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ABSTRACT

The kinetics of DNA hybridization are fundamental to
biological processes and DNA-based technologies.
However, the precise physical mechanisms that de-
termine why different DNA sequences hybridize at
different rates are not well understood. Secondary
structure is one predictable factor that influences
hybridization rates but is not sufficient on its own
to fully explain the observed sequence-dependent
variance. In this context, we measured hybridization
rates of 43 different DNA sequences that are not pre-
dicted to form secondary structure and present a par-
simonious physically justified model to quantify our
observations. Accounting only for the combinatorics
of complementary nucleating interactions and their
sequence-dependent stability, the model achieves
good correlation with experiment with only two free
parameters. Our results indicate that greater repeti-
tion of Watson–Crick pairs increases the number of
initial states able to proceed to full hybridization, with
the stability of those pairings dictating the likelihood
of such progression, thus providing new insight into
the physical factors underpinning DNA hybridization
rates.

INTRODUCTION

DNA is a biopolymer formed from four different nu-
cleotides, adenine, thymine, guanine and cytosine (A, T, G
and C respectively), whose order or sequence is used to en-
code information that is the foundation of biology. Com-
plementary DNA strands hybridize via Watson and Crick
base pairing between A–T or G–C bases to form the DNA

double helix or duplex (1), whose structural (2) and phys-
ical (3–5) properties are well characterized. In addition to
its essential role in biology, DNA hybridization also un-
derpins DNA nanotechnology (6–8), which utilizes DNA
self-assembly for the construction of rationally designed
nanoscale structures and machines (9–16). DNA nanotech-
nology has led to the development of a broad range of
technologies including applications in molecular sensing
(17–20), coordinating complex reaction cascades (21–23),
drug delivery vessels (24–27) and super resolution imaging
methods, such as DNA points accumulation for imaging
in nanoscale topography (DNA-PAINT) (28). Thus, under-
standing the thermodynamics, kinetics and mechanisms for
DNA hybridization is fundamentally important for biology
and biotechnology.

The thermodynamics of DNA hybridization have long
been observable via spectrophotometric or viscometric ob-
servations of thermal melt curves and are well studied (29–
31). The reaction is dominated by states consisting of com-
pletely dissociated DNA strands or fully hybridized DNA
duplexes. The stability of a DNA duplex can therefore be
estimated from the structure of a fully hybridized duplex
and is dependent on hydrogen bonds between paired bases
in DNA duplexes and hydrophobic base stacking that oc-
curs between neighbouring base pairs; both these interac-
tions are sequence dependent (32,33). Models predicting the
melting temperature Tm of a DNA duplex adopt a two-state
nearest neighbour approach, which postulates that the sta-
bility of a given base pair depends on the identity of the nu-
cleotide bases involved (A–T or G–C) and its nearest neigh-
bour base pairs. In turn, the Tm associated with the forma-
tion of any DNA duplex can be estimated from the sum of
the free energy of all 2 contiguous base-pairing interactions,
as well as additional parameters to account for the relative
stabilities of the ends of the duplex (32,33). Given that there
are only 10 unique combinations of 2-base sequences, near-
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est neighbour models can be parameterized experimentally
including in different buffer conditions (34–41), and algo-
rithmic implementations predict hybridization Tm reason-
ably well (42,43).

The kinetics of DNA hybridization are also sequence-
dependent (44–47). However, the pathways to DNA hy-
bridization are difficult to observe, and therefore the phys-
ical basis for sequence-dependent hybridization rates re-
mains poorly understood. Based on early thermodynamic
and kinetic measurements of DNA hybridization, Pörschke
and colleagues proposed a reaction mechanism in which hy-
bridization proceeds via a slow, rate limiting bimolecular
nucleation step, followed by fast monomolecular ‘zippering’
into a fully formed DNA duplex (30,48,49). More recent
developments in coarse-grained molecular dynamics (MD)
simulations enabled an in silico view of hybridization path-
ways, in which the rate-limiting nucleation step consisted of
a short stretch (∼3 bp at 300 K) of contiguous and com-
plementary base-pairing interactions (50–52). Since there
are typically many such possible nucleating interactions, it
therefore follows that the combination and relative stabil-
ity of all possible nucleating interactions, which is entirely
determined by the DNA sequence, defines the overall acti-
vation free energy and therefore the rate of any DNA hy-
bridization reaction. However, DNA strands can also form
intramolecular interactions that result in secondary struc-
tures such as hairpins that influence both the rates of hy-
bridization and melting. Such secondary structure can re-
duce hybridization rates either by limiting the availability
of a subset of nucleating interactions or by lowering the
probability that any given nucleating interaction is stable
enough to favour the displacement of the secondary struc-
ture, which must be denatured prior to zippering into a fully
formed duplex (53–55).

Two algorithms have recently been developed for predict-
ing sequence dependent hybridization rates. A ‘weighted
neighbour voting’ algorithm was used to examine 50 dif-
ferent sequence-dependent physical ‘features’ and found 35
different features that correlated with hybridization rates
(56). Perhaps unsurprisingly, of these features, the ensem-
ble standard free energy of secondary structure emerged as
the single best predictor of DNA hybridization rates, report-
ing predictions of hybridization rate constants (ka) of ∼60%
accuracy within a factor of two. The inclusion of five ad-
ditional features resulted in a six-parameter model, which
achieved a reported ∼80% prediction accuracy within a fac-
tor of two. However, apart from secondary structure, the
physical mechanisms underpinning how these additional
features influence hybridization rates remain unclear. Hata
et al. subsequently presented an alternative, physically mo-
tivated, model by estimating the relative binding capability
for all 3 consecutive base sequences involved in all possible
nucleating base-pairing interactions, including those which
were off-register (misaligned relative to a fully hybridized
duplex) or mis-matched (non Watson–Crick) (45). This ca-
pability was dependent on an estimate of the propensity
of any of the 32 possible 3-base nucleating interactions to
seed full hybridization and on the probability of predicted
secondary structures sterically hindering nucleating inter-
actions. Surprisingly however, seeding propensities did not
correlate with the stability of nucleating interactions and

accurate predictions required these propensities to be de-
termined empirically by fitting 32 free parameters to exper-
imental data. Thus, secondary structure remains the only
physically well-defined determinant for algorithms predict-
ing sequence dependent hybridization rates. However, ac-
curate predictions require multiple additional parameters
that are not physically well defined. This suggests that there
are other dominating physical factors apart from secondary
structure that are yet to be identified.

Coarse grained MD simulations, for example, indicate
that nucleation can occur from base pairing interactions
that are off-register (50–52). In these instances, off-register
nucleation states can progress to metastable intermedi-
aries such as misaligned duplexes that can move into reg-
ister via inchworming or pseudoknot internal displace-
ment mechanisms, followed by the final zippering step into
the fully hybridized DNA double strand (50). Like zip-
pering, these monomolecular rearrangements also occur
much more rapidly than nucleation. Consequently, repeti-
tive sequences, which have a greater number of possible off-
register nucleating interactions were predicted to hybridize
more rapidly than non-repetitive sequences (50).

Here we explored the impact of off-register nucleating
states on the hybridization rate of DNA strands experimen-
tally. To reduce the complexity of hybridization pathways
and to identify physical elements yet to be explicitly ac-
counted for in predictive models, we focused on sequences
that were not predicted to form secondary structures. Us-
ing surface plasmon resonance (SPR) we measured the hy-
bridization rates of 43 different DNA strands with varying
GC content and degree of sequence repetition and demon-
strate that repetitive sequences do indeed hybridize more
rapidly than non-repetitive sequences. We also present a
simple, physically-justified model, which demonstrates that
it is possible to capture much of the variance in sequence de-
pendent hybridization rates with only two free parameters
that account for the combination and stability of all possible
nucleating interactions, including those that are off-register.

MATERIALS AND METHODS

DNA oligonucleotides

All DNA was purchased from IDT. The salt purified
oligonucleotides were resuspended in milliQwater and
stored at –20◦C. To ensure that the measured hybridization
kinetics only depended on differences in the sequence, DNA
strands were designed to have no or negligible secondary
structures (2 bp or less) and nearly the same free energy
of the lowest energy double stranded complex, using NU-
PACK and IDT (Table 1).

Surface plasmon resonance experiments

SPR experiments were performed with a Biacore S200
system. A CM5 chip was coated with 4000–5000 RU
streptavidin purchased from Sigma-Aldrich. The experi-
mental setup for the surface plasmon resonance measure-
ments was chosen as described before (57), shown in Fig-
ure 1A. To ensure a Langmuir 1:1 interaction model, an
anchor DNA strand was immobilized on the chip sur-
face by biotin-streptavidin coupling at a density of 1.7 ×
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Table 1. All DNA sequences with associated rate constants measured in this study

Number Name Sequence 5′ > 3′ ka (M–1 s–1) × 106 kd (s–1) × 10–2

Anchor B-TTTGACCTCCTTGGCAGCACTG
Template *XnTTTCAGTGCTGCCAAGGAGGTC

1 14NR GCTGTTCGGTCTAT 1.04 ± 0.12 NA
2 14AC CACACACACACACA 4.82 ± 0.55 NA
3 14AG TCTCTCTCTCTCTC 2.02 ± 0.07 NA
4 10NR GTTCGGTCTA 1.15 ± 0.09 0.89 ± 0.05
5 10AC ACACACACAC 3.84 ± 0.15 0.67 ± 0.09
6 10AG TCTCTCTCTC NA NA

50% GC content

7 ACCAACCAACCAAC 5.21 ± 0.08 NA
8 CAACAACACCACCA 3.24 ± 0.40 NA
9 AAACCACCCAACAC 2.75 ± 0.13 NA
10 CCACCAACAACAAC 4.06 ± 0.18 NA
11 CAACACCCAAACAC 2.12 ± 0.26 NA
12 ACCAAACCACCAAC 1.19 ± 0.16 NA
13 CAAAACCCCAACAC 1.83 ± 0.08 NA
14 ACCAACACCAACCA 3.19 ± 0.14 NA
15 AACCACCACAAACC 3.66 ± 0.43 NA
16 ACACACACCACACA 4.44 ± 0.33 NA
17 CAACACAACCAACC 3.76 ± 0.40 NA
18 AAACCCACCACACA 1.89 ± 0.40 NA
19 AACCAACACCACCA 3.36 ± 0.33 NA
20 CAACCAACCA 3.96 ± 0.40 0.50 ± 0.04
21 ACAACACCAC 2.56 ± 0.18 0.24 ± 0.01
22 ACACCAAACC 2.18 ± 0.31 0.78 ± 0.15
23 CCACCAACAA 2.83 ± 0.33 1.27 ± 0.16
24 CAACACCCAA 2.51 ± 0.34 1.75 ± 0.21
25 ACCAAACCAC 2.17 ± 0.25 0.32 ± 0.01
26 CAAAACCCCA 2.65 ± 0.23 1.79 ± 0.19
27 ACCAACACCA 2.77 ± 0.44 0.87 ± 0.05
28 AACCACCACA 3.87 ± 0.37 0.75 ± 0.05
29 ACACACACCA 4.16 ± 0.37 0.66 ± 0.06
30 CAACACAACC 2.70 ± 0.39 0.40 ± 0.02
31 AAACCCACCA 2.53 ± 0.45 1.64 ± 0.09
32 AACCAACACC 2.66 ± 0.32 0.43 ± 0.04

57% GC content

33 CCCAAACCCAACCA 2.98 ± 0.24 NA
34 CACCACAACCACCA 3.81 ± 0.39 NA
35 CCCCACACAACAAC 3.96 ± 0.67 NA
36 ACACCACCAC 5.61 ± 0.47 0.11 ± 0.01
37 CCCCACACAA 5.45 ± 0.08 0.74 ± 0.10

42% GC content

38 CCAAAACCAACAAC 2.30 ± 0.09 NA
39 AAAAACCCACCCAA 2.43 ± 0.37 NA
40 CAACACCAAACAAC 1.78 ± 0.30 NA
41 CCAAAACCAA 1.67 ± 0.17 4.10 ± 1.04
42 AAAAACCCAC 2.36 ± 0.24 2.08 ± 0.10
43 AAACCACACA 1.81 ± 0.30 3.34 ± 0.31

*Xn represents a DNA stand complementary to the target sequence of length n = 10/14.

109 molecules/mm2 so that intermolecular crosslinking of
the immobilized DNA strands was minimized. The anchor
strand then captured the template strand, which had a free
complimentary binding site for the target strand.

The biotinylated anchor strand was immobilized on two
flow cells of the sensor chip, leaving two flow cells as blank
reference cells. DNA samples were prepared in 10 mM
HEPES pH 7.5, 150 mM NaCl, 3 mM EDTA and 0.005%
Tween20 running buffer and SPR experiments were per-
formed in the same buffer at 25◦C and a flow rate of
60 �l/min. The SPR chip could be regenerated for reuse
by removing the template strand with a 60 ul/min injec-
tion of 10 mM glycine pH 2.5. Sensorgrams were double-
referenced and three repeats of each data set were carried
out. The corrected binding curves were fitted with a 1:1
binding model to obtain apparent association constants,
kapp, and dissociation constants, kd . kapp were plotted as a
function of the target concentration and fit to a linear func-
tion whose slope corresponded to the association rate con-
stant, ka .KD from steady state measurements were calcu-

lated using the RUmax values obtained from binding curve
fits, plotted as a function of the target concentration. All
data was fit using Prism and MATLAB. Final ka and kd
values are averages of at least three replicates and errors re-
ported are standard deviations.

Estimation of binding free energies with NuPACK

Binding free energies were determined using NUPACK ver-
sion 4.0.0.21 (58) with the following parameters: 25◦C,
0.15 M NaCl, material setting to ‘dna2004’ and ensemble
parameter to ‘stacking’.

For two complementary strands partaking in one nucle-
ating interaction consisting of n contiguous base pairs, the
NUPACK free energy model takes the following form:

�G = �Gassoc +
n−1∑

i=1

�Gint
i +

m=2∑

j=1

�Gterm
j +

m=2∑

j=1

�Gdangle
j ,
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Figure 1. Binding kinetics for non-repetitive and repetitive DNA sequences. (A) Schematic depiction of the surface chemistry used to measure DNA
hybridization kinetics with SPR. First, a 20-base biotinylated DNA strand (anchor, dark grey) binds irreversibly to the streptavidin coated surface of the
SPR chip. Second, a longer strand of DNA (template, light grey) that is complementary to the anchor binds (capture). The template strand has an extension
consisting of a 3-thymine spacer and a sequence that is complementary to the target strand. Third, association and dissociation kinetics (association and
dissociation respectively) of the target strand (red) can then be measured in real time. The chip can be re-used for replicate experiments after a regeneration
step that denatures all DNA duplexes leaving only the black anchor strand (regeneration). (B and C) Representative raw SPR sensorgrams (red) with
mono-exponential fit (dashed black) to association phase for 14 bp sequences (B) and to association and dissociation phase for 10 bp sequences, fit locally
for each concentration (C). The apparent high association rate of the 10AG sequence was due to the use of high concentration of target strand required
to get an appreciable yield, and the fast dissociation, which increases the rate at which the system approaches equilibrium. Replicate data for sequences
in (B) and (C) are in Supplementary Figure S1. (D) Association rate constants for 14 bp (dark grey) and 10 bp (light grey) sequences. (E) Dissociation
rate constants for 10 bp sequences. * indicates that no kinetic rates could be determined. (F) Association rate constants for all DNA sequences without
secondary structure in this study as measured by SPR and indexed according to Table 1. As in (D), light and dark grey correspond to 10 and 14 base
sequences respectively. Sequences with 42% and 57% GC content are marked with magenta and cyan labels respectively. All other sequences have 50% GC
content. Error bars are standard deviation from at least three independent measurements. Raw SPR sensorgrams fitted with monoexponential equations
are in Supplementary Figures S2 and S3 and the distribution of RMSD values for all fits in Supplementary Figure S4.

where �Gassoc is the entropic penalty for bringing two
strands together from solution, �Gint

i is the free energy con-
tribution for each neighbouring base pair in the nucleat-
ing interaction (n − 1 total neighbouring interactions), cal-
culated from an empirically parameterized nearest neigh-
bour model (32), the sum over �Gterm

j is the contribution
of m = 2 terminal base pairs at either end of a nucleat-
ing interaction, and the sum over �Gdangle

j is invoked in

NUPACK 4.0 with the ensemble parameter set to ‘stack-
ing’ and accounts for base stacking interactions between
paired terminal bases and immediately adjacent unpaired
bases in the m = 2 ‘exterior loop structures’. �Gdangle

j is
an estimation of the free energy contribution arising from
a sub-ensemble of up to 4 possible stacking configurations
(no stacking, stacking from unpaired bases on either strand
or from both strands simultaneously (58)).
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RESULTS

Repetitive DNA sequences hybridize more rapidly than non-
repetitive sequences

To experimentally test predictions that additional off-
register nucleating interactions in repetitive sequences re-
sult in faster hybridization rates, we compared associa-
tion rates of two 14 base sequences previously analysed in
coarse grained MD simulations (50). The first was a non-
repetitive sequence (14NR) with 50% GC content that was
designed to minimize hairpin formation and off-register in-
teractions with its complementary strand. The second con-
sisted of seven successive AC repeats (14AC), which main-
tains the same GC content as 14NR but allows for more off-
register nucleating interactions. The absence of complemen-
tary bases precludes the formation of secondary structure
via intramolecular base pairing. In addition, we measured
hybridization kinetics of a repeated sequence consisting of
seven successive AG repeats (14AG). Unlike the 14AC se-
quence, the AG repeat sequence has the capacity to form G-
quadruplexes including GAGA quartets (59), and GAGA-
GAGA heptads (60). Thus, the 14AG sequence provided a
convenient means to assess the relative impact of secondary
structures and the additional off-register nucleation sites in
repeated sequences on DNA hybridization rates. We also
performed measurements with variants of the 14-base DNA
sequences that were truncated to a length of 10 bases. De-
tails of all DNA sequences used in this study are summa-
rized in Table 1.

DNA hybridization kinetics were measured with SPR as
previously described (57). DNA strands that were comple-
mentary to target strands were immobilized to the surface
of an avidin-coated SPR chip by hybridization to biotiny-
lated ‘anchor’ strands (Figure 1A). During association mea-
surements, target strands were flowed over the surface of
the chip at fixed concentrations [T] resulting in pseudo-first-
order binding kinetics. The response units (RU) from all
SPR sensorgrams were therefore fit to the following mono-
exponential equation:

R Ut = RUmax
(
1 − e−kobs t) + R0, (1)

where RUmax is the RU value at infinite time, R0 is the RU
value at the zero time point and kobs is the observed bind-
ing rate at the experimental concentration (Figure 1B and C
and Supplementary Figures S1–S3). All sensorgrams as ex-
pected were well described with a monoexponential fit, with
median RMSD values at around 1% or less of the RUmax of
the respective sensorgram (Supplementary Figure S4). As-
sociation rate constants (ka) could then be calculated from
sensorgrams according to:

ka = kobs − kof f

[T]
. (2)

The repetitive 14AC sequence (ka = 4.8 ± 0.5 ×
106 M−1 s−1) hybridized approximately five times faster
than the non-repetitive 14NR sequence (ka = 1.0 ± 0.1 ×
106 M−1 s−1) (Figure 1D). This is consistent with MD
simulations, suggesting that the additional possible off-
register nucleating interactions in repetitive sequences re-

sult in faster hybridization rates (50). As expected, given the
propensity for the 14AG sequence to form secondary struc-
tures (59,60), the 14AG sequence hybridized more slowly
than the 14AC sequence. Interestingly however, the asso-
ciation rate for the 14AG sequence ( ka = 2.0 ± 0.07 ×
106 M−1 s−1) was faster than that of the non-repetitive
14NR sequence, suggesting that additional off-register nu-
cleation states in the AG sequences are sufficient to off-set
the reduction of the hybridization rate associated with the
presence of secondary structures. Truncating DNA strands
to 10 bases did not appear to have a large effect on asso-
ciation rates. There was no detectable difference in asso-
ciation rates between the 14NR and the truncated 10NR
sequence (ka = 1.2 ± 0.1 × 106 M−1 s−1) and while slower
than the 14AC sequence, the 10AC sequence (ka = 3.8 ±
0.2 × 106 M−1 s−1) still hybridized 4 times faster than the
10NR sequence. Dissociation rates were drastically faster
for the AG sequence compared with the AC and NR se-
quences. The 10AG sequence dissociated too rapidly to
be captured within the limits of experimental measure-
ments. Since observed binding curves also depend on dis-
sociation rates (see equation 2), neither association nor
dissociation sensorgrams could be fit to monoexponen-
tial equations to obtain accurate association or dissocia-
tion rates for the 10AG sequence. In contrast, dissocia-
tion rates for the 10NR and 10AC sequences were similar
and much slower than the 10AG sequence, with a mean
dissociation rate of 8.9 ± 0.5 × 10−3 s−1 and 6.7 ± 0.9 ×
10−3 s−1, respectively (Figure 1E). This is consistent with
predictions that secondary structures in DNA sequences
not only decrease association rates but have a pronounced
tendency to increase dissociation rates, possibly originating
from the formation of secondary structures during melt-
ing (55). It also follows that the relatively slow dissocia-
tion rates of the AC and NR sequences reflects the lack
of significant secondary structures in these sequences as
predicted.

Association rates of randomly generated AC sequences

DNA sequences consisting only of AC bases (AC se-
quences) provide a useful means to explore the mechanisms
underlying sequence-dependent hybridization rates in the
absence of secondary structure. We therefore measured the
hybridization rates of an additional 38 randomly generated
DNA sequences consisting of only adenine and cytosine
bases. These DNA strands were either 10 or 14 bases in
length with a GC content between 40% and 60%. As above,
kinetic traces of all sequences were consistent with pseudo-
first-order binding kinetics (Supplementary Figures S2–S4)
allowing for reliable determination of binding rates, which
are presented in order of increasing rates in figure 1F. The
kinetic rate constants for all sequences in this study are
summarized in Table 1 and Supplementary Table S1, which
also shows, where applicable, consistent equilibrium disso-
ciation constants (KD) as calculated from kinetic rates and
steady state measurements, further confirming the reliabil-
ity of SPR data.

The repetitive 14AC and 10AC sequences were among
those with the fastest hybridization rates ranking 4th and



7834 Nucleic Acids Research, 2022, Vol. 50, No. 14

11th respectively, whereas the non-repetitive 14NR and
10NR had the slowest hybridization rates (Figure 1F). Fur-
thermore, consistent with previous reports (46), sequences
with a higher GC content tended to hybridize more rapidly.
Thus, increased hybridization rates appear to broadly cor-
relate with a greater number and stability of possible nucle-
ating interactions. The dependence of DNA hybridization
rates on strand length may also provide important mech-
anistic insight. Previous studies are in agreement that dis-
sociation rates significantly decrease with increased DNA
strand length. However, data on association rates are mixed
with reports of weakly increasing rates (61), decreasing rates
(62,63) or an absence of an effect on the rates (64). Our data
also shows no obvious correlation between DNA hybridiza-
tion rates and sequence length. This suggests either that a
length dependent effect on hybridization rates is insignifi-
cant between lengths of 10 and 14 bp or that length related
hybridization properties off-set each other to result in the
apparent lack of correlation.

Simple physically motivated model for capturing the variance
in DNA hybridization rates

To explore the underlying mechanisms dominating DNA
hybridization kinetics in more detail, we constructed a sim-
ple, physically motivated model to quantify the correlation
between hybridization rates and the number and stability of
nucleation states, including those that are off-register, that
result in a fully formed duplex. This simple model is pred-
icated on the idea that in the absence of other factors such
as secondary structure, sequence-dependent hybridization
rates are based fundamentally on two factors, the combina-
torics of available nucleation sites, and their stability. As il-
lustrated in Figure 2, the model assumes that hybridization
proceeds via a nucleation state consisting of a small sub-
sequence of n contiguous intermolecular base pairing inter-
actions (30,48–50,52). n thus constitutes a model parameter
controlling the effect of combinatorics of the sub-sequences
in the strands. From this nucleated state, the strands either
dissociate and return to solution or transition into one of a
vast number of complicated states associated with various
intermediary and meta-stable complexes including partially
zippered, off-register structures from where the complex can
proceed to a fully hybridized duplex (50).

If transitions from an unbound state into a nucleated
state are rate-limiting, and progression to eventual full hy-
bridization from a meta-stable structure is very likely (50),
then a faithful description of the kinetics between the un-
bound, nucleation and meta-stable states will provide an ap-
proximate measure of the total observed rate of hybridiza-
tion. We can thus construct a framework for modelling the
effective hybridization rate constant using the simple form:

ka =
L−n+1∑

i=1

L−n+1∑

j=1

ki, j . (3)

Here, L is the length of the strand expressed as an integer
number of bases, whilst i and j are indices corresponding to
the position of the first of n contiguous bases which make up
the nucleation state, in the 5′ → 3′ direction, for the strand

and its complement, respectively (Figure 2B, top). The dou-
ble sum therefore includes (L − n + 1)2 contributions from
all such nucleation states, regardless of whether they are on-
register, or whether they are formed from complementary
bases (Figure 2B – bottom). ki, j then quantifies the specific
contribution arising from the nucleation state at positions i
and j on the strand and its complement, respectively. Cru-
cially, unlike previous models (45), this allows the contribu-
tion of any particular nucleation state to vanish in the case
of mis-matched bases, thus naturally capturing the combi-
natorics of nucleating interactions, and for the contribution
of nucleating interactions to vary with the stability of the
nucleated state when they do match.

To account for the relative stability of each i, j nucleation
site we can approximate the associated contributing rate
constant ki, j as arising from an idealized sub-system con-
sisting of free or dissociated strands in solution, a single i,j
nucleation state, and a ‘bound’ state representing all config-
urations where the strands are in one of many more compli-
cated subsequent complexes including fully hybridized du-
plexes or pseudoknots etc. (Figure 2C). Thus, for any given
individual i, j nucleation site, this three state sub-system is
then fully described with the specification of the rate con-
stants associated with transitions between these states (Fig-
ure 2). Various assumptions can then be implemented to de-
fine the rates at each step.

First, we specify a transition rate from a nucleated state
to dissociated strands in solution, which we capture as a sta-
bility term measured through the free energy of binding of
the nucleation state, and thus introducing explicit sequence
dependence into the model,

r i, j
nucl→sol = r ′

nucl→sol e
�G0

i, j /RT. (4)

Here, �G0
i, j is the free energy of binding of the nucleation

state associated with binding locations i and j measured in
J/mol, r ′

nucl→sol is a rate constant that is independent of the
binding sequence, R is the gas constant and T is the tem-
perature in Kelvin. Second, we ignore any entropic effects
of unbound DNA bases surrounding the nucleation site
and assume that all specific nucleation sites are equally ac-
cessible from dissociated strands. The rate for forming any
given i, j nucleating interaction is assumed to be constant
across all nucleation sites, and can be given by r i, j

sol→nucl =
rκ (L − n + 1)−2 where rκ is an overall scaling factor repre-
senting the rate of a nucleation event occurring in any pair
of locations on the strands independently of their length,
comprising a rate constant κ and any concentration depen-
dence (e.g. rκ = κ[T] in the pseudo-first-order conditions
above), and the (L − n + 1)−2 term imposes the observed
lack of scaling of hybridization rates with strand length on
the model. Third, we assume that the rate of transitions
from the bound state to the nucleated state is slow relative
to the time scales of hybridization and hence these transi-
tions are ignored in the model. Finally, as a first approxi-
mation, we assume that the microscopic rate of transition
from any nucleated site into an intermediary or metastable
state is constant across all nucleation sites and sequences

r i, j
nucl→bound = rnucl→bound .
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Figure 2. Cartoon depiction of nucleation and hybridization underpinning the simple model with a nucleation length of two. From the unbound state
(A), the system can transition into one of (L − n + 1)2 possible nucleation states, where L is the length of the DNA strands and n is the length of the
nucleating interaction. (B) illustrates examples of the many possible nucleation states of length n = 2. From any of these states the system can either
return to an unbound state, or it can continue through to full hybridization via a complicated network of possible intermediary and meta-stable bound
states as illustrated in (C). The model assumes negligible transitions from bound states back to nucleated states. Rates are for transitions to and from
a single specified location (i, j ), where i and j refer to the index of the first base involved in the nucleating interaction from the 5′ end, on each strand
respectively. For each possible nucleation location there exists a constant rate of nucleation equal to rκ (L − n + 1)−2 such that the overall rate of nucleation
is independent of length. Then there is a sequence dependent rate from the nucleated state back to solution that depends on the stability of the nucleated
binding complex. Finally, there is a constant rate of transitioning from the nucleated state into a bound state. From these rate definitions, the effective rate
of hybridization due to nucleation location (i, j ) is taken as the inverse of the mean first passage time from the solution state to the bound state (equation
(6), Supplementary Note S1).

The effective rate for hybridization via any given i, j nu-
cleating interaction can be arrived at by computing the in-
verse of the mean first passage time taken to transition from
state 1 to state 3. From the rates defined above this rate is
given by (Supplementary Note S1):

ri, j = rκ (L − n + 1)−2rnucl→bound

r ′
nucl→sol e

�G0
i, j /RT + rκ (L − n + 1)−2 + rnucl→bound

.

(5)

While nucleation is the rate limiting step, the rate
of transitions away from the nucleated state are much
faster than the rate of transitions into the nucleated
state (rnucl→bound , r ′

nucl→sol � rκ (L − n + 1)−2). As such
we can simplify this expression, to leading order in
rκ (L − n + 1)−2/knucl→bound , and then convert to the rele-
vant rate constant to find

ki, j ≈ κ(L − n + 1)−2

r ′
nucl→sol

rnucl→bound
e�G0

i, j /RT + 1
= κ(L − n + 1)−2

eγ+�G0
i, j /RT + 1

, (6)

where γ = ln(r ′
nucl→sol/rnucl→bound ). The rate constant

for hybridization via any single (i, j ) nucleation state can
thus be directly interpreted as a uniform and limiting
rate, κ(L − n + 1)−2, into the nucleation state from solution
multiplied by a probability of continuing through to full hy-
bridization from the nucleation state,

phybridi ze
i, j = 1

eγ+�G0
i, j /RT + 1

. (7)

Consequently, the value of γ coincides with the value of
−�G0

i, j/RT for which the probability of continuing on to

hybridization is phybridi ze
i, j = 1/2. Substituting equation (6)

into equation (3) we arrive at

ka = κ(L − n + 1)−2
L−n+1∑

i = 1

L−n−1∑

j = 1

1

1 + eγ+�G0
i, j /RT

, (8)

fully specifying our model up to estimation of the nucle-
ation free energies of the nucleation state. When a nucle-
ation state (i, j ) constitutes a mismatch the model considers
the nucleation free energy to be infinity such that the prob-
ability of hybridization is zero. For complementary nucle-
ation states, nucleation free energies, �G0

i, j were obtained
using the NUPACK 4.0.0.21 implementation of the nearest
neighbour model (see materials and methods).

Given a fixed n, the terms κ and γ then constitute the free
parameters of the model, which can be fit to data. However,
of the two, only γ controls the sequence dependence, with
κ simply acting as a scaling factor. In physical terms γ con-
trols how sharply the increases in the stability of the nucle-
ation states increases the likelihood of continuing through
to full hybridization. Crucially, the fact that the sequence
dependent stability of nucleating interactions is controlled
by a single free parameter dramatically restricts model com-
plexity such that over-fitting can be avoided as much as pos-
sible.

Fits to experimental data

We first determine how well nucleation site combinatorics
alone correlate with relative hybridization rates, without
accounting for stability. This is achieved simply with the
model described above (Equation 8) by replacing the prob-
ability of hybridization with a value of one if the nucleation
site is formed from complementary base pairs, or zero with
mismatched base pairs. All other aspects of the model are
unchanged. The resulting model rates can then be scaled
to fit with experimental data by varying the scale factor,
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κ, using a Nelder-Mead optimization algorithm taking the
sum of the squared residuals as the objective function to
be minimized. Fits were performed with nucleation lengths
of n = 1, 2, 3 and 4 and predicted rates plotted against
measured rates (Figure 3A) from which correlation coeffi-
cients were calculated. Given the complexity of DNA hy-
bridization, and the potential that many rate determining
factors were not accounted for in our simple model, it was
important to ensure that reported correlations were a true
reflection of model accuracy. We therefore performed care-
ful statistical analysis to estimate standard deviations and
confidence intervals to quantify the certainty in correlation
coefficients. In addition, we performed permutation tests
to determine p-values based on the probability that simi-
lar correlations could be obtained from null-distributions of
randomly reshuffled datasets. Where correlations between
model and experiment were high (ρ > 0.5) P-values were
low (P < 0.001), thus providing confidence that the ob-
served trends were not spurious. Further, null distributed
correlations were very close to 0 (Supplementary Table S2)
providing confidence that the observed correlations were
not due to overfitting. A detailed description of error anal-
yses performed in this study is in Supplementary Note S2.
Standard deviations, confidence intervals and p-values for
all reported correlation coefficients are in Supplementary
Table S2, and model parameters from all fits in this study
are in Supplementary Table S3. For completeness, we also
report correlation coefficients calculated from point values
in Supplementary Table S4, which do not account for ex-
perimental uncertainty.

With a nucleation length of n = 1, combinatorics alone
provides no distinguishing power between different AC se-
quences with the same GC content, since these sequences
necessarily have the same number of possible complemen-
tary one base interactions. Consequently, predicted rates
using combinatorics alone were essentially flat for AC se-
quences when n = 1 (Figure 3A). Additionally, the NR se-
quences, which also consist of G and T bases, can make far
fewer complementary single base pair interactions and thus
have lower predicted hybridization rates, consistent with
experiment. Indeed, any weakly existing correlation when
n = 1 can be attributed to the slower hybridization rates
for the NR sequences. With increasing nucleation length,
there is a larger variation in the number of complementary
nucleating interactions. This variation yields a clearly posi-
tive correlation between predicted and measured hybridiza-
tion rates (Figure 3A) that increases with nucleation length
reaching a maximum when n = 3, which has a correlation
coefficient of ρ = 0.56 ± 0.04.

To incorporate base-pair stability in the model, we next
fit the full model in equation (8) to experimental data to de-
termine whether improved fits could be obtained over pre-
dictions based on nucleation site combinatorics only. Ac-
counting for stability introduces the single free parameter,
γ , which along with the scaling parameter κ, was varied,
again taking the sum of the squared residuals as the ob-
jective function to be minimized for each nucleation length
(n = 1, 2, 3 or 4). Relative to combinatorics alone, the full
model resulted in an improved correlation between model
and experimentally measured hybridization rates across all
nucleation lengths (Figure 3B). We note in particular a high

correlation with a nucleation length of n = 1 (ρ = 0.69 ±
0.03), where there was a lack of correlation from combina-
torics alone and which therefore can be attributed almost
exclusively to the inclusion of nucleation site stability.

We observe however that the model consistently over-
estimates the related, and most repetitive sequences, 10AC
and 14AC, possibly indicative of a lurking feature limit-
ing the increase of hybridization rates due to increasing
combinatorics not captured by the model. If we omit these
two related sequences the maximal correlation between pre-
dicted and measured hybridization rates is improved to ρ =
0.73 ± 0.03, occurring at n = 3 (Figures 3B and S5 and
Supplementary Table S2).

DISCUSSION/CONCLUSION

This study explores the complex processes underpinning
DNA hybridization and sequence-dependent binding kinet-
ics. While previous studies identified secondary structure as
a key contributing factor to hybridization rates (45,56), we
focus on other, equally relevant but poorly defined physi-
cal factors to gain a more complete understanding of DNA
hybridization. In particular, by combining careful experi-
mental design and measurements with a physically justified
theoretical model, significant progress is made in cementing
several principles, proposed to be fundamental to DNA hy-
bridization mechanisms. These principles are: that the rate
of forming nucleating interactions limits the rate of DNA
hybridization (30,48,49); that the combination and stabil-
ity of all possible nucleating interactions is therefore a rate
determining factor (45,50); and that rate-limiting nucleat-
ing interactions can be off-register from a fully formed du-
plex (50). The study experimentally verifies previous predic-
tions that repetitive sequences, which have a greater num-
ber of off-register nucleating interactions, hybridize more
rapidly than non-repetitive sequences (50). Additional mea-
surements were then performed to capture the variance in
hybridization rates between 41 different strands that have
little or no secondary structure (Figure 2). Finally, a simple
physically motivated model has been developed that cap-
tures a large part of this variance by accounting only for
the combination of possible nucleating interactions, includ-
ing those that are off-register, and their relative stability.

A guiding principle in the construction of our model is
to use as few free parameters as possible, to avoid over-
fitting and enable the inference of broad physical mecha-
nisms in the context of limited and/or noisy data. While we
acknowledge that such a principle will always be in tension
with a complete representation of the complicated phys-
ical processes that underpin DNA hybridization, we ob-
served a strong correlation between our parsimonious 2-
parameter model and experimental data (ρ = 0.73 ± 0.03).
This strong correlation demonstrates the importance of the
combinatorics and thermodynamic stability of nucleation
states, captured through a nucleation length n and stabil-
ity term γ , in the physical mechanisms underlying DNA
hybridization and sequence dependent hybridization rates,
and to the exclusion of all other factors.

This concise description of the physical mechanisms un-
derpinning DNA hybridization is in contrast with other
recent attempts to quantify hybridization rates. Zhang
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Figure 3. Predicted vs measured hybridization rates. Predicted rates from combinatorics alone in (A) and from the full model in (B) with n = 1 to n = 4
from left to right. Errors are standard deviations from at least three independent measurements. Red data points depict rates for repetitive 10AC and 14AC
sequences with all other data points in black. Each plot is labelled with correlation coefficients for the entire dataset (black) and for data omitting the
repetitive 10AC and 14AC sequences (red).

et al. achieved similarly high correlations with six pa-
rameters that suffer from the opacity associated with
machine-learning techniques. It is therefore hard to ob-
tain a mechanistic understanding of the underlying process,
in particular, to disambiguate between the effects of sec-
ondary structure and that of sequence-dependence, more
broadly (56). In Hata et al. an alternative model was pro-
posed, which explicitly incorporates secondary structure
and sequence-dependent nucleation (45). However, the lat-
ter component utilized 32 free parameters, one for each of
the possible 3-base sub-sequences, raising concerns of over-
fitting and on the generalisability of the model. Taken to-
gether with the inclusion of non-Watson–Crick pairings,
whose contribution is poorly understood, it is again difficult
to reach any firm conclusions regarding underlying mecha-
nisms from Hata’s approach. Crucially, neither approach re-
sults in the type of clarifying heuristic provided here, which
both improves understanding around sequence-dependent
nucleation and might reasonably be employed, to control
kinetic pathways in the rational design and/or engineering
of novel synthetic systems (65–67).

The multistrand package is another interesting attempt
to determine DNA hybridization rates in a broad range of
conditions. Multistrand utilizes a stochastic Markov sim-
ulation to determine the relative rates at which hybridiza-
tion proceeds through all discrete states of a kinetic tra-
jectory (68,69). As with our model, these rates are calcu-
lated from associated free energies that are estimated from
nearest neighbour methods. To estimate hybridization rates,
Multistrand produces a full kinetic trajectory through all
possible states through which hybridization proceeds. Ki-

netic predictions thus depend on a satisfactory navigation
of the complex network of all possible hybridization path-
ways, which can make it difficult to disentangle which phys-
ical assumptions contribute or detract from the accuracy
of the method. Our model in contrast, was designed to
test the simple hypothesis that DNA hybridization rates are
nucleation-limited and thus depend on the number and sta-
bility of all possible nucleating interactions. A high corre-
lation with experimental data supports this hypothesis and
provides mechanistic insight into DNA hybridization and
simultaneously offering a simple predictive method.

DNA hybridization has been characterized in a variety of
reaction conditions, with many studies focusing on the ef-
fect of ions and temperature on reaction rates and duplex
stability. Since the number of nucleating interactions is en-
tirely dependent on sequence, in our model, reaction condi-
tions can affect the parameters � and � , but not the combi-
natorics. Consequently, whilst we anticipate that the qual-
itative structure of the model is likely to remain appropri-
ate under different reaction conditions, the specific parame-
ters would require retraining from empirical data. However,
some insight into the expected qualitative behaviour, can be
broadly postulated based on the known condition depen-
dent stability, captured to varying degrees in the relevant
nearest neighbour models. For instance, increasing NaCl
or MgCl2 concentrations, increases the stability of DNA
duplexes and DNA hybridization rates. Moreover, this in-
creased stability is well parameterized in nearest neigh-
bour predictions (38,40,41). It is therefore conceivable that
our model will require minimal or no adjustment to cap-
ture hybridization rates in various ionic strengths, although
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this was not tested directly here. The effect of tempera-
ture is more complex. Assuming that nucleating interac-
tions are less stable at higher temperatures, it follows that in
a nucleation-controlled reaction, overall hybridization rates
should also decrease exponentially with increasing temper-
atures, as indeed is observed in earlier studies with poly-
A to poly-U oligonucleotide hybridization (30,70) and in
coarse-grained MD simulations (50). However, hybridiza-
tion rates in sequences consisting of GC base pairs exhibit
an exponential increase with increasing temperatures (46)
up to a threshold temperature above which rates decrease
with increasing temperatures (45,54,71). The molecular ba-
sis for the complex temperature dependence of DNA hy-
bridization rates is unknown with some studies suggesting
that rates are diffusion limited at lower temperatures and
only transition to be nucleation limited above a threshold
temperature (45,54,71). In contrast however, the results in
this study strongly suggest that sequence-dependence hy-
bridization rates can be explained by a nucleation-mediated
model even at lower temperatures. Moreover, the diffusion
coefficient for single-stranded DNA (72) predicts a diffu-
sion limited reaction to be around five orders of magnitude
faster than observed rates. The complex temperature depen-
dence of hybridization rates cannot be accounted for in sta-
bility calculations from current nearest neighbour models.
Reconciling the complex temperature-dependence of DNA
hybridization rates with a nucleation-controlled reaction
mechanism, remains an important question on the funda-
mental mechanisms of DNA hybridization.

The repetitive 10AC and 14AC sequences had the great-
est combination of nucleating interactions, particularly at
longer nucleation lengths, which resulted in model predic-
tions that were substantially higher than experiment, but
only when n ≥ 3 (Figure 3). Indeed, the results of the model
are highly contingent on the choice of the binding nucle-
ation site length, n. Moreover, there was no single choice
of nucleation length (n = 1, 2, 3 or 4) that yielded correla-
tions that were drastically better than the others. Here, we
must emphasize, the restriction to a single nucleation length
is highly idealized whereas in reality, nucleation is a pro-
gressive and complicated process. Microscopically, a prac-
tically innumerable number of nucleation and hybridization
pathways will exist from free strands to full hybridization,
and these pathways will be distinct for different initial inter-
actions between the strands. Along different parts of these
pathways further progression will be practically guaranteed,
whilst at others it may be highly unlikely. As such, the suc-
cess of any given binding nucleation length does not imply
importance to the exclusion of other characteristic lengths,
but simply reflects that it is possible to capture the variance
in the data by examining an ostensibly critical part of the
nucleation process. In this respect one can view the choice
of the nucleation state being n bases as constituting the im-
plicit assumptions that any nucleation state with fewer than
n bases will disassociate if they cannot lead to a contiguous
nucleation state of n bases, and that binding states of more
than n contiguous bases are very likely to lead to full hy-
bridization. In reality however, it is unlikely that there exists
a single threshold nucleating length that fulfils the criteria
above. Indeed, plotting the distribution of binding free ener-
gies at different n shows considerable overlap in the distribu-

tion of binding free energies at different nucleation lengths
(Supplementary Figure S6). These distributions suggest, ac-
cording to NUPACK predictions, that a larger n does not
necessarily translate to a more stable nucleating interaction.
Thus, the true threshold length of a nucleating interaction
according to the definition above, is highly sequence depen-
dent and will differ not only between DNA strands with
different sequences but also within any given DNA strand.
One could extend this model to account for variable nucle-
ation lengths, but this would unavoidably lead to a prolif-
eration of associated free parameters, drastically increasing
the chance of over-fitting.

The probability that any matched nucleating interaction
will proceed towards a fully formed duplex, can be calcu-
lated from the stability of nucleating interactions (as de-
termined by NUPACK) combined with the γ value ob-
tained from fits to experimental data according to equa-
tion (7). These probabilities for all such interactions in this
study are reported in model outputs, which are available in a
GitHub repository, with a mean probability of phybridi ze

i, j =
0.40 ± 0.2, which is similar to previous observations from
MD simulations (50). However, model probabilities rely on
the stipulation that there is a constant rate of progression
from an initial nucleation state to more strongly bound
metastable or fully hybridized states, which is also a simplifi-
cation of the real underlying physical hybridization process.
Attempting to account for such variation would again in-
evitably introduce large numbers of additional free parame-
ters, risking over-fitting which, even if appropriately imple-
mented, may in turn serve only to obscure more primary
physical principles behind the variation of hybridization
rates.

The hybridization rates of 10 base and 14 base DNA
strands were similar with no obvious correlation between
sequence length and hybridization rates (Figure 1F), which
informed the decision to normalize the model prediction
by the number of possible nucleation states, (L − n + 1)−2,
thus removing length dependence from our model. For
completeness however, we also performed optimizations
with the negative square replaced by a free exponent, α. Fit-
ted values of α that are less than or greater than –2 would
be suggestive of a positive or negative dependence of hy-
bridization rates with strand length. However, the use of
such an additional parameter conferred very little increase
in model performance, with optimized values of α very close
to –2 (Supplementary Table S2), as emerges from the ini-
tial model choice and confirming that the dependence on
length in our data is extremely weak. While a weak depen-
dence of hybridization rates on length cannot be expected to
hold true for all lengths of DNA strands, the lack of length
dependence in our data could be the result of many pos-
sible physical processes. A natural interpretation in terms
of the presented model is that the number of nucleation at-
tempts per unit time were constant across sequence lengths,
perhaps due to similar effective diffusion coefficients and
molecular cross-sections over the range of lengths utilized.
In turn this property may be contingent on the designed lack
of secondary structure in our data set.

Despite these strong assumptions, our model has
favourable properties, which strengthen its claims for a
faithful capturing of basal physical processes. First, the
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model is constructed from minimal free parameters, and
second, the variation possible in the model is strongly
constrained by physical plausibility arguments. Conse-
quently, the capacity for fitting arbitrary patterns in data
is severely constrained. Explicitly, all other factors being
equal, the model always assigns greater hybridization rates
to sequences that have a larger number of repetitive sub-
sequences and when the stability of those binding states
is stronger, with the sole variation controlling the size of
such an effect. If some other physical property were more
dominant, which conflicted with the property that more sta-
ble nucleation sites hybridize faster for example, the model
would be unable to capture it. Thus, while our model can-
not be taken as a precise account of the hybridization pro-
cess, it enables us to conclude the correlations it achieves
with data lends strong evidence to the claim that both
binding site combinatorics and the stability of those sites
are strongly implicated as dominant mechanisms under-
lying the sequence-dependent hybridization rates of DNA
strands in vitro. These findings will be useful for the de-
sign of applications in DNA nanotechnology such as DNA
PAINT where control over hybridization kinetics is imper-
ative for achieving adequate signal to noise within practical
acquisition times (28,73–76). Future work could incorpo-
rate our findings with approaches such as by Hata et al. (45),
whose algorithm explicitly accounts for the consequences of
secondary structure on nucleation propensities.
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