. Therefore, multiple drugs used to treat diabetes
are the subject of preclinical and clinical studies in AD such as insulin, metformin and
more recently, analogues of glucagon-like-peptide 1 (GLP-1) [185]. Metabolic disorders are
also associated with other CNS disorders such as schizophrenia [186,187] or PD [188–190]
and/or their symptomatic treatment. Hence, in light of these data, a natural product that
improves metabolic determinants could also be expected to exert a therapeutic effect on
the brain.
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Figure 1. Natural products (NPs), such as omega-3 polyunsaturated fatty acids (n-3 PUFAs) or polyphenols, can alter brain
function and improve brain health through multiple pathways. NPs are first orally ingested and once in the gut, they are
transformed into a wide diversity of metabolites, which can cross the intestinal epithelial barrier to reach the circulation.
The metabolites generated by the gut microbiota can then undergo first-pass metabolism in the liver and phase II enzymatic
conversion, such as glucuronidation and sulfation. Once in the bloodstream, NPs and gut/liver-generated metabolites can
have direct effects (1) on the central nervous system (CNS) for the small subset of compounds crossing the blood–brain
barrier (BBB) in sufficient quantity. Alternatively, other can have indirect effects (2) on BBB targets in brain capillary
endothelial cells (BCECs) by modulating cell-signaling processes, or by balancing the influx and/or efflux mechanism
under the control of several transporters (e.g., the receptor for advanced glycation end products/RAGE, low-density
lipoprotein receptor-related protein 1/LRP1 and various ATP-binding cassette transporters/ABC). In addition, (3) NPs and
their metabolites can improve cerebrovascular condition by enhancing cerebral blood flow, glucose uptake and/or brain
oxygenation, which are critical for many CNS diseases. Further outside of the brain, circulating NPs and metabolites may
impact (4) key organs regulating peripheral metabolism, to enhance the metabolic determinants, such as glucose, insulin
and several metabolic hormones that might exert long-term therapeutic effects on the brain. Finally, (5) NPs can interact
with the brain via the gut–microbiota–brain axis through multiple mechanisms. In part through its effect on NP metabolism,
the gut microbiota can generate CNS-acting compounds in the systemic circulation, while the enteric nervous system (ENS)
is connected with the CNS through the vagus nerve. Polyphenols are predominantly metabolized in the gut and the liver,
thereby generating metabolites that can act on the brain through these 5 pathways. However, low brain bioavailability
precludes most polyphenols to run through pathway 1. In contrast, n-3 PUFAs are more likely to act directly in the brain
(pathway 1), but can also engage pathways 2, 3, 4 and 5.
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The BBB itself is not just a physical obstacle between the blood and the brain, but
rather a living dynamic multicellular complex, actively involved in brain homeostasis
and controlling all exchanges between the brain and the periphery [191,192]. It provides
a surface of 20 m2 for such interaction in the human brain, meaning that virtually every
neuron has access to a blood microvessel in its vicinity [193]. Brain capillary endothelial
cells (BCECs) are the main structural and dynamic components of the BBB, supported
by pericytes and a network of astrocytes [179,192,194,195]. BCECs express numerous
influx and efflux transport systems that adjust the concentrations of endogenous molecules
on both sides of the BBB [179,192,195,196]. Nutrients such as glucose or amino acids
cross the BBB through well-characterized transporters, but for many other bloodborne
compounds, such as insulin and transferrin, their actual capacities to entirely reach the brain
parenchyma remain controversial [179,197–201]. However, these circulating molecules
may act on BBB-associated cells, by modulating cell-signaling processes or transporter
expression. Therefore, given the key role played by the BBB, it is becoming clear that drugs,
including phytochemicals, may influence brain function by targeting the BBB itself.

AD is a prominent example of a brain disease in which BBB transport systems play a
central role, at least in certain aspects of its pathophysiology. It is increasingly recognized
that cells forming the BBB can generate Aβ, but more importantly regulate its clearance
out of the brain to the blood [192,202]. Data indicate that brain-to-blood Aβ clearance
is impaired in AD, contributing the accumulation of plaques and other Aβ species in
cerebral tissues [192,203,204]. Such a disequilibrium may implicate influx transporters
(receptor for advanced glycation end-products/RAGE) and failing efflux transporters
(low-density lipoprotein receptor-related protein 1/LRP1 and ABCB1/P-gp (ATP-binding
cassette transporters B1/P-glycoprotein) [192,202,205–208] (Figure 1). Besides cerebral
amyloid angiopathy (CAA), the BBB of AD subjects is characterized by a loss of P-gp
(efflux) and neprilysin (degradation enzyme), as well as an increase in amyloid precursor
protein (APP) and β-secretase (key enzyme of the amyloidogenic pathway), all in close
association with ante mortem cognitive decline [202]. In contrast, other transporters like
the transferrin receptor (TfR) remain unaffected in AD [209]. While no massive alteration
of endothelial cells was observed [202,210], a loss of mural cells (pericytes and smooth
muscle cells) has been described in AD, associated with higher vascular Aβ40 content as
well as cognitive performance [211–213]. The overarching idea stemming from these data
is that targeting production and clearance mechanisms located in the BBB can have an
impact on brain proteinopathies. The possibility that polyphenol-like compounds or other
natural products could act on the CNS indirectly through an effect on the BBB remains a
whole promising new area to be explored.

There have been very limited reports on polyphenols exerting an effect on the BBB per
se, except perhaps in vitro evidence of a modulation of the activity of ABC transporters [113],
which are involved in Aβ40 clearance [214,215]. Indeed, flavonoids may act as substrates
and/or modulators of membrane-bound transport proteins (such as ABC transporters),
thereby possibly altering the bioavailability of drugs, toxins and bioactive food molecules, in-
cluding other phytochemicals [113,216]. The exact mechanisms by which circulating phenolic
metabolites interact with the BBB therefore needs to be further investigated.

The gut–microbiota–brain axis represents another intriguing pathway by which orally
administered natural products may alter brain activity. Polyphenols are well known
to be highly metabolized by gut microbiota, generating an array of bioactive metabo-
lites [115,217]. Conversely, polyphenolic compounds exert prebiotic effects on the gut mi-
croflora, modifying bacterial composition and function [115,218–220]. Compelling evidence
suggests that metabolic effects of polyphenol are mediated by gut-microbiota-dependent
mechanisms [115,219,221–223]. Impairments in immunological and metabolic processes,
mediated by an altered gut microbiome, contribute to the onset and progression of cogni-
tive disorders [220]. Recent studies have pinpointed that gastrointestinal dysfunction and
the resulting alteration in gut-microbiota composition are associated with the development
of CNS diseases, for which polyphenols could be used as therapeutics through prebiotic
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activities [224,225]. Of note, the gut is innervated by the enteric nervous system (ENS),
which is connected to the brain through vagal pathways, thereby providing a direct neural
link between diet, the gastrointestinal tract, its microbiota and the brain [226,227]. The
question of whether interactions between ingested polyphenols and the gut ultimately
exert an effect on cerebral activity is beginning to be explored [122], but the answer may
involve all mechanisms discussed above.

Most mechanisms requiring direct target engagement or physicochemical effects of
polyphenolic compounds can probably be ruled out due to their low CNS concentrations.
It used to be assumed that polyphenols exerted their action through an antioxidant action,
but this has been challenged, as very high concentration at the target sites would be
necessary [75,112,122,228]. Obviously, minimal concentrations required to exert such an
antioxidant effect are very unlikely to be reached in vivo in the brain.

Finally, it can be expected that the extra-CNS action of natural products will be slower
than when resulting from a direct interaction with CNS targets. Most CNS drugs exert
their effect within minutes or hours. However, it is well known that some therapeutic
agents, such as antidepressants or antiepileptics, show most of their benefits only after
weeks of daily administration. It is also increasingly recognized that neurodegenerative
diseases should be treated as early as possible, using primary and secondary prevention
approaches, years before the occurrence of symptoms. Then, a relatively gentle and
sustained intervention extended over several years may have a reasonable chance to
exercise its neuroprotective effect without using a chemical crossing the BBB. Migraine
is another prevalent condition that can be prevented by chronic intake of drugs. Overall,
these types of indications, requiring a slow response over a long period of time may have
better chance to benefit from the extra-CNS effect of natural products.

7. On the Importance of Investigating Bioavailability Early in CNS
Drug Development

Animal models are not like little humans or little patients, and their value to predict
clinical efficacy is sometimes overestimated. Although there are many examples of trans-
lational successes in specific CNS disorders, such as for epilepsy, the reliance on animal
models has turned out to be less effective in drug development for neurodegenerative
diseases [229–232]. Unfortunately, most animal models recapitulate only a fraction of
the constellation of etiophysiopathological events of prevalent complex diseases. Higher
cognitive function and complex symptoms, such as anxiety and mood disorders, cannot
be truly deduced from simple animal-behavior paradigms, which are nevertheless widely
accepted as gold standards in preclinical studies.

In contrast, data generated in animal models may prove particularly valuable in
predicting ADME and PK parameters, including CNS penetration in humans [7]. While
the enzymatic machinery involved in metabolism and transporters (ie P-gp substrates)
can differ between rodents and humans, key features are usually similar. Therefore, they
can be extremely useful for bioavailability studies, a purpose for which they are probably
underused, at least in the academic setting, probably due to limited available funding. For
example, the physicochemical characteristics underlying the capacity of a drug to cross
the BBB remain the same in the mouse or in primates [7,66,233]. Still, many drugs for
CNS applications reach phase III along with relatively limited preclinical evaluation of
PK and bioavailability [2,3,234]. Body distribution favoring interaction with the pathogen
in the infected organs has been central in the selection of the right antibiotics [235]. The
same is true for CNS use [2,3,234]. Therefore, it is suggested that the documentation of
ADME and PK and CNS distribution should deserve as much investment as efficacy studies
in preclinical phases. When studying complex natural products, interactions with other
components within dietary sources have to be taken into account as well in animal studies.
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8. General Conclusions

In this review, we have attempted to summarize the scientific evidence supporting the
effects on brain cognition of two classes of natural products, n-3 PUFAs and polyphenols.
Despite numerous gaps in our knowledge and probable publication biases, the sum of
evidence accumulated so far is remarkable and difficult to ignore. While the brain accretion
of n-3 PUFAs following oral intake is well documented, the CNS effects of polyphenols are
harder to reconcile with their low brain bioavailability. Whereas classical neuropharmacol-
ogy teaches us that reaching minimal concentrations at the target site is a condition sine
qua non for efficacy, it ignores the fact that the brain is not isolated and that it is modulated
by events in the periphery. We have provided a list of mechanisms outside of the CNS per
se by which polyphenols and other natural products can effectively alter brain function
and health, notably through the brain vasculature, the BBB itself or the gut–brain axis
(Figure 1). These extra-CNS effects might be particularly suitable for long-term preventive
effects against slow progressive diseases, such as AD.

Important limitations and their impact on future perspectives remain to be considered.
It is critical to consider that natural products are usually more complex from a chemical
point of view that the typical synthetic compound. They also cannot be dissociated from
their dietary sources (e.g., fruits and vegetable for polyphenols and fish for n-3 PUFAs),
which must be taken into account when interpreting associative data, and in the design of
future intervention studies. In addition, utilizing preclinical data for human health research
questions remains a challenge. Animal studies can provide extremely useful information,
particularly when measuring bioavailability or BBB transport, but can be flawed due to
methodological issues.

We end with a call for bioavailability and PK studies early in drug development, as
they provide decisive information on the potential for translation into clinics. Investigations
of biodistribution (PK studies) and mechanisms (pharmacodynamics studies) should go
hand in hand in the earliest phases of studies on any natural product.
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Abbreviations

ABCB1/P-gp ATP-binding cassette transporters B1/P-glycoprotein
ACSL6 Acyl-CoA synthetase long chain family member 6
AD Alzheimer’s disease
ADAS-Cog AD Assessment Scale–Cognitive Subscale
ADME absorption, distribution, metabolism, excretion
ApoE4 apolipoprotein ε4
APP amyloïd precursor protein
ARA arachidonic acid
AUC area under the curve
Aβ β-amyloid
BBB blood–brain barrier
BCEC brain capillary endothelial cells
CAA cerebral amyloid angiopathy
CAIDE Cardiovascular Risk Factors, Aging, and Incidence of Dementia
CNS central nervous system
CSF cerebrospinal fluid
DHA docosahexaenoic acid
EGCG epigallocatechin gallate
ENS enteric nervous system
EPA eicosapentaenoic acid
FA fatty acid
FAPB5 fatty acid binding protein 5
GLP-1 glucagon-like-peptide 1
LRP1 low-density lipoprotein receptor-related protein 1
MEC minimum effective concentration
MMSE Mini-Mental State Examination
n-3 PUFAs omega-3 polyunsaturated fatty acids
NPs natural products
PD Parkinson’s disease
PK pharmacokinetic
RAGE receptor for advanced glycation end-products
RCT randomized controlled trial
T2D type 2 diabetes
TfR transferrin receptor.
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