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The derivation and validation of a simple model
for predicting in-hospital mortality of acutely
admitted patients to internal medicine wards
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Abstract
Limited information is available about clinical predictors of in-hospital mortality in acute unselected medical admissions. Such
information could assist medical decision-making.
To develop a clinical model for predicting in-hospital mortality in unselected acute medical admissions and to test the impact of

secondary conditions on hospital mortality.
This is an analysis of the medical records of patients admitted to internal medicine wards at one university-affiliated hospital. Data

obtained from the years 2013 to 2014 were used as a derivation dataset for creating a prediction model, while data from 2015 was
used as a validation dataset to test the performance of the model. For each admission, a set of clinical and epidemiological variables
was obtained. The main diagnosis at hospitalization was recorded, and all additional or secondary conditions that coexisted at
hospital admission or that developed during hospital stay were considered secondary conditions.
The derivation and validation datasets included 7268 and 7843 patients, respectively. The in-hospital mortality rate averaged

7.2%. The following variables entered the final model; age, body mass index, mean arterial pressure on admission, prior admission
within 3 months, background morbidity of heart failure and active malignancy, and chronic use of statins and antiplatelet agents. The
c-statistic (ROC-AUC) of the prediction model was 80.5% without adjustment for main or secondary conditions, 84.5%, with
adjustment for the main diagnosis, and 89.5%with adjustment for the main diagnosis and secondary conditions. The accuracy of the
predictive model reached 81% on the validation dataset.
A prediction model based on clinical data with adjustment for secondary conditions exhibited a high degree of prediction accuracy.

We provide a proof of concept that there is an added value for incorporating secondary conditions while predicting probabilities of in-
hospital mortality. Further improvement of the model performance and validation in other cohorts are needed to aid hospitalists in
predicting health outcomes.

Abbreviations: ACG= adjusted clinical groups, AUC= area under the curve, BI = Business Intelligence, BMI = bodymass index,
CCBs = calcium channel blockers, CHF = congestive heart failure, COPD = chronic obstructive pulmonary disease, CVD =
cerebrovascular disease, EHRs = electronic health records, ICD-9 = International Classification of Diseases—Ninth Revision, IDI =
integrated discrimination improvement, IRB = institutional review board, LASSO = least absolute shrinkage and selection operator,
MAP = mean arterial pressure, NRI = net reclassification index, ROC = receiver operating characteristic, SAP =
systems–applications–products, UTI = urinary tract infection.
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1. Introduction

Predicting in-hospital mortality has been the focus of numerous
studiesaimed toprovideclinicianswith simpleandreproducible risk
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assessment models. The Charlson comorbidity index, which was
originally formulated topredict1-yearmortalitybasedoncoexistent
comorbidities,hasbeenadapted topredict variousoutcomes suchas
in-hospital mortality, disability, hospital readmissions, higher
hospital costs, and length of stay.[2,3] Numerous studies have
consistently shown that comorbidity is one of the main factors
associated with adverse outcomes among hospitalized patients.[4,5]

To date, nearly all prediction model studies that investigated the
association between various variables and in-hospital mortality
focused on specific patient populations such as patients with
pneumonia,[6] congestive heart failure (CHF),[7] acute myocardial
infarction,[8] chronic obstructive pulmonary disease (COPD),[9]

stroke,[10] infective endocarditis,[11] and cancer.[12] In addition,
these studies mainly addressed associations between the main
diagnosis at hospital discharge notes and various variables,without
adjustment for secondarydiagnoses or concomitant conditions that
coexisted at the time of admission or that developed during hospital
stay. Such conditions could have a substantial impact on the
predicted probability of in-hospital mortality and are not always
accounted for during data analysis.
Our objective was to develop a simple and reliable model that

relies only on clinical characteristics to predict in-hospital
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mortality among patients admitted to internal medicine wards
and to examine the impact of secondary conditions on overall
hospital mortality.
2. Materials and methods

We conducted a retrospective cohort study of patients who were
admitted to one of the 5 internal medicine wards at EmekMedical
Center over a 3-year period. Data obtained from the first 2 years
(2013–2014) were used as a derivation dataset for creating a
prediction model, while data from 2015 were used as a validation
dataset to test the performance of the model.
Emek Medical Center is a university-affiliated hospital located

in northeastern Israel, with an annual 130,000 visits to the
emergency departments. Our hospital policy for the past 15 years
dictates the review of all discharge notes of hospitalized patients
by specially trained administrative staff. This is to ensure the
completeness and the compatibility of the main and any
secondary diagnosis with the medical notes registered during
the patient’s hospitalization. Data for the present study were
gathered using 2 separate datasets, Chameleon Medical Record
(Elad Health, Tel-Aviv, Israel), a web-based electronic medical
record information system that includes inpatient administrative
and clinical information and SAP (systems–applications–
products) Business Objects-Business Intelligence (BI) platform
(SAP, Walldorf, Germany), a suite of front-end applications that
assembles clinical and administrative data from both in-hospital
and outpatient sources. Admissions that lasted for at least 24
hours were eligible for inclusion in the study. Cohort assembly
was carried out while ensuring that only one admission per
patient was included. Thus, for patients who had multiple
admissions during the study period (2013–2014) and survived,
one admission was randomly selected. For patients who had
multiple admissions and died we chose the admission that ended
with death, we did not include any admission before that. If the
patient died during the study period (2013–2014), had multiple
admissions, but did not die during hospital stay, we chose only
the last admission before his death. For each patient’s admission
the following variables were obtained: age, gender, body mass
index (BMI), mean arterial pressure (MAP) on admission, date of
admission, date of discharge, date of death, length of stay, month
of admission, weekend or weekday admission, admission within
3 months before index admission, and time of admission
according to nurses’ shifts (08:00–15:59, 16:00–23:59, and
24:00–07:59).
The Chameleon Medical Record system uses the International

Classification of Diseases—Ninth Revision (ICD-9) for assigning
medical diagnosis and requires differentiation between the main
diagnosis, secondary conditions, and background morbidity. For
each patient, the main diagnosis was recorded and all other
conditions that coexisted at hospital admission or that developed
during hospital stay were considered to be secondary conditions.
The main diagnosis and secondary conditions listed in the
discharge notes were grouped into 13 categories, matching the
ICD-9 classification with some modifications (see Supplementary
file S1, http://links.lww.com/MD/B763).Conditions that could not
be grouped into any of the 13 categories, or that had less than 5%
frequency, were grouped under “other diagnosis.” This grouping
of diagnoses was intended to decrease misclassifications and
increase the utility, as well as feasibility, of the prediction model.
From the outpatient datasets the following variables were

recorded: the adjusted clinical groups (ACG) score[13] (in the year
before index admission), which measures morbidity burden
2

based on disease patterns, age and gender as a constellation of
morbidities, not as individual diseases. The ACG system
automatically collapses the full set of ACG categories into 6
simplified morbidity categories (nonusers, healthy-users; and
low, moderate, high, and very high morbidity). For each ACG, a
relative weight was determined, which is the ratio of the mean
ambulatory cost for each ACG to the mean ambulatory cost for
the entire population. In addition, the number and type of specific
chronic comorbidities was noted; CHF, diabetes mellitus, COPD,
hypertension, chronic renal failure, cerebrovascular disease
(CVD), and active malignancy excluding localized basal or
squamous cell skin cancer and cervical carcinoma in situ; and the
number and type of chronic medications: diuretics, b blockers,
calcium channel blockers (CCBs), statins, antiplatelet therapy,
antithrombotic therapy, angiotensin-converting enzyme inhib-
itors, angiotensin II receptor blockers, and proton pump
inhibitors.
Patients were excluded from the analysis according to the

following criteria: short admissions (<24hours), admissions
classified under symptoms, signs, and ill-defined conditions (ICD-
9 codes 780–799), and admissions classified under “observation
for” (ICD-9 codes V71, V71.2, V29.0, V29.1, V29.2, V29.8, and
V29.9).
2.1. Statistical analysis

We used the Chi-square test (or Fisher exact test) to investigate
the association between categorical variables and death.
Continuous variables were examined using the Student t test
(or Wilcoxon 2 sample test). The effect of the independent risk
factors on the odds of death was estimated by implementing
multivariate stepwise logistic regression. The stepwise algorithm
was used after looking for confounders and interactions in the
stratified analyses. The threshold probability for entering variables
into the model was P< .10. Removal threshold was P> .05. The
model accuracy and goodness of fit were estimated using receiver
operating characteristic (ROC) and area under the curve (AUC),
and the Hosmer and Lemeshow Goodness-of-Fit Test.
To explore the impact of main and secondary conditions on the

accuracy of the model, 3 multivariate models were compared:
without main or secondary diagnoses (model A); with main
diagnoses only (model B), with main and secondary conditions
(model C). The models were compared using the AUC as well as
the integrated discrimination improvement (IDI),[14] and the net
reclassification index (NRI).[15] The application of NRI and IDI is
intended to assess the added discrimination offered by the
addition of a marker to a prediction model. The NRI uses risk
categories to quantify the reclassification improvement of the new
model over the other. The IDI assesses the improvement in
sensitivity without sacrificing average specificity. The model was
validated using the validation dataset; for each patient a predicted
probability for in-hospital mortality was obtained, using the final
model coefficients. To assess the accuracy of the prediction
model, ROC curvewas constructed andAUCwas calculated. The
data management and statistical analyses were performed using
the SAS (version 9.4) software.
The study was approved by the hospital’s institutional review

board (IRB; approval number: EMC-14-0109).
3. Results

In 2013 to 2014, 12,499 patients were admitted to the 5
participating internal medicine wards, resulting in 21,794
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Table 1

Clinical and epidemiological characteristics according to survival, together with crude odds ratios for mortality of each covariate
(derivation dataset, n=7268).

Variable Survived, n=6386 Died, n=882 OR [95% CI] P

Mean age (range) 67.8 [18–105] 77.5 [23–105] 1.05 [1.04–1.05] <.001
Female sex (%) 2984 (46.7) 453 (51.4) 1.20 [1.04–1.39] .010
BMI (kg/m2)±SD 28.3±6.2 25.8±6.3 0.93 [0.91–0.94] <.001
MAP on admission±SD 94.4±17.4 82.6±25.2 0.97 [0.96–0.99] <.001
Mean length of stay (d) 5.9 7.8 1.03 [1.02–1.04] <.001
Time of admission
08:00–12:00 1586 (25.0) 235 (27.0) 1
12:00–16:00 1691 (26.7) 230 (26.5) 0.92 [0.76–1.12] .39
16:00–19:00 1043 (16.5) 116 (13.4) 0.75 [0.59–0.95] .017
19:00–24:00 1301 (20.5) 181 (20.8) 0.94 [0.76–1.16] .55
24:00–08:00 717 (11.3) 107 (12.3) 1.01 [0.79–1.29] .95

Weekend admission
No 4386 (68.7) 601 (68.1) 1
Yes 2000 (31.3) 281 (31.9) 1.03 [0.88–1.19] .74

Admission within prior 3 months
No 5027 (78.7) 479 (54.3) 1
Yes 1359 (21.3) 403 (45.7) 3.11 [2.69–3.6] <.001

Background morbidity
COPD 814 (12.8) 158 (17.9) 1.49 [1.24–1.8] <.001
CRF 1083 (16.9) 246 (27.9) 1.89 [1.61–2.23] <.001
DM 2365 (37.0) 378 (42.9) 1.28 [1.11–1.47] .001
HTN 3640 (57.0) 601 (68.1) 1.61 [1.39–1.88] <.001
HF 1304 (20.4) 284 (32.2) 1.85 [1.59–2.16] <.001
CVD 679 (10.6) 107 (12.1) 1.16 [0.93–1.44] .18
Malignancy 816 (12.8) 256 (29.0) 2.79 [2.37–3.29] <.001

Chronic medication
Diuretics 956 (14.9) 204 (23.2) 1.7 (1.44–2.02) <.001
Beta blockers 1783 (27.9) 214 (24.3) 0.7 [0.53–0.95] .019
Antithrombotic therapy 522 (8.2) 52 (5.9) 0.7 [0.53–0.95] .019
PPIs 1442 (22.6) 238 (26.9) 1.27 [1.08–1.49] .004
Antiplatelet agents 2513 (39.4) 270 (30.6) 0.68 [0.58–0.79] <.001
Statins 2159 (33.8) 152 (17.2) 0.41 [0.34–0.49] <.001
ACEI and ARBs 2239 (35.06) 212 (24.04) 0.59 [0.50–0.69] <.001
CCBs 1248 (19.5) 130 (14.7) 0.71 [0.59–0.87] .001

ACG category
Nonusers 30 (0.61) 2 (0.27) 1
Healthy-users 385 (7.79) 63 (8.54) 2.45 [0.57–10.52] .23
Low morbidity 872 (17.65) 118 (15.99) 2.03 [0.48–8.6] .34
Moderate morbidity 1313 (26.58) 170 (23.04) 1.94 [0.46–8.2] .37
High morbidity 1510 (30.57) 231 (31.3) 2.29 [0.55–9.66] .26
Very high morbidity 830 (16.8) 154 (20.87) 2.78 [0.66–11.76] .16
Mean ACG weight 3.3±2.8 3.6±2.9 1.04 [1.01–1.07] .004

ACEI=angiotensin converting enzyme inhibitors, ACG= adjusted clinical groups, ARBs= angiotensin receptor blockers, BMI=body mass index, CCBs=calcium channel blockers, CI=confidence interval,
COPD= chronic obstructive pulmonary disease, CRF= chronic renal failure, CVD= cerebrovascular disease, DM=diabetes mellitus, HF=heart failure, HTN=hypertension, MAP=mean arterial pressure, OR=
odds ratio, PPIs=proton pump inhibitors, SD= standard deviation.
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admissions. Readmission episodes ranged from 2 to 33. The in-
hospital mortality rate was 7.1% (n=882). After excluding
patients who did not meet study inclusion criteria (n=4723), and
patients with missing discharge diagnoses (n=508), the 7268
eligible patients who remained comprised the derivation dataset
(Table 1). Altogether, nearly 80% of the main diagnoses fit the 13
categories, and more than 93% of the diagnoses of patients who
died fit these categories. The most frequent main diagnoses were
pneumonia, heart failure, and CVD (Table 2). The most common
main diagnoses among the deceased in decreasing frequency were
pneumonia, sepsis and septicemia, malignant neoplasms, and
heart failure (Table 2).
Univariate analysis based on the derivation dataset resulted

in 22 variables that were considered candidates for the logistic
regression (Table 1), with 8 remaining in the final model
3

(Table 3). These included age, BMI, MAP on admission,
previous admission within 3 months before the index
admission, background diagnoses of heart failure and active
malignancy, and chronic use of statins and antiplatelet agents.
In addition, 6 secondary conditions entered the final model;
these included heart failure, pneumonia, sepsis and septicemia,
renal failure, malignant neoplasm, and acute coronary
syndrome (Table 3, and Supplementary file-S2, http://links.
lww.com/MD/B764). The analysis was executed again without
patients with missing BMI values (n=939), no significant
differences were found from the original cohort (data not
shown).
A prediction model was created based on estimates from the

final model. The c-statistic (ROC-AUC) of the prediction model
was 80.5% without adjustment for main or secondary
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Table 2

Main diagnoses from hospital discharge notes according to survival, classified into 13 categories, with crude odds ratio for mortality.

Group no. Main diagnosis Survived, n=6386 Died, n=882 OR [95% CI] P

1 Deficiency and other anemia 324 (5.1) 11 (1.3) 0.8 [0.4–1.48] .42
2 Heart failure 772 (12.1) 85 (9.6) 2.5 [1.76–3.51] <.001
3 Chronic obstructive pulmonary disease

and allied conditions
313 (4.9) 22 (2.5) 1.6 [0.96–2.63] .07

4 Cerebrovascular disease 730 (11.4) 66 (7.5) 2 [1.42–2.94] .001
5 Malignant neoplasms 204 (3.2) 123 (14.1) 13.6 [9.63–19.22] <.001
6 Acute coronary syndrome 555 (8.7) 29 (3.3) 1.2 [0.75–1.86] .48
7 Cardiac dysrhythmias 411 (6.4) 10 (1.1) 0.6 [0.28–1.08] .08
8 Pneumonia 722 (11.3) 206 (23.4) 6.4 [4.75–8.74] <.001
9 Acute and chronic renal failure 318 (5.0) 59 (6.7) 4.2 [2.86–6.14] <.001
10 Sepsis and septicemia 168 (2.6) 128 (14.5) 17.2 [12.13–24.40] <.001
11 Septic shock 6 (0.1) 56 (6.4) 210.6 [87.2–508.8] <.001
12 Venous thrombosis and embolism 154 (2.4) 8 (0.9) 1.2 [0.55–2.50] .68
13 Urinary tract infections 400 (6.3) 21 (2.4) 1.2 [0.71–1.98] .52
14 Other 1309 (20.5) 58 (6.6)

See Supplementary file S1, http://links.lww.com/MD/B763 for diagnosis/medical conditions included in each group.
CI= confidence interval, OR=odds ratio.
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conditions, 84.5%, with adjustment for the main diagnosis, and
89.5% with adjustment for the main diagnosis and secondary
conditions (Fig. 1). Similarly, both IDI andNRImeasures showed
statistically significant discrimination ability for the addition of
secondary conditions (Table 4).
Table 3

Multivariate stepwise logistic regression to assess the contribution o

Variable bi

Intercept �5.24
Age 0.045
BMI �0.023
MAP on admission �0.01
Admission within 3 prior months 0.862
Heart failure background 0.397
Underlying malignancy 0.304
Prior use of antiplatelet agents �0.314
Prior use of statins �0.569
Main diagnosis
Deficiency and other anemia �0.602
Heart failure �0.753
Chronic obstructive pulmonary disease and allied conditions �0.023
Cerebrovascular disease 1.288
Malignant neoplasms 1.657
Acute coronary syndrome �0.348
Cardiac dysrhythmias �0.556
Pneumonia �0.259
Acute and chronic renal failure 0.061
Sepsis and septicemia �0.121
Septic shock 1.99
Venous thrombosis and embolism 0.359
Urinary tract infections 0.296
Other

Secondary conditions
Heart failure 1.132
Sepsis and septicemia 2.651
Pneumonia 1.757
Acute coronary syndrome 1.026
Renal failure 1.306
Malignant neoplasm 1.215

BMI=body mass index, CI= confidence interval, MAP=mean arterial pressure, OR=odds ratio, SE= s

4

The validation dataset consisted of 7843 patients with 11,508
admissions; 6323 patients were admitted only once. Readmission
episodes ranged from 2 to 13. In-hospital mortality rate was
7.4% (n=582). For each patient, the predictive probability
for in-hospital death was calculated according to the established
f variables to mortality.

SE (bi) Adjusted OR (95% CI) P

0.579 <.001
0.005 1.05 (1.04–1.06) <.001
0.010 0.98 (0.96–1) .025
0.003 0.99 (0.98–0.99) .002
0.116 2.37 (1.89–2.97) <.001
0.135 1.49 (1.14–1.94) .003
0.147 1.36 (1.02–1.81) .039
0.137 0.73 (0.56–0.96) .022
0.152 0.57 (0.42–0.76) <.001

0.441 0.55 (0.2–1.3) .18
0.309 0.47 (0.2–0.86) .015
0.362 0.98 (0.5–1.99) .90
0.255 3.63 (2.2–5.9) <.001
0.333 5.24 (2.7–10.1) <.001
0.424 0.71 (0.3–1.6) .42
0.412 0.57 (0.2–1.3) .17
0.28 0.77 (0.45–1.3) .36
0.308 1.06 (0.58–1.95) .84
0.318 0.89 (0.48–1.65) .70
0.587 7.31 (2.3–23.1) .001
0.557 1.43 (0.48–4.27) .52
0.432 1.34 (0.58–3.14) .49

1

0.213 3.1 (2.0–4.7) <.001
0.233 14.17 (8.9–22.4) <.001
0.209 5.79 (3.8–8.7) <.001
0.319 2.79 (1.5–5.2) .001
0.17 3.69 (2.6–5.2) <.001
0.284 3.37 (1.9–5.9) <.0001

tandard error.
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Figure 1. Receiver operating characteristic (ROC) curves and relevant area
under curve (AUC) applied for 3 possible models using standardized weighting
coefficients.

Table 4

Summary statistics comparing the discrimination ability of the
different risk prediction models.

Difference in
AUC, % IDI [95% CI] NRI [95% CI]

Model C vs model A 9 19.5% [18.5–20.5] 33% [30.5–35.6]
Model C vs model B 5 10.1% [9.3–10.9] 19.1% [16.8–21.4]
Model B vs model A 4 9.4% [8.7–10.1] 16.6% [14.4–18.7]

Model A: without main diagnosis or secondary conditions.
Model B: with main diagnosis only.
Model C: with main diagnosis and secondary conditions.
The application of NRI and IDI is intended to assess the incremental value of one model versus another.
AUC= area under curve, CI= confidence interval, IDI= integrated discrimination improvement, NRI=
net reclassification index.
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model. The accuracy of the developed predictive model reached
81%.
4. Discussion

The present study showed that a simple clinically based model
can reasonably predict the risk of in-hospital mortality of acutely
admitted medical patients. Our objective was to integrate
secondary conditions coexistent at hospital admission or
developing during hospital stay and to examine their impact
on the prediction accuracy of in-hospital mortality. The addition
of secondary conditions increased the c-statistic of the model
form 84.5% to 89.5%. The derived model includes 8 variables,
13 possible main diagnoses, and 6 secondary conditions. Testing
the accuracy of the prediction model on a separate cohort
revealed a c-statistic of 81%.
Our prediction model would be easy for clinicians to use as

it relies on basic variables that include age, BMI, MAP on
admission, history of prior admission (3 months), chronic
morbidity (heart failure and malignancy), and the use of certain
chronic medications (statins and antiplatelet agents). Previous
publications have described models for predicting in-hospital
mortality with clinical and laboratory variables using large
datasets in the United States.[16–19] However, these studies did not
evaluate the role of additional clinical data, such as vital signs, in
predicting mortality.[16,17] Some targeted specific patient pop-
ulations (male patients admitted to intensive care units),[17] or
limited their analysis to 6 common clinical conditions.[18] A
recent study described an automated disease-specific risk
adjustment system using clinical data,[19] while incorporating a
wide spectrum of clinical conditions, 2 dozen numerical
laboratory tests, and administrative data. The average c-statistic
for the automated clinical models was 0.83. Nevertheless, none of
these studies adjusted their analyses for secondary conditions.
The c-statistic of our model was 89.5%, indicating an excellent
5

correlation with in-hospital mortality, and an excellent predictive
accuracy of 81%. Compared with other predictive models for
in-hospital mortality, our simplemodel provides better, or at least
comparable, predictive accuracy.[16,18–20]

A study published 3 decades ago estimated that nearly 17% of
patients suffer from new complications during hospitalization.[21]

A more recent study reported that in-hospital medical compli-
cations developed among 25% of patients admitted with
stroke.[22] A limitation of the present study is that we could
not determine whether the secondary conditions listed in the
computerized discharge notes were complications that developed
during hospital stay or were present at hospital admission.
Several recent studies evaluated rates of specific medical
complications among patients admitted with some common
medical conditions. For example, rates of cardiac events among
patients admitted with community acquired pneumonia ranged
between 8% and 19%.[23,24] Likewise, rates of cardiac
dysrhythmias among patients with sepsis have been estimated
to range between 8% and 46%.[25] Urinary tract infection (UTI)
and pneumonia developed in 15% and 9%, respectively, of
patients with stroke, according to a Danish study[22]; and cardiac
arrest developed in 3.9% of patients with acute ischemic stroke in
a recently published study.[26]

Heart failure was the most common diagnoses among the
survivors of the present study, in both the derivation and
validation cohorts, but less so among the deceased. This was also
the most common diagnosis among readmitted patients. Heart
failure diagnosis entered the final model in 2 different categories,
as a background chronic morbid condition, and as a secondary
condition. However, heart failure as the main diagnosis was not
associated with increased probability of in-hospital mortality.
This confusing observation could imply that admission criteria
for patients with heart failure in our institution may not have
been properly implemented and that some of these patients could
have been treated in an outpatient setting.
Data from the derivation and validation datasets imply that

prior use of statins, and antiplatelet agents are associated with
lower rates of in-hospital mortality. These observations may
reflect healthier user effect, yet are to be interpreted cautiously.
Further investigations are needed to extend these observations to
additional patients. Nevertheless, recent studies suggested that
prior use of statins are associatedwith lower in-hospital mortality
among patients admitted with acute ischemic stroke,[27]

intracerebral hemorrhage,[28] and sepsis.[29] In addition, the
use of statins has been suggested to be associated with declining
in-hospital mortality from acute myocardial infarction[30] and
heart failure,[28] and a modest reduction in pneumonia mortality

http://www.md-journal.com
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in wards outside of intensive care. Finally, a recent systematic
review and meta-analysis of observational studies that evaluated
the effect of statins use on mortality in cancer patients concluded
that statins use may be beneficial for overall survival and cancer-
specific survival.[31] Similarly, prior use of antiplatelet agents has
been shown to be associated with lower in-hospital mortality in
critically ill[32] and septic patients.[33]

Risk prediction using data from electronic health records
(EHRs) has become popular in the past 20 years with the
increased availability of EHRs in hospitals and other healthcare
providers.[34,35] Clinical research using EHRs is typically carried
out using either association analysis[36] or prediction analysis,[37]

while combining both, as implemented in the present study, is
uncommon. Our design was impacted by our goal to provide a
proof of concept that there is an added value of incorporating
secondary conditions while predicting probabilities of in-hospital
mortality. The selection of covariates in present study was carried
out using multivariate stepwise logistic regression, this method,
though criticized in some publications[38–41] and expert opin-
ion[42] due to possible bias, model over-fitting, and lack of
generalizability, was the most popular method of selecting
covariates in epidemiological studies published in 2008.[42] Our
decision to use multivariate stepwise logistic regression was
driven by its simplicity, ease of use, reproducibility, and to make
our model accessible and understood to the readers. In this
regard, logistic regression with regularization is considered the
preferred method of statistical analysis in epidemiological
studies.[42–45] Regularized logistic regression has several advan-
tages over standard logistic regression. First, it helps prevent the
model from over-fitting the data, second, it makes the first step of
analysis (association tests) unnecessary since it allows automatic
selection of the most informative covariates, and last, it has better
model generalizability. One technique of regularized logistic
regression is the least absolute shrinkage and selection operator
(LASSO),[46] also named “shrinkage with selection.” This
technique corrects the extremes in the distribution of all
variables and thus shrinks very unstable estimates toward zero.
This effectively excludes some variables without the need for
formal statistical testing. Despite its powerful and important
features, LASSO and similar methods, were not applied in any
study of 171 selected articles from 4 leading epidemiological
journals in 2008.[42] Perhaps there are several reasons for that.
One may be that implementing stepwise methods is much
simpler than the modern techniques (LASSO and other
shrinkage models). Another is the lack of familiarity of medical
researchers with these methods, and third, it is possible that
statisticians may have not adequately promoted and addressed
the method’s feasibility.[42]

Our study has a number of limitations; first, the retrospective
study design confers limitations, including the potential for
misclassification and incomplete data. Second, the lack of
accuracy and uniformity in hospital discharge notes may have
impacted data analysis as main diagnoses may have been
mistakenly classified as secondary and vice versa. However, this
misclassification is nondifferential and is expected to bias our
results toward the null. The high proportion of diagnoses that fits
the 13 established categories, and the particularly high propor-
tion that fits the categories of those who died, indicate good,
though not complete, categorization of the diagnoses recorded on
discharge notes. Third, it could be argued that the utility of a
prediction model based on discharge diagnoses may not be ideal
for patients at the start of their admission, due to the discrepancy
between admission and discharge diagnoses or due to the
6

occurrence of discharge diagnoses toward the end of a patient’s
admission. We believe that the impact of such bias is limited. In
support of our view, a study of adults admitted to general internal
medicine wards of a large medical center showed that the 10most
common admitting diagnoses that did not match the principal
discharge diagnosis were classified as ill-defined conditions (ICD-
9 codes 780–799)[47]; all these conditions were excluded from the
current analysis. Fourth, our cohort lacked data concerning
smoking and alcohol drinking habits which could influence the
predictive probability of in-hospital death. Fifth, the generaliz-
ability of the proposed model could be limited for other
populations as the stepwise algorithm may produce irreproduc-
ible estimates.[42] And last, our study is from a single-institution
which could limit generalizability of our findings.
Despite these limitations, our study has several strengths. First,

this is a first-ever study to provide a clinical model for predicting
in-hospital mortality of unselected acute medical admissions
while incorporating secondary conditions. Second, the model
requires simple and readily available measures. Third, it performs
equally well to other more complicated models. Further
improvement of the model’s performance and validation in
other larger cohorts are needed to aid hospitalists in predicting
health outcomes.
5. Conclusion

A prediction model based on clinical and epidemiological data
with adjustment for secondary conditions exhibited 81%
prediction accuracy of in-hospital mortality among unselected
acute medical admissions. We provide a proof of concept that
there is an added value for incorporating secondary conditions
while predicting probabilities of in-hospital mortality. Further
improvement of the model performance and validation in other
cohorts are needed to aid hospitalists in predicting health
outcomes. The calculator for predicting in-hospital mortality is
available in the Supplementary file (S2), http://links.lww.com/
MD/B764.
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