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ABSTRACT
Maize (Zea mays L.) is a food crop sensitive to low temperatures. As one of the abiotic stress hazards, 
low temperatures seriously affect the yield of maize. However, the genetic basis of low-temperature 
adaptation in maize is still poorly understood. In this study, maize S-adenosylmethionine decarbox-
ylase (SAMDC) was localized to the nucleus. We used Agrobacterium-mediated transformation 
technology to introduce the SAMDC gene into an excellent maize inbred line variety GSH9901 
and produced a cold-tolerant transgenic maize line. After three years of single-field experiments, 
the contents of polyamines (PAs), proline (Pro), malondialdehyde (MDA), antioxidant enzymes and 
ascorbate peroxidases (APXs) in the leaves of the transgenic maize plants overexpressing the 
SAMDC gene significantly increased, and the expression of elevated CBF and cold-responsive 
genes effectively increased. The agronomic traits of the maize overexpressing the SAMDC gene 
changed, and the yield traits significantly improved. However, no significant changes were found in 
plant height, ear length, and shaft thickness. Therefore, SAMDC enzymes can effectively improve the 
cold tolerance of maize.
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Introduction

Maize (Zea mays L.) is an annual herbaceous plant 
and the second-largest food crop in the world.1 

Chilling damage has become a major adverse fac-
tor for the growth and development of maize, 
seriously affecting its yield.2 The differences in 
physiological and biochemical indicators and 
agronomic traits of plants are studied using bio-
technological methods, such as genetic modifica-
tion under cold stress, to provide an important 
theoretical basis for cultivating new cold-tolerant 
maize varieties.

S-adenosylmethionine decarboxylase (SAMDC) 
is one of the key enzymes in the polyamine (PA) 
biosynthesis pathway. It can catalyze the reaction in 
which S-adenosylmethionine (SAM) provides the 
aminopropyl group required for the synthesis reac-
tion after decarboxylation and effectively promote 
the conversion of putrescine into spermidine and 
spermine.3–5 Meng et al.6 (2020) isolated the full- 

length cDNA of SAMDC (AhSAMDC) from pea-
nuts (Arachis hypogaea L.). The AhSAMDC can 
effectively increase the PA content and reduce 
membrane damage to enhance plant resistance to 
salt stress. Liu et al.7 (2018) found that the expres-
sion of the CmSAMDC gene in melon was induced 
by powdery mildew and might be involved in the 
response related to powdery mildew resistance. Luo 
et al.8 (2017) proposed that the overexpression of 
the SAMDC gene could improve the cold tolerance 
of Fructus edulis by participating in the signal trans-
ductions of H2O2 and NO. Ifigeneia et al.9 (2016) 
illustrated that the overexpression of the SAMDC 
gene under salt stress could increase biomass and 
change developmental characteristics, such as 
increasing tobacco height and leaf number. 
Osama et al.10 (2010) demonstrated that the over-
expression of the SAMDC gene could increase the 
level and ability of PA accumulation in cotton. 
Chen et al.11 (2018) found that cholesterol could 
induce the expression of the SAMDC gene and 
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promote the synthesis of Spd and Spm, leading to 
the dwarf and drought tolerance of herbaceous 
plants. The SAMDC gene has been cloned from 
many plants, such as Arabidopsis, rice, and 
wheat.12–14 However, the study on the SAMDC 
gene in maize has not been reported yet.

In this study, to cultivate cold-tolerant maize 
lines, Agrobacterium was used to transform cal-
lus, and the SAMDC gene was overexpressed 
into the excellent maize inbred line GSH9901. 
Under cold stress, the SAMDC gene was over-
expressed to improve the PA content and pro-
teolytic content in the leaves. The significant 
increase in the contents of acid, malondialde-
hyde (MDA), antioxidant enzymes, and yield 
proves that the SAMDC gene can effectively 
improve the cold tolerance of maize.

Materials and Methods

Plant Materials and Cold Treatment

The seeds at the germination stage were cold trea-
ted at 4°C for 0, 2, 4, and 6 d. The WT plants and 
transgenic maize plants (C3) were grown in soil in 
a growth chamber at 25°C/75% humidity with a 16- 
h light/8-h dark cycle. The plants at the trifoliate 
stage were cold treated at 4°C for 0, 12, and 24 h. 
The experiment was performed in three biological 
repeats.

Subcellular Localization Assay of ZmSAMDC Gene

To study the subcellular localization properties of 
the ZmSAMDC gene, we modified the 
pCAMBIA1302 vector to construct a fusion expres-
sion vector pCAMBIA1302-ZmSAMDC-GFP for 
the ZmSAMDC gene and the green fluorescent 
protein reporter gene GFP. The maize ubiquitin 
promoter was used in this vector to regulate gene 
expression. A control vector pCAMBIA1302 was 
also constructed. The recombinant plasmid 
pCAMBIA1302-ZmSAMDC-GFP and control 
plasmid pCAMBIA1302-GFP were transformed 
into tobacco epidermal cells by Agrobacterium- 
mediated transformation method. The infected 
tobacco leaf cells within 24 h were observed with 
an LSM710 microscope.

Transformation and Molecular Characterization

In order to obtain transgenic maize overexpressing 
the SAMDC gene, primer pairs containing BstE II 
(5’-ACTCTTGACCATGGTAGATCTTCCCTCC 
ATCTCCAGCATTG-3’) and Bgl II (5’- 
GGGGAAATTCGAGCTGGTCACCAACCACG-
AAATTGCGACGAT-3’) restriction enzyme sites 
were used, and the open reading frame of the 
ZmSAMDC gene was amplified. The amplified pro-
duct was inserted into pCAMBIA3301 vector to 
replace the GUS-encoding gene gusA. The recom-
binant plasmid pCAMBIA3301-ZmSAMDC-bar 
was introduced into maize “GSH9901” using the 
Agrobacterium-mediated transformation method 
in the early stage of our research group.15

The T3 generation plants were identified using 
PCR by selecting bar genes with the primer pair 5′- 
TCAAATCTCGGTGACGGGC-3′ and 5′- 
ATGAGCCCAGAACGACGCC-3′ (552 bp). The 
protein expression of the ZmSAMDC gene was 
tested through western blot analysis in T3 genera-
tion plants. The protein from young leaves was 
fractionated by sodium dodecyl sulfate polyacryla-
mide gel electrophoresis (SDS-PAGE) using 
a Mighty Small II electrophoresis system (Hoefer 
Scientific Instruments, San Francisco, CA, USA).16 

The slab gel was composed of a 12% (w/v) separa-
tion gel and a 5% (w/v) concentration gel. The leaf 
protein was separated and then blotted onto the 
PVDF membrane using the wet transfer technique. 
The primary antibody was added to the protein. In 
addition, the protein was incubated with the sec-
ondary antibody. Then, the proteins were stained in 
the dark with Diaminobenzidine (DAB) horserad-
ish peroxidase (POD) coloring solution until 
obvious bands appeared. Finally, the sample was 
washed with PBST to stop the reaction, drained, 
and saved with pictures.

Detection of Physiological and Biochemical 
Indicators

The leaves of the three transgenic lines and WT plants 
were sampled at the trefoil stage. High-performance 
liquid chromatography (HPLC) was used to deter-
mine the PA content of the plant leaves.17 The Pro 
content of the maize leaves was analyzed using the 
acid ninhydrin method.18 The thiobarbituric acid 
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method was used to analyze the MDA content of the 
maize leaves.19 The dry weight and fresh weight ana-
lysis techniques were applied to determine the relative 
water content of the plant leaves.20 The POD content 
of the maize leaves was analyzed using the guaiacol 
method.21 The nitrogen blue tetrazolium method was 
used to analyze the superoxide dismutase (SOD) con-
tent of the maize leaves.22 The catalase (CAT) content 
of the maize leaves was analyzed using the UV absorp-
tion method.23 The ascorbate peroxidases (APX) 
activity was determined with an absorbance photo-
meter at 290 nm (absorption coefficient 2.8 mM−1 

cm−1).24 The experiment was repeated three times, 
and the average values of various physiological indi-
cators were calculated.

Expression Analysis of cold-responsive Genes 
Regulated by ZmSAMDC Gene

The cold signal pathway genes, CBF1/2/3, RD29A, 
COR15A, and COR47, were detected using RT- 
qPCR. The WT plants were used as controls, and 
ACTIN2 was used as an internal reference gene. 
Each sample was analyzed based on three technical 
replicates. Each 20 µL of mixture sample was used 
for the following PCR cycles: 95°C for 10s and 55°C 
for 55s. The 2−ΔΔCt method was used to calculate 
the relative expression changes among samples.25 

The details regarding the primers used for this 
assay are listed in Supplementary Table S1.

Field Trial Methods

The T3 transgenic lines overexpressing the 
ZmSAMDC gene, C3-1, C3-3 and C3-6, and 
“GS9901” maize (WT) were planted under natural 
conditions in Jilin Agricultural University geneti-
cally modified crop test base (43°47′56″N, 125°24′ 
2″E), Nanguan District, Changchun City, Jilin 
Province in 2020. A completely randomized block 
design with three replicates was adopted for the 
experiment. The plants were planted in rows of 
5 m long, 1 m apart, and 25 cm apart. A total of 4 
plants (WT, C3-1, C3-3 and C3-6) were randomly 
selected during the growth period to analyze the 
agronomic traits after maturity (the control plant 
and each transformation event were repeated three 
times).

Statistical Analysis

The statistical data analyses were performed using 
the IBM SPSS Statistics 19. One-way ANOVA was 
used to confirm the variability of results between 
treatments, respectively. Non-significant (ns), 
P < .05 (*) and P < .01 (**).

Results

Identification of Subcellular Localization of 
ZmSAMDC Gene in Tobacco

To study the subcellular localization of the 
ZmSAMDC gene, the target gene was cloned into 
the transient expression vector pCAMBIA1302- 
GFP using the Gateway recombination technology 
and then transformed into onion epidermal cells 
by Agrobacterium. The results of confocal micro-
scopy (Olympus, Japan) showed that the 
ZmSAMDC gene transcribed proteins in the 
nucleus. (Fig. 1).

The Transgenic Maize Overexpressing ZmSAMDC 
Gene

The PCR analysis of T3 generation plants using 
specific primers of the selection marker gene bar 
showed that six independent transgenic lines were 
obtained (Fig. 2). The Western Blot results showed 
that, compared with the protein expression content 
of the control group, that of the transgenic lines 
significantly increased; all of the six lines could 
successfully express the 65.53 kDa protein (Fig. 3). 
Transgenic lines, C3-1, C3-3, and C3-6, were 
selected to analyze the physiological and biochem-
ical indicators and yield traits.

Figure 1. Subcellular localization analysis of the ZmSAMDC gene 
in tobacco cells. The scale bar represent 50 μm.
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Analysis of PA Content in Plants Overexpressing the 
ZmSAMDC Gene

As low-molecular-weight aliphatic nitrogenous 
bases with strong biological activity, PAs can bind 
to the phospholipids of cell membranes under cold 
stress to prevent intracellular solutes from exuding 
and improve the cold tolerance of plants. The aver-
age content of the three PAs of the transgenic line 
C3-1,C3-3 and C3-6 were higher than that of the 
control group (Fig. 4(a)). The relative proportions 
of Put, Spd, and Spm in the leaves of transgenic 
lines changed. The proportion of Spd in the plants 
overexpressing the ZmSAMDC gene significantly 
increased (Fig. 4(b-c)), while the proportion of 
Put significantly decreased.

Overexpression of ZmSAMDC Gene Enhancing Cold 
Tolerance of Maize

To investigate the role of the ZmSAMDC gene in 
cold tolerance, we further analyzed the three trans-
genic lines overexpressing the ZmSAMDC gene, 
C3-1, C3-3 and C3-6. The RT-qPCR analysis of 
the three transgenic lines showed a high expression 

of the ZmSAMDC gene in maize (Fig. 5(a)). Under 
normal conditions, the morphological difference 
between transgenic lines and wild-type (WT) plants 
was not statistically significant. However, the ger-
mination ability of transgenic seeds was signifi-
cantly stronger than that of the control group at 
4°C low temperature stress for 2, 4 and 6 d (Fig. 5 
(b)); The damage degree of the transgenic seedling- 
stage lines was significantly lower than that of the 
control group at 4°C low temperature stress for 12, 
24 and 48 h (Fig. 5(c)), and the survival rate and 
relative water content of the transgenic lines were 
significantly higher than those of the WT plants 
(Fig. 5(d,e)). These results indicated that the over-
expression of the ZmSAMDC gene improved the 
cold tolerance of the transgenic maize.

Overexpression of ZmSAMDC Gene under Cold 
Stress Significantly Increasing Leaf Proline (Pro) 
Content and MDA Content

Under cold stress, the Pro content of plants 
increases, and the varieties with strong cold tol-
erance tend to accumulate more Pro. The Pro 
content of the transgenic lines (C3-1, C3-3, and 
C3-6) showed an upward trend with the increase 
in the treatment time of low temperature (4°C) 
(Fig. 6(a)). We found that the Pro content chan-
ged the most significantly when the lines were 
treated at 4°C for 24 h. The average Pro content 
of the transgenic lines was 6.1 μg/ml, higher 
than that of the control group. The results indi-
cated that the overexpression of the ZmSAMDC 
gene changed the protein composition of trans-
genic maize leaves, resulting in a large accumu-
lation of Pro in plant cells.

Figure 2. Identification of transgenic maizes overexpressing 
ZmSAMDC by PCR analysis(bar gene).M: DL2000 ladder, P: posi-
tive control (plasmid as template), N: negative control (H2O as 
template), CK: negative control (“GSH9901” DNA as template), 1– 
6: transgenic plants.

Figure 3. Western blot analyses of transgenic maizes overexpressing ZmSAMDC. WT1-WT3: negative control. C3-1~ C3-6: transgenic 
plants.
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Under cold stress, the MDA content which 
reflects the stress resistance of plants increased 
with the increase in the active oxygen content of 
plant leaves. With the increase in the treatment 
time of low temperature (4°C), the MDA content 
of the transgenic lines showed an upward trend 
(Fig. 6(b)). These results indicated that the trans-
genic lines accumulated relatively few reactive oxy-
gen species (ROS) under cold stress.

Overexpression of ZmSAMDC Gene under Cold 
Stress Enhancing Cold Tolerance of Plants by 
Increasing Leaf Antioxidant Enzymes

The metabolic system of a plant changes signifi-
cantly in a cold environment. The amount of 
oxygen absorbed by the plant reduces, and 

a large amount of harmful active oxygen is accu-
mulated, damaging the plant. The level of antiox-
idant enzyme activity can measure the resistance 
of the plant. With the increase in the treatment 
time of low temperature (4°C), the contents of 
POD, SOD, CAT, and APX of the transgenic 
lines increased (Fig. 7(a–d)). When the transgenic 
lines were treated at 4°C for 24 h, the average 
contents of POD, SOD, and CAT of the trans-
genic lines were higher than those of the control 
group. When the transgenic lines were treated at 
4°C for 12 h, the average APX content of the 
transgenic lines was 5.58 μmol/mg, higher than 
that of the control group. Therefore, the over-
expression of ZmSAMDC changed the oxidative 
stress response of the plants, improved the ability 
of the plants to resist oxidation, scavenge cationic 
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Figure 4. Determination of the average content of three polyamines (a) in transgenic strain C3 and The relative proportions of Put (b), 
Spd (c), and Spm (d) in the leaves of transgenic lines. Data were expressed as the mean of triplicate values and error represented the 
SD. P < .05 (*) and P < .01 (**).
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(a)

(b)

(c)

Figure 5. Overexpression of ZmSAMDC enhances the cold tolerance of maize.a Analysis of ZmSAMDC expression in positive transgenic 
maize. The expression level was normalized to that of Maize ZmACTIN1.b Germination phenotypes of transgenic lines and wild-type 
plants under non-treatment and 4°C treatment for 0,2,4 and 6 days. Analysis of wilting degree (c),survival rate (d) and relative water 
content (e) of transgenic lines and wild-type plants under 4°C for 0, 12 and 24 h after the three-leaf period. Data were expressed as the 
mean of triplicate values and error represented the SD.Non-significant (ns),P < .05 (*) and P < .01 (**).
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free radicals and catalyze ascorbic acid (AsA), and 
promoted the decomposition of H2O2 in the 
plants.

ZmSAMDC Gene Positively Regulating CBFs and 
cold-responsive (COR) Gene Expression under Cold 
Stress

In order to further clarify the molecular mechanism 
of the lines which overexpress the ZmSAMDC gene 
responding to cold stress, we used RT-qPCR to 

study the expression patterns of cold-induced CBF 
family genes and downstream cold-responsive 
genes. In the transgenic lines and WT plants, the 
CBF family genes CBF1, CBF2, and CBF3 were 
induced rapidly and peaked at 4°C for 12 h. 
However, the expression levels of these three CBF 
genes in all transgenic lines were higher than those 
of the WT plants. The RD29A, COR15A, and 
COR47 genes are the downstream target genes of 
CBFs. These COR genes were gradually induced to 
be expressed under cold stress (Fig. 8). These 

(d)                                           (e)

Figure 5. Continued.

(a)                                       (b) 

Figure 6. Overexpression of ZmSAMDC enhanced Leaf proline content (a) and MDA content (b) under 4°C treatment for 0,12 and 24 h. 
Data were expressed as the mean of triplicate values and error represented the SD.Non-significant (ns),P < .05 (*) and P < .01 (**).

Table 1. Agronomic performance of overexpressing ZmSAMDC lines and wild-type plants in field.

Genotype Plant height (cm) Ear henght (cm)
Ear diameter 

(cm) The average bald tip (cm) Kernel numbers
100-seed 

weight (g)

WT 121.82 ± 0.41 13.9 ± 0.67 5.66 ± 0.15 2.28 ± 0.13 30 26.32 ± 0.01
C3-1 121.72 ± 0.42 14.3 ± 0.16 5.58 ± 0.07 1.38 ± 0.02* 34* 29.32 ± 0.12**
C3-3 121.64 ± 0.4 14.3 ± 0.07 5.65 ± 0.06 1.43 ± 0.15* 35* 29.35 ± 0.25**
C3-6 121.57 ± 0.57 14.2 ± 0.13 5.45 ± 0.2 1.28 ± 0.75** 34* 29.79 ± 0.24**
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results indicated that the overexpression of the 
ZmSAMDC gene positively regulated the expres-
sion of the CBF genes and downstream COR 
genes, thereby improving the cold tolerance of 
maize.

Overexpression of ZmSAMDC Gene Significantly 
Increasing the Yield of Maize

Field experiments were conducted to observe the 
agronomic traits of the transgenic lines. The results 
are shown in Table 1. There were no significant 
differences in plant height, ear length, shaft thick-
ness, and other traits between the transgenic lines 
and the control group, indicating that the 
ZmSAMDC gene might not affect these traits. 
However, the number of rows and 100-seed weight 
of the transgenic plants were significantly higher 
than those of the control group, and the bald tip 

length was significantly lower than that of the con-
trol group. Therefore, SAMDC genes may affect 
maize yield by regulating yield component traits.

Discussion

As a key enzyme in synthesizing spermine and 
spermidine, the SAMDC gene participates in the 
resistance reaction of most plants. In many cases, 
H2O2 produced by the PA catabolism pathway is 
a protective measure.26 Diao et al.27 (2017) demon-
strated in tomatoes that Spd and Spm induced the 
generation of H2O2 by increasing the activities of 
diamine oxidase and PA oxidase and prompting the 
ROS system to respond. Saha et al.28 (2015) also 
confirmed that PAs might trigger ROS synthesis or 
scavenge ROS, depending on the concentration of 
PAs in the cell. In the stress response process, PAs 
can stabilize the composition of molecules and 

(a)                                (b) 

(c)                               (d) 

Figure 7. Overexpression of ZmSAMDC reduced reactive oxygen species (ROS) accumulation by increasing antioxidant enzyme activity 
under 4°C treatment for 0,12 and 24 h. (a). Analysis of peroxidase (POD) activity in leaves. (b). Analysis of superoxide dismutase (SOD) 
activity in leaves. (c). Analysis of catalase (CAT) activity in leaves. (d). Analysis of ascorbate peroxidase (APX) activity in leaves. Data were 
expressed as the mean of triplicate values and error represented the SD.Non-significant (ns),P < .05 (*) and P < .01 (**).
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maintain the integrity of cell membranes through 
multiple binding proteins,29,30 thereby eliminating 
ROS and reducing lipids in plants.31 POD can 
maintain membrane stability and reduce oxidative 
stress damage. Transgenic centipedegrass 
(Eremochloa ophiuroides [Munro] Hack.) overex-
presses the SAMDC Gene for improved cold toler-
ance through the Involvement of H2O2 and NO 
signaling.8 In this study, the contents of Pro, CAT, 
POD, SOD, and MDA in the plants overexpressing 
the SAMDC gene were all higher than those of the 
negative control group, indicating that the over-
expression of the ZmSAMDC gene influenced the 
reactive oxygen species and ROS system during 
cold stress. The results further proved that PAs 
affected the ROS system indirectly. The above 
results are basically consistent with previous studies 
on the overexpression of the SAMDC gene to 
improve cold, drought, and salt tolerances.6,13,14

Field agronomic traits are important indicators 
for selecting and breeding excellent new maize 
varieties. Bais et al.32 (2002) found that PAs were 
widely involved in fruit development and maturity, 
leaf senescence and stress response in plants. The 

SAMDC gene can regulate the contents of PAs, 
such as putrescine, spermidine and spermine, in 
plants to affect the biosynthesis of DNA, RNA and 
protein in plants, promote plant growth and devel-
opment, and enhance the resistance of plants.33 

Zhu et al.34 (2020) used the antisense RNA of the 
SAMDC gene to decrease the transcription level of 
the SAMDC gene rapidly. With the decrease in the 
contents of Spd and Spm, plants showed growth 
inhibition, internode shortening, stem branching, 
and leaf reduction. In this study, the baldness of the 
plants overexpressing the SAMDC gene was 
improved, and the number of rows and 100-seed 
weight increased, indicating that the ZmSAMDC 
gene could effectively hinder the decreased yield 
caused by low temperatures.

The expression of three members of the CBF family 
can be rapidly and transiently induced by low tem-
peratures. Yang et al.35 (2019) found that the expres-
sion of AtCBF1/2/3 was induced in DlICE1 transgenic 
lines under cold stress. Chinnusamy et al.36 (2003) 
found that AtRD29A, AtCOR15A, AtCOR47 and 
AtKIN1 had multiple CRT/DRE cis-elements in the 
promoter region, These genes are highly induced by 

Figure 8. Analysis on expression patterns of cold-responsive genes in transgenic plants under 4°C treatment for 0,12 and 24 h.The 
expression level was normalized to that of Maize ZmACTIN1. Data were expressed as the mean of triplicate values and error represented 
the SD. Non-significant (ns),P < .05 (*) and P < .01 (**).
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AtICE1. In this study, the overexpression of the 
ZmSAMDC gene positively regulates the expression 
of the CBF and downstream COR genes to improve 
the cold tolerance of maize.

Conclusion

The most important finding of this study is that the 
overexpression of the SAMDC gene increases the 
contents of PAs, Pro, MDA, and antioxidant 
enzymes in the leaves to improve the yield of 
maize under cold stress. Therefore, engineering 
the SAMDC enzyme is an effective strategy to 
improve the cold tolerance.
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