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Non-targeted metagenomics offers the unprecedented possibility of simultaneously
investigate the microbial profile and the genetic capabilities of a sample by a direct
analysis of its entire DNA content. The assessment of the microbial taxonomic
composition is frequently obtained by mapping reads to genomic databases that,
although growing, are still limited and biased. Here we present riboFrame, a novel
procedure for microbial profiling based on the identification and classification of 16S
rDNA sequences in non-targeted metagenomics datasets. Reads overlapping the 16S
rDNA genes are identified using Hidden Markov Models and a taxonomic assignment
is obtained by naïve Bayesian classification. All reads identified as ribosomal are
coherently positioned in the 16S rDNA gene, allowing the use of the topology of
the gene (i.e., the secondary structure and the location of variable regions) to guide
the abundance analysis. We tested and verified the effectiveness of our method on
simulated ribosomal data, on simulated metagenomes and on a real dataset. riboFrame
exploits the taxonomic potentialities of the 16S rDNA gene in the context of non-targeted
metagenomics, giving an accurate perspective on the microbial profile in metagenomic
samples.

Keywords: 16S rDNA gene, community profiling, metagenomics, non-targeted approach, short reads, variable
region

INTRODUCTION

Recent years have witnessed the application of next generation sequencing (NGS) technologies
to microbial community analyses, providing for the first time information on the taxonomic
composition of microbial communities from a variety of different environments, the most
noticeable being the human body.

The consolidated strategy for microbial profiling is to apply NGS on target regions of the 16S
rDNA gene, the reference molecular marker for prokaryotes (Woese and Fox, 1977; De Filippo
et al., 2010). Despite their power, it has recently been shown that targeted approaches might
introduce sequencing artifacts, due to unbalanced amplification (Engelbrektson et al., 2010) or the
formation of chimeric amplicons (Haas et al., 2011) or biases due to the inability of the universal
primers to evenly amplify the 16S variable regions at all taxonomic ranks (Hamady and Knight,
2009). In addition, a further source of bias is introduced by the limited read length of NGS
technologies that does not allow sequencing of the full 16S rDNA gene (Conlan et al., 2012).
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Non-targeted metagenomics uses NGS techniques to sequence
the whole genome content of an environmental sample and
therefore does not depend on prior target selection (Riesenfeld
et al., 2004; De Filippo et al., 2012; Dark, 2013). Such techniques
are less affected by amplification biases, since they generally
rely on less PCR cycles with perfect universal primers. Despite
this, highly divergent GC content of the inserts may inherently
show a different amplification efficiency, so recent amplification-
free protocols or other modifications have been proposed.
Although the primary use of non-targeted approaches is the
profiling of the metabolic potential of microbial communities,
they can also be used to assess relative species abundance
using heuristic searches against reference genomes or other
sequence databanks such as the NCBI non-redundant database
(Segata et al., 2012; Huson and Weber, 2013). However, genome
sequence databanks are based on a limited, although growing,
number of organisms for which a genome has been entirely
sequenced, giving an inherent bias to microbial profiling.
A second drawback is that often genome information for
unknown or novel genes is incomplete or error prone, due
to the limitations in several of the sequence assembly tools
available for large-scale NGS data (Vázquez-Castellanos et al.,
2014).

Recently, several tools have been developed to identify
ribosome-associated reads in non-targeted metagenomic
samples, exploiting the constantly increasing coverage of the
entire microbial kingdom provided by 16S rDNA databanks
such as RDP (Cole et al., 2013), GreenGenes (DeSantis et al.,
2006) or SILVA (Quast et al., 2012). These tools use profile
stochastic context-free grammars (Nawrocki et al., 2009),
Burrows–Wheeler indexing (Li and Durbin, 2010), BLAST-like
heuristics or hidden Markov models (Hartmann et al., 2010; Lee
et al., 2011). The main aim of these algorithms is to identify
reads of ribosomal origin and remove them from metagenomics
datasets, in order to facilitate the functional analysis of the
remaining reads. No explicit use of these ribosomal reads is
generally implemented or suggested.

A new tool named EMIRGEwas developed (Miller et al., 2011)
with the aim of reconstructing full-length 16S rDNA genes from
metagenomes using recruitment and avoiding assembly (being
the assembly of the 16S rDNA gene inherently difficult because
it contains highly conserved regions mixed to extremely variable
regions). Ribosomal reads are recruited bymapping on a 16S gene
dataset and then the mapping is iteratively refined with Bayesian
expectation-maximization, until full-length 16S genes have been
associated to a set of reads. However, this approach heavily relies
on the accuracy and completeness of the reference databases and
therefore risks to converge to fairly uncharacterized genes, with
limited significant improvement of the resolution of taxonomic
profiling.

In this work, we introduce riboFrame, a novel method
that combines optimized read recruitment with naïve Bayesian
classification to provide an automatic, database-free system for
microbial abundance analysis in non-targeted (so onlymarginally
biased) metagenomics datasets. Our tool efficiently identifies
ribosomal reads from metagenomic datasets and associates
them to a position onto the 16S rDNA genes, leaving the

user with the possibility to select the different regions of the
16S gene to be used for the taxonomic characterization of
the sample. Since riboFrame does not attempt to reconstruct
full-length sequences of the 16S rDNA genes, the taxonomic
profiling obtained from the different variable regions can be
studied separately and compared, giving the opportunity to use
non-targeted metagenomic dataset as pre-screening for more
focused targeted approaches. The method has been applied on
simulated and real datasets demonstrating that riboFrame is a
fast, efficient and intuitive tool that provides an accurate, 16S-
based microbial taxonomy characterization from non-targeted
metagenomic data.

MATERIALS AND METHODS

Description of the riboFrame Procedures
The riboFrame pipeline is composed of two perl scripts (riboTrap
and riboMap) and two widely used programs. The final goal is to
map Illumina short reads on the 16S gene and then target rank
abundance estimates from otherwise non-targeted metagenomic
sequencing.

As depicted in Figure 1, the riboFrame pipeline starts after raw
Illumina data have been pre-processed for quality control and the
procedure involved four steps that will be hereinafter described.

(1) Identification. The hmmsearch command from the
HMMER3 package (Eddy, 2011) is issued separately on
reads files (single end or paired end) using the HMMs
for 16S rDNA gene of bacteria and archaea developed in
the rRNAselector (Lee et al., 2011) project. The E-value
threshold is set to 1E-5, according to specifications in
rRNAselector, all other parameters are left to their default
values. The program emits, for each file, several tables with
identifiers of reads associated to 16S rDNA and, among
others, the position of matching on the model.

(2) Preparation. The riboTrap script elaborates the results
of hmmsearch, performing a quality control (minimal
length, multiple assignment, coherent strand positioning,
E-value) and preparing non-redundant fasta-formatted files
for further processing. Fasta headers are reformatted to
include the position of the read in the 16S model. riboTrap
also measures the coverage of the 16S gene achieved by
the extracted reads and optionally creates coverage plots
using functions from the graphics package of the R statistical
environment.

(3) Taxonomic assignment. A classification is performed on the
16S ribosomal reads using the local version of RDPclassifier
(current version 2.10.1) from the Ribosomal Database
Project (Wang et al., 2007) that emits, for each read, a
full domain-to-genus classification with bootstrap-based
confidence values for each called taxonomic rank.

(4) Selection/abundance analysis. The riboMap script elaborates
the output of RDPclassifier and, according to user
criteria and targets, builds abundance calculations for each
taxonomic rank (optionally creating barplots for immediate
evaluation of the results). User criteria include thresholds for
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FIGURE 1 | Scheme of the riboFrame. After QC of next generation
sequencing (NGS) reads, the hmmsearch (HMMER3) is used to identify 16S
ribosomal reads in both bacteria and archaea, using HMMs developed in
rRNAselector (step 1). The riboTrap program then filters out incongruent
assignments and de-replicate multiple assignments in order to create a set of
accurate 16S reads supplemented with positional information (step 2). 16S
reads are then classified using RDPclassifier to obtain a full domain to genus
classification (step 3). The riboMap program eventually filters reads according
to rules specified by the user, with a flexible and intuitive scheme, and
performs the final rank abundance analyses (step 4). For a detailed description
see the section “Materials and Methods – Description of the riboFrame
Procedures.”

assignment confidence and for abundance levels. A scoring
scheme have been introduced to avoid over-fitting in case
of paired end data. For single end data, each read receives
a weight of 1. In case of paired end reads, the increase of
abundance is weighted at each specific rank: if just one pair
is recruited as ribosomal, it is considered a singleton and
weighted 1 as in single pair. If both pairs have been recruited
as ribosomal, their weight is decreased to 0.5 so that their
combined weight is 1 only if they converge to the same
assignment. It should be underlined that the possibility of
having both reads recruited as ribosomal is a rare event since
the 16S rDNA gene length (around 1500 bp) cannot easily
accommodate the full length covered by the two reads of

100 bp considering the insert size that frequently averages to
4–500 bp (for a total length of ∼6–700 bp). Variable region
targeting is the main feature of riboTrap and is implemented
in riboMap. By default, the program considers belonging of
a given region a read that contains or is contained in that
region, although options are given to alter region boundaries
of specific, user defined, amounts (see Supplementary Figure
S1). The position of variable regions have been hard-coded
in the script and can be referenced simply with VX (with
X in the 1–9 range) or with position ranges, and a flexible
syntax has been thought to facilitate user selection. Once
the selection is done, reads outside the target regions are
discarded and those in the target are used to compute the
abundances at the various ranks using the scoring scheme
explained above. Optionally, abundance plots are emitted as
well as a coverage plot to verify the efficacy of the targeting.

All the steps indicated above have a processing time that
scales linearly with the number of reads and use very little
memory. hmmsearch can be parallelized to take full advantage
of multi-core processors or other parallelization strategies. This,
coupled to the little memory consumption, makes the riboFrame
approach very rapid, efficient in resources and and easily scalable.
All the experiments described in this work were produced and
analyzed on a Lenovo T420 Laptop equipped with an Intel R©

CoreTM i7-2620M CPU at 2.70 GHz and 8 Gb 1333 MHz RAM.
The riboFrame scripts, manuals and detailed instructions are

freely available at the riboFrame Project website1 or at github
(with repository name “matteoramazzotti/riboFrame”).

See supplementary information for a table reporting all the
accession codes for the datasets used in this work.

Simulation of Ribosomal Reads
A dataset of 16S genes for Bacteria and Archaea was obtained
from the RDP database in unaligned GenBank format. The
files were processed to create associations between individual
sequences and complete lineage of the organisms. A perl script
(available from the riboFrame websites) was used to randomly
extract 100 bp regions from species (strains) belonging to all
genera. For creating the “Full” dataset, one read for each species
(strains) associated to a genus was extracted, for the “Curated”
dataset 100 species per genus were randomly chosen.

Simulation of Metagenomics Reads
Metagenomics datasets were created using MetaSim (Richter
et al., 2008) fed by all NCBI microbial complete genomes and
NCBI taxonomy. The taxonomic profile for species selection was
arbitrarily built to maintain a proportion between bacteria and
archaea of about 10:1. We also filtered organisms to ensure that
a full taxonomic classification could be given to each species
according to the Bergey’s taxonomic outline (Wang et al., 2007)
used by RDPclassifier. The number of genera actually represented
in the reads resulted to be 307 and their proportions reflect that
of completely sequenced microbial genomes.

1bioserver2.sbsc.unifi.it/bioinfo/riboframe.html
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Three 100 bp paired-end reads set consisting of 2, 4, and 10
millions of reads (termed 1, 2 and 5 M, respectively) were created
using an Illumina-specific read error model from Plantagora2.
Each read was mapped on the corresponding genome to
determine if it was extracted from a ribosomal operon, so that
we could build a testing ground for riboTrap evaluation.

Preparation of the Datasets from Human
Microbiome Project
From HMPDACC site, we selected a case study, the stool
sample SRS011061, for which the pyrosequencing reads for the
16S V1–V3 region (SRX020621, 9019 reads and SRX020603,
6864 reads) and V3–V5 region (SRX0200622, 8888 reads
and SRX020602, 8422 reads), and the pre-processed Illumina
paired-ends reads (sample SRS011061 61478987 reads for
pair 1, 28606567 reads for pair 2) were downloaded from
NBI SRA and HMPDACC, respectively. Both 16S reads and
Illumina reads were downloaded as datasets pre-processed
according to Human Microbiome Project (HMP) guidelines
(please consult the 16S_SOP.pdf and ReadProcessing_SOP.pdf
documents available at hmpdacc.org for further details). We
then joined the reads targeting the same region to create two
main sequence set, namely V1–V3 (14670 reads) and V3–V5
(14734 reads). Their taxonomic classification of pyrosequencing
reads was obtained with RDPclassifier (Wang et al., 2007) with
a confidence threshold of 80% and an abundance calculation
at the different taxonomic ranks was performed. Illumina
reads were processed with our riboFrame method, targeting
the V1–V3 and V3–V5 regions in order to create results
comparable with those obtained with the pyrosequencing
experiments.

Configuration of Other 16S Ribosomal
Read Extractors
For Infernal, we obtained calibrated covariance models from
RFAM (Gardner et al., 2010) for the 16S gene of bacteria
(RF00177) and archaea (RF01959), we then used the Infernal
cmscan command for the actual read recruitment with an E-value
cutoff of 10−5 (i.e., the same threshold used in hmmsearch).
For V-Xtractor we used default values (including the suggested
SSU HMM-specific E-values) and we considered as “extracted”
all reads that had matches in at least one of the HMMs spanning
the flanks of the variable regions, despite their length. For metaxa
we used default values (but we excluded pre-clustering with
MAFFT) andwe considered as of ribosomal origin also sequences
attributed to mitochondria and chloroplasts. In all cases, for
comparison purposes, we used just 1 CPU core to test the speed
of the algorithms, but it should be underlined that all methods
can be run in multi-core systems. For EMIRGE, both paired-ends
reads of the HMP sample SRS011061 were used using −l 100 −i
300 −s 100 as command line parameters and the SILVA database
provided with the program (indexed with Bowtie, according to
EMIRGE manual.) as a reference. The abundance was eventually
extracted from the “Prior” field of each sequence identifier after
the last iteration.
2www.plantagora.org

RESULTS

Description of the riboFrame Pipeline
The riboFrame pipeline (Figure 1) builds upon HMMER (Eddy,
2011), the most efficient HMM-driven engine for sequence
search and RDPclassifier, the reference naïve Bayesian classifier
for metagenomics (Wang et al., 2007). The procedure starts
with the HMMER3 hmmsearch program that, trained with
several models of the 16S gene of bacteria and archaea
based on curated databases of sequences of 16S rDNA
genes aligned using secondary structure models (Lee et al.,
2011), captures ribosomal reads from the mass of reads
from Illumina metagenomic sequencing. The riboTrap program
extracts the ribosomal reads that are then classified (from
domain to genus level) using RDPclassifier that emits for each
identified rank a bootstrap-based confidence value between
0 and 1.

The second part of the pipeline, riboMap, takes advantage of
the localization of the ribosomal reads in the 16S rDNA gene
(the topology) integrated by the confidence score from Bayesian
classification to optionally include/exclude specific regions (both
constant or variable, see Supplementary Figure S1) or low
accuracy predictions, creating in the end a domain to genus
abundance analysis.

The coverage of the 16S rDNA gene after region selection can
be optionally checked by coverage plots (Figure 2) produced by
riboTrap, that allows to evaluate whether a sufficient number of
reads are available for classification.

Testing Ribosomal Recruitment with
Ribosomal Reads Set
One of the key points to be evaluated concerns the efficiency of
recovering ribosomal reads from the pool of non-targeted reads.
To assess this aspect we designed two different strategies based
on the random extraction of 100 bp reads from the sequences of
the 16S genes present in the RDP database (Cole et al., 2013). The
RDP database was filtered to include only high quality sequences
from prokaryotes that could be unambiguously annotated to
the genus rank by the RDPclassifier program according to the
Bergey’s Taxonomic Outline of the Prokaryotes (Wang et al.,
2007), resulting in a diversity of 1767 bacterial and 103 archeal
genera.

Two different sets of reads were extracted. The first set
(named “Random”) contained one read per gene of all species
assigned to each genus (347174 reads) and was intended to
exhaustively explore the recruitment capability of riboFrame.
The second, more uniform set (named “Curated”), contained
100 reads per genus selected randomly from sequences
classified by RDPclassifier with 100% confidence at the genus
level (187000 reads) and was designed to further evaluate
the accuracy of the taxonomic classification obtained by
riboFrame.

We then evaluated the efficiency of HMMER to align
those reads against the 16S HMM for archaea and bacteria
(Lee et al., 2011). 308676 reads (88.92%) and 182686 reads
(97.69%) were identified as ribosomal for the “Random” and
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FIGURE 2 | Coverage of the 16S gene achieved with reads form the Human Microbiome Project (HMP) sample SRS011061 extracted with HMM and
topology-annotated by riboTrap. The trace represent the cumulative coverage for both paired-end reads after riboTrap processing. Shaded areas identify variable
regions that are labeled form V1–V9 in the upper horizontal axis.

the “Curated” set, respectively (see Table 1). This 3–11% loss
was found to involve reads located nearby position 200 (using
the Escherichia coli 16S gene as a reference, see Supplementary
Figure S2A), possibly indicating that this region (encompassing
variable regions 1 and 2) of the HMMs is less accurate or
intrinsically more variable. In the “Curated” set we also found
that more than 90% of genera had at least 90% reads correctly
identified as ribosomal (Supplementary Figure S2B), with only
slightly reduced performances in the “Random” dataset. No
evident signs of biases were present at any taxonomic rank
(data not shown) confirming the efficacy of our detection
strategy independently from the underlying taxonomic structure.
We then proceeded with the classification of the reads with
RDPclassifier, according to the riboFrame pipeline. As shown
in Table 2, we found that the amount of reads classifiable
with a 0.8 bootstrap confidence was ∼40%, a percentage
closely related to the proportion of the full 16S rDNA gene
that is included in the variable V1–V9 regions (i.e., the ones
with the highest taxonomic information content), and that
the accuracy of the classification was 90.17% on 74110 reads
at the genus level (97.38% on 112049 reads at the family
level) for the “Curated” dataset and 92.76% on 143287 reads
at the genus level (97.10% on 112094 reads at the family
level) for the “Random” dataset. These results confirmed that
riboFrame can use reads as short as 100 bp to provide a
reliable estimate of the taxonomic structure of metagenomic
datasets.

riboFrame Testing on Simulated
Metagenomics Datasets
In order to evaluate the overall performance and accuracy of the
riboFrame pipeline we used the MetaSim software (Richter et al.,
2008) to build three simulated paired-end metagenomics datasets
with increasing size (2, 4, and 10 millions of reads, hereinafter 1,

2, and 5 M, respectively) and a common underlying taxonomic
structure containing 1496 species from 307 genera.

As shown in Table 3, the initial ribosomal reads screening
with HMMER resulted in the detection of 3229, 6248, and 15532
ribosomal reads from the 1, 2, and 5 M dataset, respectively. The
observed fraction of ribosomal reads in the pools was 0.15%, in
agreement with a grand average estimation of ribosomal DNA
proportion in the genomes of prokaryotes (data extracted from
the NCBI Genome Database). The average extraction speed of
16S-associated reads was around 2 min 44 s per million of reads
(using 4 CPU cores). We obtained, on average, a∼90% sensitivity
and a> 99% specificity for ribosomal reads. Extracted reads were
then classified with RDPclassifier and reads in variable regions
were isolated with riboFrame (see the coverage plot for the three
datasets in Supplementary Figure S3). We found that the percent
of reads assigned to the correct genus in the three datasets was
(on average) 87% at a confidence level of 0.5 (on 30% of the total
number of reads) and 95% at a confidence level of 0.8 (on 11.5%
of the total number of reads).

A Real Life Metagenomics Dataset from
HMP
The performances of riboFrame were further evaluated using
publicly available data from the HMP that, for many samples,
provides Illumina-based metagenomics paired to microbial

TABLE 1 | Result of the extraction of ribosomal reads from the simulated
datasets “Random” and “Curated.”

Random Curated

Original # reads 347174 187000

Extracted by HMM 308686 (88.91%) 182687 (97.69%)

Missed 38488 (11.09%) 4313 (2.31%)
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TABLE 2 | Results of the evaluation of riboFrame with true ribosomal
reads.

Rank % Correct % Wrong # Reads

C
ur

at
ed

Domain 100 0 179965

Phylum 99.91 0.09 166673

Class 99.62 0.38 156945

Order 98.92 1.08 137750

Family 97.38 2.62 112094

Genus 90.17 9.83 74110

R
an

do
m

Domain 100 0 305417

Phylum 99.97 0.03 293269

Class 99.88 0.12 283741

Order 99.14 0.86 248281

Family 97.1 2.9 193589

Genus 92.76 7.24 143287

After ribosomal reads recruitment, riboTrap is used to assign topology to reads
and create 16S reads subsets. Such reads are classified with RDPClassifier and
compared with the true taxonomy associated to each read. In this case, prediction
accuracy is set to 0.8.

profiling with amplicon-based pyrosequencing. These data
allow to correlate the taxonomic assignment and abundance
estimates obtained from 16S amplicon based metagenomics
to the results of methods, like riboFrame, based on non-
targeted metagenomics. We selected a sample with known
high complexity (SRS011061, a stool sample, since gut is
widely accepted as one of the most diverse and rich habitat
within the human body), for which the 16S profiling based
on the V1–V3 and V3–V5 variable regions of the 16S rDNA
gene, as well as Illumina non-targeted metagenomics data
were available. We then used riboFrame to build microbial

profiles from the latter and then compared the results with the
former.

riboTrap-processed Metagenomic Reads
are in Agreement with 16S Targeted
Pyrosequencing
The hmmsearch/riboTrap procedure extracted a total of 63262
reads identified as belonging to the 16S gene from the pool
of Illumina-based meatgenomics reads. The plot in Figure 2
shows good coverage of the target regions V1–V3 and V3–V5,
suggesting that reads overlapping these regions can provide an
accurate taxonomic profile of this sample. Ribosomal reads were
then classified with RDPclassifier. riboMap identified 17691 reads
overlapping the V1–V3 region and 23519 overlapping the V3–V5
region. The rank abundance analysis at 0.8 confidence threshold
(shown in Figure 3) demonstrated that, although differences
existed, an excellent correlation was present at the genus level,
the lower rank reachable with RDPclassifier, in the two regions.
The correlation coefficient of abundance percent at the genus
level in Illumina riboFrame-processed vs. pyrosequencing reads
was 0.971 for the V1–V3 region and 0.942 for the V3–V5 region,
confirming that riboFrame processing of non-targeted Illumina
reads gives results comparable to those obtained with targeted
pyrosequencing. As expected, ranks higher than genus resulted
in much closer agreement between the two techniques (see
Supplementary Figure S4).

Read Length and Confidence in
Taxonomic Assignment
In order to evaluate the performance of short reads in microbial
classification with the naïve Bayesian methods, we first analyzed

TABLE 3 | Results of the evaluation of riboFrame with simulated metagenomics datasets.

Thr 0.5 Thr 0.8

Good Error Reads Reads% Good Error Reads Reads%

1M
:3

22
8

re
ad

s

Domain 99.97 0 3209 100.00 99.97 0 3202 100.00

Phylum 99.59 0.37 2943 91.71 99.95 0 1994 62.27

Class 99.69 0.27 2568 80.02 99.93 0 1467 45.82

Order 97.83 2.11 1985 61.86 99.57 0.32 935 29.20

Family 94.14 5.8 1517 47.27 98.09 1.77 678 21.17

Genus 88.25 11.64 944 29.42 95.57 4.16 360 11.24

2M
:6

24
7

re
ad

s

Domain 99.95 0.03 6227 100.00 99.97 0.02 6206 100.00

Phylum 99.75 0.23 5711 91.71 99.95 0.03 3833 61.76

Class 99.6 0.38 5005 80.38 99.97 0 2872 46.28

Order 98.38 1.6 3940 63.27 99.84 0.11 1867 30.08

family 94.62 5.35 2992 48.05 98.54 1.39 1367 22.03

Genus 88.03 11.92 1895 30.43 95.99 3.87 722 11.63

5M
:1

55
31

re
ad

s Domain 99.98 0.01 15462 100.00 99.99 0.01 15427 100.00

Phylum 99.69 0.3 14185 91.74 99.97 0.02 9626 62.40

Class 99.6 0.4 12381 80.07 99.99 0 6994 45.34

Order 98.16 1.83 9558 61.82 99.65 0.33 4558 29.55

Family 94.01 5.98 7158 46.29 98.25 1.72 3318 21.51

Genus 86.6 13.38 4551 29.43 93.69 6.25 1742 11.29

Frontiers in Genetics | www.frontiersin.org 6 November 2015 | Volume 6 | Article 329

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Ramazzotti et al. Microbial Profiling from Non-Targeted Metagenomics

FIGURE 3 | Comparison of microbial profiling between riboFrame and 16S rDNA pyrosequencing on HMP sample SRS011061. (Top) Barplots of
genus-level abundance calculation on two 16S regions targeted by Illumina sequencing after the riboFrame processing. Left and right columns present results from
16S rDNA variable regions V1–V3 and V3–V5, respectively. Only genera accounting for at least 1% of the total classifiable reads are shown. (Bottom) Scatterplot
depicting the full range of abundances % obtained with pyrosequencing (x-axis) and with riboFrame-processed Illumina reads (y-axis), along with a linear best fitting
line (dashed). The Pearson correlation coefficient (R) of the two dataset is also present.

how read length affected the confidence of assignments at the
different taxonomic ranks. For each rank, and at each read
length, we analyzed the three central quartiles to ensure a correct
quantification and representation (see the plots in Supplementary
Figure S5). As expected, at the domain level most reads can
be assigned with high confidence (>=0.8) even in reads as
short as 60 bp (the minimal size imposed by QC-filters). The
phylum-, order- and family level assignment showed a decrease
of performances with a reasonable limit to 90 bp. As expected,
at the genus level assignment was supported only for reads of
maximum length, justifying the filter-by-length option offered by
the riboTrap script of the riboFrame pipeline.

To further evaluate the impact of the accuracy confidence
limits on the number of reads identified as ribosomal and
used in taxonomic classification, we next investigated how
the number of accepted reads varied as a function of the
increase in confidence score at the different taxonomic ranks.
The data reported in Supplementary Figure S6 clearly show
that at the family level, more than 60% of the reads have
confidence score >=0.8 while at the genus level the percent
decreases to about 45%, a relatively high proportion taking
into account that the length of the reads varied from 60 to
100 bp.

Independent Evaluation of the 16S
Variable Regions
The previous analyses on read length did not take into account
the fact that confidence is expected to vary along the 16S gene due
to the presence of variable (highly informative, poorly conserved)
and constant regions (less informative, highly conserved). We
then took full advantage of the riboMap capability of inspecting
different regions separately. We evaluated the distribution of
RDPclassifier confidence scores at the genus rank in the nine
variable regions, using a tolerance (i.e., the possibility of enlarging
the window for reads recruitment, riboMap “tol” option) of
20% of the variable region length. As shown in Supplementary
Figure S7, the regions V3–V5 are characterized by a higher
proportion of high confidence scores (>=0.8). A large body of
literature indicates that different variable regions have different
performances and biases toward certain groups of prokaryotes
(Chakravorty et al., 2007). These results suggest that the V3 and
V5 regions have superior classification ability with respect to
others, at least in this sample and for the exemplification purposes
of this analysis.

We next evaluated how the taxonomic profiles changed using
the different variable regions. We configured riboMap to include
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FIGURE 4 | Taxonomic profiles of the HMP sample SRS011061 obtained with the nine variable regions independently. The top row shows a table with
counts of accepted reads at the various taxonomic ranks in the different regions (left), and a summary barplot showing the same information (right). The following
panels shows data obtained by considering only the five most abundant assignments for the different regions at the different taxonomic ranks.

reads located in each variable regions separately with a tolerance
(see above) of 20% and a confidence score higher than 0.8. We
then studied the five most abundant taxonomy assignments for
each rank. The results of the abundance analysis are shown in
Figure 4. Taken together, these results confirm that different
regions have different abilities in identifying specific groups of
bacteria, reinforcing the idea that an accurate selection of variable
regions should be performed before amplicon-based sequencing
experiments, especially in the case of studies specifically focused
on specific classes of organisms.

Comparison with Existing Tools
In order to evaluate the performances of the extraction procedure
we used the “Curated” dataset (187000 reads) for a comparative
test against three previously published systems for identifying
ribosomal reads, i.e., Infernal (Nawrocki et al., 2009), based
on profile stochastic context-free grammars, metaxa (Bengtsson
et al., 2011) and V-Xtractor (Hartmann et al., 2010), both
HMM-driven systems. Since these tools are only designed to
identify ribosomal associated reads in metagenomic datasets,
but do not provide tools for taxonomic profiling, we compare
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the performances only for the identification step. Moreover,
for comparison purposes (and to ensure the feasibility of
our approach on average personal computers) the tests were
performed on 1 CPU core. Default parameters were used for all
programs.

As shown in Table 4, V-Xtractor took more than 810 min
to complete the extraction of reads and failed to recruit 1.52%
ribosomal reads. Metaxa took 525 min and missed 15.20% of
the ribosomal reads. Infernal took 2870 min and missed 1.14%
of the ribosomal reads. Hmmsearch, optimized for riboFrame,
completed the analysis in 30 min, missing 2.31% of the ribosomal
reads. These results show that the riboFrame strategy is fast
compared to other methods on large metagenomic datasets
without significant loss of sensitivity.

We then compared the performances of riboFrame to
EMIRGE, that estimates the taxonomic structure of metagenomic
samples from non-targeted sequencing via reconstruction of
the full length 16S rDNA gene using reads recruitment and
an expectation-maximization algorithm. EMIRGE took about
150 h to complete the analysis on our sample data set, using
the SILVA-derived 16S database provided with the EMIRGE
program as a reference. For comparison purposes, the resulting
abundance table was compared with abundances obtained from
pyrosequencing and riboFrame on the 16S rDNAV3–V5 regions.
A shown in Supplementary Figure S8A the large majority
(>76%) of assignments converged to uncultured bacterial species
(classified at the genus level at best), indicating that on our HMP
dataset the advantage provided by the extremely time consuming
assembly of the full 16S rDNA gene accomplished by EMIRGE
to increase the classification resolution of metagenomic samples
is limited. At higher ranks ranging from phylum to genus (see
genus and family level classification in Supplementary Figure
S8B), the estimated abundances were fairly similar to those
obtained with riboFrame in a fraction of EMIRGE computational
time.

DISCUSSION

In this work we developed and evaluated a method for the
microbial profiling of metagenomic samples via classification of
16S-derived reads recruited without explicit reference databases
and selected based on their positioning (topology) on the 16S
gene. The tool we developed, riboFrame, was designed to identify

TABLE 4 | Result of the extraction of ribosomal reads from the “Curated”
ribosomal reads set (187000 reads) by various extractors.

Recruited Error% Time (min)∗∗

riboFrame∗ 182687 2.31 30

Infernal 184861 1.14 2860

V-Xtractor 184161 1.52 810

Metaxa 159632 15.20 525

∗riboFrame uses HMMER hmmsearch as extractor.
∗∗Normalized to 1 CPU core of a Lenovo T420 laptop equipped with and Intel R©

CoreTM i7-2620M CPU at 2.70 GHz and 8 Gb 1333 MHz RAM.

and position ribosomal reads among the huge number of short
reads typical of Illumina-basedmetagenomic projects and to then
proceed with taxonomic classification targeting variable regions
of the 16S rDNA gene. The predicted abundances at the different
ranks were in agreement with the results obtained from 16S
amplicon pyrosequencing, especially if considering abundances
above 1–2%. Other HMP samples were also tested, obtaining
basically super-imposable results that in all cases confirmed
the large agreement between riboFrame derived abundances
and those obtained with targeted pyrosequencing (data not
shown).

The strategy adopted by riboFrame gives the possibility of
deciding a posteriori the target region to be used for taxonomic
classification. riboFrame provides an accurate taxonomic
profiling of datasets produced with the target of characterizing
the functional profile of microbial communities, allowing the
simultaneous determination of the two in a single experiment.
Additionally, using the throughput and multiplexing possibilities
of Illumina-based technologies, this tool can be used in all cases
when amplicon-based sequencing projects need and unbiased
pre-screening of the diversity in the sample before deciding the
region to address for taxonomic profiling, since it is known
that different regions of the 16S gene have different taxonomic
classification potentials and some are more adequate than others
for specific families of bacteria present in different environments
(Chakravorty et al., 2007).

Our analysis on the taxonomic accuracy of 100 bp reads
using the naïve Bayesian classifier showed that this size is
sufficient to reach a confident genus assignment only in less
than half of the reads. One may argue that this is a major
limit of our approach based on short reads. Nevertheless, the
sampling capacity of Illumina-based metagenomics proved to
be sufficient to describe the microbial profile at the genus level,
the lowest rank reachable by the Bayesian method. Considering
that the increase of read length is one of the most demanding
needs for NGS and that all companies have already improved
their technologies to achieve this goal, we strongly believe
that our method will be of great relevance also in a near
future.

Increasing read length can only increase the number of
reads confidently classified at the genus level but does not
allow a higher taxonomic resolution (e.g., down to the species
level). It has been reported that only full-length genes can
be used to push characterization to the species level (Schloss
et al., 2009). In fact, the scanning with heuristic methods
of 16S rDNA databanks, that contain fully annotated species
as well as a larger number of completely unknown species,
frequently converges into the latter category, reducing the
theoretical possibility of reaching a strain or even species-level
resolution. We showed that this kind of issues also affects
the most advanced 16S rDNA gene reconstruction method,
EMIRGE, that characterized our HMP-derived sample as a
population mainly composed of uncultured bacterial species.
Being such uncultured bacteria classified at the genus level
at best, it is evident that strain-level resolution cannot be
achieved effectively using short metagenomics reads and, from
this perspective, a genus level characterization can be achieved
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much more efficiently using the approached we used in
riboFrame.

One of the most crucial aspects of the riboFrame data
processing is the decoupling of the ribosomal reads from
a database-derived source. Our choice of using 16S rDNA
HMMs, calibrated to the E. coli positions and trained on
secondary structure-aware sequence alignments of 16S genes,
has two advantages. The first is the coherence in positioning
the matching reads on the 16S gene model. This, coupled
to the existing information about the position of the variable
regions, allows to confidently select reads potentially relevant for
taxonomic classification. The second is that we highly reduce
errors or ambiguous assignments due to the small size of
Illumina reads (around 100 bp), that currently represents a
limit for recruiters based on heuristic search. In fact, recruiters
may fail to accurately identify the correct source due to the
similarity in constant regions among different microbes and
to the observation that a single microbe can contain multiple
ribosomal operons with different length and composition. It
is instead established (and confirmed in this work) that a
100 bp length is sufficient for genus-level assignment with
naïve Bayesian classification, thus reinforcing the validity of our
strategy.

Several methods have been developed to estimate taxonomy
from metagenomics experiments. However, current procedures
have inherent limitations that will not likely be solved in the
near future. Coding sequence-based methods are still limited
by the relatively small (although growing) number of reference
microbial genomes. Methods relying on reference 16S rDNA
data banks have the opposite drawback of identifying as best
hits a majority of uncultured and unknown organisms, a
fact that limits their theoretical capability of reaching deep
levels of taxonomic resolution. On the contrary, although
limited in the taxonomic resolution, Bayesian methods for
taxonomy assignment trained on the distribution of k-mers
of 7–8 bp offer fast assignment based on a robust statistics
and provide a bootstrap-based confidence easy to interpret,
more broadly applicable and with higher general validity.
It is worth stressing that the RDPclassifier we used was
trained on full-length 16S rDNA genes. As noticed before
(Mizrahi-Man et al., 2013), a retraining of the Bayesian
methods with shorter reads offers some advantages in accuracy.
Although we did not explicitly take into account such aspects,
riboFrame can be easily adapted to accept formats different
from that of RDPclassifier or HMMER, the most noticeable
example being Infernal for reads recruitment and classify.seqs
function in mothur for taxonomic assignment (Schloss et al.,
2009).

One on the most important innovations introduced by
riboFrame is the possibility of evaluating the classification
performances of different regions across the 16S rDNA gene.
At the phylum level we observed that the three most abundant
bacterial phyla (with abundance filtered to be higher than
2%) i.e., Bacteroidetes, Firmicutes, and Proteobacteria were
conserved with little (<10%) variations in the proportions. It
is worth noticing the opposite trends of abundances between
Bacteroidetes and Firmicutes across regions that seem to indicate

that V1 and V9 regions tend to erroneously classify the latter
as the former. The proportions proved to be more variable
for less abundant phyla (abundance lower than 1%, that
was already established to be below the sensitivity threshold
usually applied in microbial profiling) with Verrucomicrobia
and Actinobacteria absent from the top five list in the
V7 region, the latter also absent in the V1, V2, and V4
regions. At the order rank the most abundant assignments
were Bacteroidales, Clostridiales, and Burkoleriales, with the
same trends described at the phylum level. At the class rank
Bacteroidia, Clostridia and Betaproteobacteria contributed most
to the profile, with Verrucomicrobia absent in the V2, V3,
and V7 regions, Bacilli absent in the V3, V7, Actinoacteria
and Gammaproteobacteria only detectable at low levels in
the V7 and V9 and in the V3 and V7 regions, respectively.
At the family level we found that that the Bacteroidia class
is represented as equally composed by Porphyromonadales
and Bacteroidaceae, with a good agreement across variable
regions. It is interesting to notice here that the top five
list did not include Alcaligenaceae in regions V2, V7, and
V8 and that Lachnospiraceae were only in the list of V2,
V7, and V8. Finally, at the genus level Bacteroides and
Parabacteroides and Alistipes were the most abundant with good
agreement across regions. Curiously, the Parasutterella genus
was not in the top five list of V7 region, the Faecalibacterium
was not in the list of V4, V5, and V9 regions and the
Oscillibacter genus was only in the list of the V7 and V9
regions.

The most noticeable “caveat” in using the riboFrame method
is represented by the possible reduced number of reads recruited
as ribosomal by the HMM-based search. This may in fact cause
a down-sampling error and, accordingly, a decrease in the
accuracy of the abundance analysis. Although in our experience
the number of Illumina reads from a typical metagenomics
project gives a sufficient number of 16S rDNA associated reads,
reducing the number of reads (e.g., by multiplexing/barcoding)
may hamper the performance of our approach. To allow
the user to evaluate this point, riboTrap provides a coverage
plot showing how many reads cover the 16S gene after
recruitment. Such coverage plots are important snapshots
to evaluate the efficiency of the metagenomics sampling of
the 16S ribosomal gene and are intended to assist the user
in deciding whether to proceed or not with the taxonomy
assignment. In addition, riboMap reports the number of reads
selected after imposing thresholds in confidence and length,
so the user can easily control the sampling depth of the
analysis and decide about the trustfulness of the abundance
analysis.

The pipeline we introduced, riboFrame, is a rapid, flexible
and intuitive method to identify, select and map ribosomal
reads onto the 16S ribosomal gene with the aim of performing
taxonomic classification. The possibility given by riboFrame
of addressing post hoc the region to be analyzed allows the
comparison of the taxonomic performance of different variable
regions.

The riboFrame approach proved to be fast and effective on
simulated datasets. More importantly, the application of our
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method to a public dataset of targeted 16S and Illumina data
showed a substantial concordance on genus assignment between
microbial composition assessed through pyrosequencing and
Illumina sequencing.

riboFrame represents the first attempt to create a tool for
dissecting and evaluating the potentiality of a direct, 16S based
taxonomic classification of short reads applied to non-targeted
metagenomics.
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