SCIENTIFIC REPLIRTS

Fiber-optic control and
thermometry of single-cell
thermosensation logic

Accepted: 29 September 2015 . |.V. Fedotov**3, N.A. Safronov*3, Yu.G. Ermakova“, M.E. Matlashov#, D.A. Sidorov-

Published: 13 November 2015 Biryukov*3, A.B. Fedotov*3, V.V. Belousov* & A.M. Zheltikov*?3:5

Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking
examples of temperature-controlled processes in cell biology. As the evidence indicating the
fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate
tools that would allow heat receptor logic behind thermosensation to be examined on a single-
cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that
enables thermal activation with simultaneous online thermometry of individual cells expressing
genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser
light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is
heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture,
enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature
measurements are performed by using the temperature-dependent frequency shift of optically
detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave
transmission line, to nitrogen—vacancy centers in the diamond microcrystal. Activation of TRP
channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in
the calcium flow through activated TRP channels.

Technologies allowing the electrical activity of specific cells in a living organism to be controlled with a
high resolution both in space and time offer new, unprecedented opportunities for the functional anal-
ysis of complex biological systems. Optogenetic methods'~” employ genetically encoded light-sensitive
ion channels for a spatially precise selective modulation of specific cells within complex distributed
networks of neurons, thus offering unique tools for studying the mechanisms whereby the dynamics of
these networks controls cognitive responses, memory, learning, and behavior. As a promising alternative
to optogenetic strategies, thermogenetics uses thermosensitive ion channels®'® to drive the cell activity
by temperature variations. However, since temperature changes affect many physiological processes in a
living organism, cell activation by temperature variations requires special precautions in order to avoid
heating that would be incompatible with the general physiology of the organism and to make sure that
temperature variations are small enough to prevent increased background activity of cells, such as a
spontaneous firing of neurons. These difficulties limit neuroscience applications of thermogenetics pri-
marily to experiments with fruit flies'>'8, despite the availability of a broad variety of thermosensitive
members within the vast family of TRP channels, covering broad ranges of working temperatures and
activation thresholds, possessing an exceptional thermal sensitivity, and allowing neurons expressing
these channels to be switched from silent to robustly active mode by a slight change in temperature.
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Figure 1. Thermogenetics using a fiber-optic probe, serving as a local heater and thermometer: Nd:
YAG SH, second-harmonic output of a continuous-wave Nd: YAG laser; M, mirrors; DM, dichroic
mirrors; PMT, photomultiplier tube; DAC, digital-to-analog converter; PD, photodetector; MW source,
microwave source; F, filter; GM, galvanoscanned mirror; Obj, objective. The dotted lines show the
surfaces of equal temperature visualizing the temperature gradient induced by the diamond microparticle on
the tip of the fiber probe.

In this work, we demonstrate a technique that addresses these issues by allowing the temperature
of individual cells be controlled in a highly accurate and well-localized fashion. Our approach is based
in a specifically designed fiber probe that can induce a localized, precisely controlled heating of indi-
vidual cells expressing genetically encoded heat-sensitive TRPA channels in a cell culture. A diamond
microcrystal attached to the tip of the fiber'® and heated by laser radiation transmitted through the fiber
provides a local heating of the cell culture, enabling a well-controlled TRP-assisted thermal activation
of cells. Moreover, this fiber probe can simultaneously measure the temperature of a cell through a
temperature-dependent frequency shift of optically detected magnetic resonance, which is induced by
coupling the microwave field, delivered by the microwave transmission line', to the spin of nitrogen-
vacancy (NV) centers in diamond on the tip of the fiber probe.

Experiments on thermogenetic control and thermometry of single cells were performed (Fig. 1) on a
culture of Human Embryonic Kidney 293 (HEK-293) cells grown in a Petri dish. The HEK-293 cells were
transfected with vectors expressing G-GECO 1.2 calcium indicator® and rattlesnake TRPA1 channels,
known to be responsible for remote thermosensation by rattlesnake Crotalus atrox'*. A Petri dish with
the cell culture was placed on a translation stage on a high-precision adjustable microscope table. Cell
imaging was performed using a 10 x microscope objective and a CCD camera. The cells were irradiated
with a continuous-wave 473-nm diode-laser output, which provided optical excitation of G-GECO 1.2.

The fiber probe, positioned in the cell culture using a homebuilt high-precision mechanical manip-
ulator, serves to deliver continuous-wave 532-nm laser radiation, giving rise, through a laser-induced
heating of the diamond, to a spherical gradient of temperature in the cell culture, which falls oft with
the distance r from the diamond microcrystal (Fig. 1). The same fiber probe is used to measure the tem-
perature at the chosen site within the cell culture. To this end, the microwave field, delivered through
the two-wire microwave transmission line integrated with the fiber (Fig. 2), is applied to couple the
spin sublevels of ground-state NV centers in diamond, polarized by 532-nm laser radiation transmitted
through the optical tract of the fiber probe (Fig. 1). This laser radiation transfers population from the
A ground state to the °E excited state. The photoluminescence (PL) emitted as a result of this pro-
cess features a zero-phonon line at approximately 637 nm, observed as a well-resolved peak on a broad
phonon-sideband line. This PL signal is collected by the same optical fiber'®. The optical tract of the
fiber then serves to transmit this signal to the detection system, which consists of a silicon photodiode,
a low-noise preamplifier, and a lock-in amplifier (Fig. 1).

In the absence of external magnetic fields, the m,=0 and m,;= =1 sublevels of the ground-state
triplet of NV centers are split by 2,/ 2.87 GHz. The 532-nm optical field spin-polarizes NV centers,
accumulating them in the m,= 0 state through spin-selective decay paths®!-%. Since the population from
the m;= £1 excited state can be transferred to the m,= 0 level through a metastable singlet state, which
does not fluoresce within the 630-800-nm band, the PL yield of NV centers in the m,==+1 state is
lower than the PL yield of m;=0 NV centers. The intensity of the PL signal, I, therefore decreases
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Figure 2. Local heating and thermometry of cells expressing genetically encoded thermosensitive TRP
channels and Ca®" indicator. As the heat delivered to the cell by a laser-heated diamond on the tip of
the fiber is increased to a level where the temperature of the cell becomes higher than the TRP channel
activation threshold, the flow of Ca*" ions through TRP channels increases, making the G-GECO 1.2 Ca**
indicator flash green.

when a microwave field delivered by the transmission line integrated into our fiber probe is tuned to
the zero-field splitting frequency €, transferring population from the m =0 state to the m;==+1 sub-
levels. This effect is observed as a well resolved feature in the PL intensity I;; measured as a function
of the microwave frequency €). Even in the absence of external magnetic fields, a local strain removes
the degeneracy of this resonance, giving rise to two well-resolved features in the optically detected mag-
netic resonance (ODMR) spectra I (€2) (the inset in Fig. 3a). As the temperature of diamond increases,
this profile of the zero-external-magnetic-field resonance is shifted, as shown in the earlier work®,
toward lower microwave frequencies, enabling temperature measurements with a high spatial resolu-
tion. For the highest sensitivity and highest speed of local temperature measurements in a cell culture,
frequency-modulated microwave spin excitation in NV centers was combined with properly optimized
differential lock-in detection®*?°. In a recent work?, a system consisting of an optical fiber, NV-diamond
sensor, and a microwave transmission line has been used to demonstrate a thermogenetic activation of
single cells by microwave radiation. In experiments presented here, the power of the microwave field was
at least three orders of magnitude lower to avoid any effects induced by the microwave field.

In a calibration experiment, the fiber probe was placed inside a thermostat with a physiological solu-
tion at a precisely controlled temperature along with a thermocouple, providing an accuracy of temper-
ature measurements higher than 0.1°C. Figure 3a displays the magnetic resonance zero-field splitting
frequency €2, measured as a function of the temperature inside the thermostat according to thermo-
couple readings. As can be seen from this plot, a linear function with a slope dQ2,/dT~ —75+ 2kHz/K
provides an ideal fit for this dependence within the entire temperature range of interest, viz., from 34°C
to 49°C, offering a convenient calibration for temperature measurements using our fiber-optic probe
with NV diamond.
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Figure 3. (a) The zero-field magnetic-resonance frequency as a function of the temperature measured by

a thermocouple in a thermostat. The inset shows the intensity of photoluminescence from NV centers in a
diamond microcrystal attached to the fiber tip measured as a function of the frequency of the microwave
field delivered to the fiber tip through the microwave transmission line for different laser powers heating the
diamond to temperatures ranging from about 31.9°C to 55.2°C, as specified in the plot. (b) The temperature
of NV diamond on the tip of the optical fiber measured through the temperature-dependent shift of ODMR
spectra as a function of the power of 532-nm laser radiation in a thermostat with physiological solution
(filled circles) and with air (open circles). (¢) The temperature of the cell culture measured as a function

of the distance from the laser-heated NV-diamond microparticle with the use of a second fiber-optic
NV-diamond sensor: (circles) experimental results and (solid line) the steady-state solution to the heat-
conduction equation with Ry=150pm, Ty=52°C, and T(=21°C. (d) The images of the cell culture taken
with Py~ 18 mW (1), 56 mW (2), 68mW (3), and 88 mW (4). The scale bar is 50 pm. The fiber-coupled
diamond microcrystal is located 325 pm above the plane of the images. The red concentric dotted lines
show the lines of equal temperature. The temperatures inferred from NV-diamond-sensor measurements are
indicated above the images. (e) The G-GECO 1.2 fluorescence intensity as a function of the temperature for
the cell located at r=371pm. The background fluorescence level is shown by the dashed line. The dash—
dotted line shows a linear approximation of the rising segment of the I{T) dependence with its extrapolation
beyond this segment. The intercept of these two lines is used as a definition of the cell activation threshold
T,. (f) Activation thresholds T, (blue) and T, (red) defined for the nine cells under study. The mean values
of these thresholds are shown by dashed lines.
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In another test experiment, the temperature of NV diamond on the tip of the optical fiber was meas-
ured, through the temperature-dependent shift of ODMR spectra, as described above, as a function
of the power of 532-nm laser radiation in a thermostat with physiological solution and with air. The
results of these measurements are presented in Fig. 3b. Each temperature reading was taken following
sufficiently long time interval of heating with a fixed continuous-wave laser power (longer than 1min) to
make sure that the heat transfer in our system had reached the steady-state regime, where the incoming
heat flux, provided by laser radiation, is equal to the outgoing heat flux due to a heat sink through the
bottom of the Petri dish, the optical fiber, and the interface between the cell culture and the air. To verify
that, following the initial transient phase right after a change in the heating laser power, heat transfer
in our system occurs in the steady-state regime, we performed measurements of ODMR spectra within
a 1-min time interval, making sure these spectra exhibit no changes that would be indicative of non-
stationary heat transfer due to an unbalanced incoming heat flux. Since the thermal conductivity of air,
k,~0.026 W/(m K), is much lower than the thermal conductivity of the solution, k,~ 0.6 W/(m K), for
each given power of 532-nm laser radiation, the temperature of the diamond in air is noticeably higher
than its temperature in solution, exactly as one would expect in a situation when laser radiation first
heats the diamond particle, which, in its turn, transfers heat to the surrounding medium. The tempera-
ture of diamond linearly grows with the laser power (Fig. 3b), which is also consistent with the standard
heat-conduction model.

In a separate experiment, we verified the validity of the steady-state solution of the heat-conduction
equation for the temperature of the cell culture, T(r) = (Ry/r)(Ty— T,) +T,, where Ry is the radius of the
diamond microscrystal, r> R is the distance from the diamond microcrystal, Ty is the temperature of
the diamond microcrystal, which is measured directly in experiments, and Tj is the temperature at a dis-
tant boundary (at the infinity in mathematical terms), set equal to the room temperature for our system
(Ty~=21°C). In this experiment, we directly measured the temperature of the cell culture as a function of
r using a second fiber-optic NV-diamond probe with a diameter of 30 .m. The average power of 532-nm
laser radiation used in this fiber-probe was kept below 1mW to avoid additional heating of the culture.
The results of these measurements (circles in Fig. 3c), do not deviate from the 1/r steady-state solution
to the heat-conduction equation (the dashed line in Fig. 3c) by more than a few percent.

In our experiment with a culture of HEK-293 cell expressing the rattlesnake TRPA1 channel and
G-GECO 1.2 calcium indicator, we first focus on the thermal response of a group of nine closely spaced
cells within the field of view of the microscope (Fig. 3d). To find the temperatures at the locations
of individual cells in this group, we define the temperature of the diamond microcrystal from the
temperature-dependent shift of the magnetic resonance zero-splitting frequency of NV centers, read out
through the fiber probe as described above, and apply the equation for the spherical temperature gradient
T(r) to calculate T(r;) for each r,. To make sure that the steady-state temperature is measured, tempera-
ture readings in these measurements are taken at least 100 after a change in the laser power P,. We then
plot the calcium indicator fluorescence intensity I as a function of the local temperature T(r;) for each
cell of this group (Fig. 3e). It is straightforward to see from the typical I{T) curve in Fig. 3e that, right
below the cell activation threshold, the fluorescence intensity I; starts to rapidly grow, taking off from its
background level (shown by the dashed line in Fig. 3e). This rising section of the I{T) curve is accurately
approximated by a linear function (dash-dotted line in Fig. 3e). Following Gracheva et al.', we define
the activation threshold, T,, of a cell expressing rattlesnake TRPA channels as an intercept of the linear
approximation of I{(T) extrapolated beyond the rising section of I{T) and the fluorescence background
line (Fig. 3e). As can also be seen from Fig. 3e, the fluorescence signal continues to increase with grow-
ing Py, due to a gradual increase in the number of opening channels on cell membranes, until all the
TRPAL1 channels are activated, at which point the fluorescence signal starts to saturate. Such a behavior
of I{T) makes the temperature T, corresponding to the median point in the rising section of I(T), a
meaningful parameter of cell thermosensation. The histogram in Fig. 3f shows the activation thresholds
T, and T,, defined for all the nine cells under study. Averaging over these results yields the mean values
of T, and T, for the studied group of cells along with their standard deviations: T,~27.3£0.6°C and
T~ 28.0+0.5°C.

It is important to note that, when applied to the thermal activation of cells, the standard deviation,
which has been estimated as 0~ 0.6°C for the studied group of cells, is more than a mere measure of
instrumental errors. Since the opening temperatures vary from channel to channel, the standard devia-
tion, apart from instrumental errors, provides a measure for the intrinsic uncertainty of cell activation
threshold definition and quantifies the extent to which thermal activation in an ensemble of cells can
be controlled.

To demonstrate a thermal activation of individual cells, we focus on three HEK-293 cells in the same
group of nine cells in the field of view of the microscope in our experiment (Fig. 3d). These three cells
under study (Fig. 4) are located at distances r, ~ 373 pm, 1,7 401 pm, and r;~ 421 pm from the NV dia-
mond microcrystal on the tip of the fiber probe. In Fig. 4, the temperatures of individual cells T(r;) are
shown as functions of the laser power P, delivered to the diamond microcrystal on the fiber tip. As can
be seen from these plots, the temperature of each cell grows monotonically in response to an increase
in Py, with the temperatures of cells lying closer to the diamond microcrystals being always higher than
the temperatures of cells with larger r;. This monotonic growth in cell temperatures is verified by the
fluorescence of G-GECO 1.2 indicator, which becomes progressively brighter as P, increases.
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Figure 4. The temperatures of individual cells in the cell culture inferred from NV-diamond-sensor
measurements as functions of the laser power delivered to the diamond microcrystal on the fiber tip.
The median activation temperature T;, is shown by the dotted line. Also shown are the images of the cell
culture at Py=38mW (1), 59mW (2), 68mW (3), and 77mW (4). The cells under study are circled. The
scale bar is 50 um.

Since the first cell is closer to the heat source, its temperature, T;= T(r,), is always slightly higher
than the temperatures T, = T(r,) and T;= T(r;) of the other two cells. At low levels of P, the intensity of
G-GECO 1.2 fluorescence from all the cells remains low (image 1 in Fig. 4). At the level of laser radiation
powers such that the temperature of the first cell reaches T, but the temperatures of the second and third
cells are still lower than T, (P,~ 59 mW in Fig. 4), the first cell is observed as a bright green spot in the
image of the cell culture, due to intense G-GECO 1.2 fluorescence, indicating the flow of Ca** through
the cell membrane, while the second and third cells are still dark (image 2 in Fig. 4). With Py~ 68 mW,
the temperature of the second cell reaches T, and this cell is also clearly visible as a bright green spot
in the image of the cell culture (image 3 in Fig. 4). At this point, of the three cells under study, only the
third cell remains dark, as its temperature is lower than T;,. Finally, with Py~ 77 mW, the temperatures
of all three cells is higher than T, . At this level of laser radiation powers, all the cells are observed as
bright green spots due to intense fluorescence of G-GECO 1.2 (image 4 in Fig. 4).

To summarize, thermal activation and online thermometry of individual cells have been demonstrated
using a fiber-optic probe integrated with an NV-diamond quantum sensor. A diamond microcrystal on
the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of the
cell culture, enabling a well-controlled TRPA1-assisted thermal activation of cells. Online local temper-
ature measurements have been performed using the temperature-dependent frequency shift of optically
detected magnetic resonance, induced by coupling the microwave field to NV centers in diamond on the
tip of the fiber probe. Individual activation of TRPA1-channel-expressing cells has been independently
verified in our experiments by using genetically encoded fluorescence indicators, visualizing an increase
in the calcium flow through activated TRPA channels.

Methods

Fiber probe design. A fiber probe used in our experiments integrates'®* an optical fiber, an
NV-diamond microcrystal, and a two-wire microwave transmission line. For the NV-diamond sensor,
we use high-pressure high-temperature diamond microcrystals enriched with NV centers (Fig. 2b), as
described in Refs 19,26, up to an NV center density of 10'*~10'7 cm>. With a help of mechanical manip-
ulator, a diamond microcrystal 30-250 um in diameter is attached, under an optical microscope, to the
tip of an optical fiber with a core diameter of 200 pm and a numerical aperture NA= 0.2 and fixed to
the fiber tip with ethyl cyanoacrylate glue.

The electron spin of NV centers is manipulated through the electron spin resonance induced by a
microwave field, which is delivered to the diamond microcrystal with NV centers along a two-wire trans-
mission line, which consists of a pair of copper wires 50 um in diameter each, running along the optical
fiber (Figs 1 and 2). A loop that short-circuits this transmission line near the fiber tip with a diamond
microcrystal (Figs 1 and 2) provides a microwave field distribution with a maximum at the location of
the diamond microcrystal.

Cell culture and transfection. HEK-293 cells (ATCC) were seeded into 35mm glass bottom dishes
(MatTek) and cultured in DMEM with 10% FCS (PAA Laboratories) at 37 °C in a 5% CO, atmosphere, as
described in detail in ref. 28. After 24 hours cells were transfected by a mixture of 1 ng DNA (or 0.65ng
DNA of each vector for co-transfection) and 3l (6 pl for co-transfection) X-treme GENE 9 transfection
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reagent per one dish. After 8-10hours cell medium was replaced by fresh medium. Some 36-48 hours
after transfection, HEK-293 cells were incubated for 2 hours in MEM without bicarbonate supplemented
with 20mM of HEPES-NaOH pH 7.4 at 37°C.
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