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Abstract: Lipotoxicity is a metabolic condition resulting from the accumulation of free fatty acids in
non-adipose tissues which involves a series of pathological responses triggered after chronic exposure
to high levels of fatty acids, severely detrimental to cellular homeostasis and viability. In brain,
lipotoxicity affects both neurons and other cell types, notably astrocytes, leading to neurodegenerative
processes, such as Alzheimer (AD) and Parkinson diseases (PD). In this study, we performed for the
first time, a whole lipidomic characterization of Normal Human Astrocytes cultures exposed to toxic
concentrations of palmitic acid and the protective compound tibolone, to establish and identify the set
of potential metabolites that are modulated under these experimental treatments. The study covered
3843 features involved in the exo- and endo-metabolome extracts obtained from astrocytes with the
mentioned treatments. Through multivariate statistical analysis such as PCA (principal component
analysis), partial least squares (PLS-DA), clustering analysis, and machine learning enrichment
analysis, it was possible to determine the specific metabolites that were affected by palmitic acid insult,
such as phosphoethanolamines, phosphoserines phosphocholines and glycerophosphocholines, with
their respective metabolic pathways impact. Moreover, our results suggest the importance of tibolone
in the generation of neuroprotective metabolites by astrocytes and may be relevant to the development
of neurodegenerative processes.

Keywords: lipidomics; tibolone; palmitic acid; astrocytes

1. Introduction

Lipotoxicity is a metabolic condition resulting from the accumulation of free fatty
acids in non-adipose tissues [1,2]. This condition involves a series of pathological responses
triggered after chronic exposure to high levels of fatty acids, which may be detrimental to
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cellular homeostasis and viability, leading to cellular dysfunction, lipid droplet formation,
and cell death [3,4]. Although the exact mechanisms related to a lipotoxic event have not
been thoroughly characterized, this process is a well-known factor present in obesity and
neurodegenerative diseases (NDs) [5–7]. In these aspects, lipotoxicity may affect both
neurons and astrocytes in the central nervous system (CNS). Astrocytes play a critical role
in the CNS homeostasis [8,9], including maintenance of brain metabolism, the promotion of
neurovascular coupling, the attraction of cells through the release of chemokines, K+ buffer-
ing, release of gliotransmitters and glutamate through calcium signaling, control of brain
pH, metabolization of dopamine and other substrates by monoamine oxidases, uptake of
glutamate and γ-aminobutyricacid (GABA) by specific transporters [10], antioxidative and
metabolic support to neurons [11,12], as well as triggering neuroprotection through the
activation of various survival signalling cascades and sincitial networks [13,14]. Impor-
tantly, lipid metabolism is crucial to the normal astrocytic function and in neuron-astrocyte
crosstalk during processes such membrane fluidity, cell signalling, inflammation, and
energy generation. During pathological processes such as obesity, ischemia/reoxygenation,
multiple sclerosis and Parkinson and Alzheimer diseases, the normal homeostatic functions
of the astrocytes are significantly impaired, which can lead to neurodegeneration and
related processes [15–17].

Both in vitro and in vivo studies suggest that palmitic acid (PA) stimulation on as-
trocytes induces changes in the expression of mitochondrial genes, pro-inflammatory
cytokines, oxidative stress, and morphological changes [18–20]. Interestingly, several stud-
ies have shown that the steroid compound tibolone exerts beneficial effects in acute and
chronic NDs [21–23] both in neurons and astrocytes. Likewise, previous studies have
shown that tibolone pre-treatment induces antioxidative protection and mitochondrial
protection against PA damage in astrocytes [22,24].

This study presents a lipidomic profile of the exo- and endo-metabolome of astrocytic
cells, which were generated by means of different treatments: (i) Tibolone; (ii) PA and
(iii) PA + tibolone. The measurement of the 3843 metabolites was conducted using LC-
QTOF MS/MS and the data processing was performed using MS-DIAL 4.0. Data annotation
was carried out by manual comparison of MS/MS spectra and accurate masses of the
precursor ion to spectra given in the Fiehn Laboratory’s LipidBlast spectra library [25].
Upon normalization of the abundance values retrieved, several analyses were conducted,
including a principal component analysis (PCA), partial least squares (PLS-DA), clustering
analysis, and enrichment analysis to identify potential biomarkers of tibolone treatment
when the cells were injured with PA. For this, the data was grouped according to the
treatments: (i) Tibolone and (ii) PA and PA + tibolone treatments.

This classification revealed a set of metabolites, primarily glycerophospholipids, with
significant differences in a relative abundance value recorded for cells treated with ti-
bolone + PA and those treated only with PA. These include phosphatidylcholines (phos-
pholipids) such as the metabolite PC 32: 1, sphingolipids like PI-Cer(d18:0/18:0), and
phosphoethanolamines like PE(P-16:0/17:2(9Z,12Z)), which registers representative dif-
ferences in the endo-metabolome for the PA and PA + tibolone treatments, as well as an
increased abundance of the metabolite 16-Glutaryloxy-1alpha, 25-dihydroxyvitamin D3/16-
Glutaryloxy-1alpha, 25-dihydroxy-20-epivitamin D3 in the presence of tibolone. These
results suggest the importance of tibolone in the generation of neuroprotective metabolites
by astrocytes and may be relevant to the development of neurodegenerative processes.

2. Results

A total of 3843 features were detected using Charged Surface Hybrid column of
a Liquid Chromatography coupled with Electro-Spray Ionization Time of Flight Mass
Spectrometry (CSH-ESI-QTOF MS/MS) in endo and exo-metabolome extracts. Using the
MS-DIAL program [26]. it was possible to determine the chemical identity of 618 lipids.
249 of the identified compounds corresponded to phosphatidylcholine, 81 compounds
were triacylglycerols, 52 lipids were phosphocholine and 43 consisted of to the ceramides.
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The 31% of the remaining compounds showed a low representation of various types of
metabolites (Table S1). However, 83.9% of the dataset remains unknown.

2.1. Applied Treatments Show Different Organization Patterns in PCA and PLS-DA Analysis

To evaluate the data set, four study groups were defined. These partitions were
conducted to elucidate the protective effect of tibolone in astrocytes cells exposed to PA.
Accordingly, the metabolome distribution of each treatment is showed in the PCA and PLS-
DA analysis (Figures 1 and 2). The defined groups were: (i) all the treatments evaluated;
(ii) PA + tibolone & PA; (iii) PA + tibolone & tibolone; and (iv) PA + tibolone & tibolone
& PA. Likewise, the interaction of each of these groups with the controls was assessed to
define the possible interactions among them.
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Figure 1. Analysis for the complete data set (a) Principal component analysis to complete data for
(left) endometabolome, the color patterns correspond to DMEM (blue), palmitic acid + tibolone
(magenta), tibolone (light green), control (red), palmitic acid (purple). The exometabolome (right)
represent palmitic acid (orange), control (dark green), DMEM (light blue), tibolone (pink) and palmitic
acid + tibolone (yellow). (b) Partial least squares discriminant analysis for (left) endometabolome
and (right) exometabolome. The color patterns are the same as PLS-DA. (c,d) Specific analysis for the
endometabolome (c) Principal component analysis and (d) partial least squares discriminant analysis,
where treatments are represented with tibolone (pink), control (red), DMEM (light green), palmitic
acid (light blue), palmitic acid + tibolone (dark blue). (e,f) Specific analysis for the exometabolome.
The pattern colors are the same as the endometabolome analysis.

The differences between PCA and PLS-DA analysis founded for all the evaluated
conditions are related to mathematical expressions used to calculate the variance into the
dataset provided. PCA ignores information regarding the class labels of the samples [27].
The PLS-DA is recognized as a supervised version of a PCA because it achieves a dimen-
sionality reduction keeping the awareness of the class labels. Owing to, PCA represents
variances cluster organization of the dataset, but PLS-DA takes known clusters to predict
the behavior of the complete dataset. In other words, the distance between the sets changes
because the algorithm learns the behavior of the groups that be in the data [27]. According
to that, different patterns were described between both analyses (Figure 1).

Nevertheless, PCA and PLS-DA performed with endometabolome data (Figure 1c,d)
shows a dramatic change between the position of the control, suggesting when data set
conformation have been supervised, the control does not have the same variance as the
DMEM and Tibolone data, as it happens with the exometabolome dataset.

The palmitic acid + tibolone (PA + T) & palmitic acid PA treatments comprised a single
cluster, suggesting that the application of tibolone does not cause a generalized effect on
the abundance of the metabolites evaluated in the presence of PA (Figure 3). However,
when evaluating the interaction of the three treatments (PA + T; PA; T) with no controls,
it was possible to demonstrate that tibolone is clustered independently from the other
group comprising of (PA + T & PA). This corroborates that there is not a global effect on the
reported abundances of the metabolites evaluated in the study, subjected to the proposed
treatments.
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 Figure 2. Partial least squares discriminant analysis (PLS-DA). (a,b) palmitic acid + tibolone (red)
and tibolone (green). (c,d) palmitic acid + tibolone (red) and palmitic acid (green). (e,f) palmitic
acid + tibolone (red) and palmitic acid (green) and tibolone (blue). (a,c,e) endometabolome and
(b,d,f) exometabolme. The samples clustering together according with the tibone treatment. It was
possible to determine that sampleas are not separate as cluster for PA and PA + T threatments.
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As shown in the dendrograms in Figure 3, the clustering of treatments for the en-
dometabolome (PA + T & T & PA) separated most of the PA-containing data sets from
tibolone, which corroborated the effect observed in the PCA and PLS-DA analysis. In
the case of the exometabolome, the separation was complete, making the division could
provide evidence for the effect of tibolone on the cells studied as distinct from the effect
caused by the presence of PA. In addition, it was possible to infer from this behavior that
PA + T treatment was not different from PA alone, suggesting that the combination of
treatments does not have a differential effect on the exposed cells.
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Figure 3. Dendrograms (a) (PA & T & PA + T)—Endometabolome (b) (PA & T & PA + T)—
Exometabolome. The graph shows the complete separation between tibolone and the two remaining
treatments (PA + T & PA) for the data corresponding to exometaboloma. However, this behavior is
not evidenced in endometabolome, where there are two variables related to the treatments of palmitic
acid + tibolone within the tibolone dataset. The dedrograms reflect the PCA clustering organization.

2.2. Implementation of Machine Learning Techniques Enhances the Identification of Metabolites
Related to Biological Processes

Random Forest analysis expresses the amount of precision that the model obtained
when excluding each variable. In other words, the metabolites identified with a high mean
decrease value determine the tree’s structure and the exclusion of those metabolites from
the model represents a considerable change in the generated model.

A total of 15 metabolites were identified for each group (Figures 4 and 5) and most of
them had not been characterized by MS-DIAL [26]. To determine the chemical identity for
each metabolite, the CEU mass mediator algorithm was used, but 16% of the metabolites
could not be recognized by the algorithm. This program employed databases such as Lipid
Maps [28] and KEGG [29] to characterize the metabolites using its mass and reported a list
of compounds related to it. In case neither the mass nor any metabolite was reported in
these databases, the compound was classified as an unidentified (Supplementary Table S5).
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Figure 4. Random Forest for endometabolone analysis. (a) PA + T & PA (b) PA + T & T (c) PA + T &
PA & T and (d) complete treatments. The list of the first 15 metabolites highlighted by their mean
decrease accuracy value is presented for each evaluated treatment set. These metabolites have been
reviewed in the literature and related to metabolic processes in humans within the present study.

Some metabolites displayed similar mass in the databases making the identification
process non-specific. For this, as each metabolite had multiple possible identities, we
reported every match in Supplementary Tables S2–S4. Nonetheless, 40% of metabolites
were successfully identified and have been reported in Table 1 (endometabolome) and
Table 2 (exometabolome).

A total of 33 metabolites of the endometabolome were identified. Of these, 36.3% could
only be identified to the amount of the chemical family in which phosphoserines, phospho-
cholines and phosphoethanolamine were found. The remaining 63.4% were characterized
with a singular identity. As for the exometabolomic, 31 metabolites were distinguished.
The 64.5% was characterized as a unique compound and the other 35.5% was recognized
inside a chemical family, including fatty esters, triacylglycerol’s and glycerophospholipids.
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Figure 5. Random Forest for exometabolone analysis. (a) PA + T & PA (b) PA + T & T (c) PA + T &
PA & T and (d) complete treatments. The list of the first 15 metabolites highlighted by their mean
decrease accuracy value is presented for each evaluated treatment set. These metabolites have been
reviewed in the literature and related to metabolic processes in humans within the present study.

Table 1. List of annotated metabolites using CEU mass mediator for endometabolome. Metabolites
written in italics were characterized only to chemical family identification.

Treatments m/z Adducts Formula ∆m/z (ppm) Compound Type

PA + T &
PA

702.5087 [M-H]- Phosphoethanolamine
800.6167 [M+H]+ C45H86NO8P 0 PC 37:2;
780,5547 [M-H]- C44H80NO8P 0 Phosphoethanolamine
889.5812 [M-H]- C47H87O13P 0 PI 38:2; PI 18:0-20:2;
770.5337 [M-H]- C42H78NO9P 1 Phosphoserine
828.5766 [M-H]- C45H84NO10P 1 Phosphocholine

531.4769 [M+H]+ C35H62O3 1
Epoxymurin A/

30-(-2-(O-2-hydroxy-ethane)-
3-hydroxy-propane)-hopane

524.3719 [M+H]+ C26H54NO7P 2 Phosphocholine
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Table 1. Cont.

Treatments m/z Adducts Formula ∆m/z (ppm) Compound Type

PA + T & T

636.3497 [M-H]- OHHdiA-PE

810.5923 [M+H]+ C42H84NO11P 8 PI-Cer(d18:0/18:0)/PI-
Cer(d20:0/16:0)

673.526 [M+H]+ C37H73N2O6P 3 SM d32:2;
798.5584 [M+H]+ C44H80NO9P 7 Phosphoserine
830.5904 [M+HAc-H]- PC 35:2;
267.2332 [M-H]- C17H32O2 1 Heptadecynoic acid
480.309 [M-H]- C23H48NO7P 1 Phosphinic acid
809.5197 [M-H]- C41H79O13P 1 PI 32:0; PI 16:0-16:0;
819.5187 [M-H]- C46H77O10P 1 PG 40:7; PG 18:1-22:6;
824.5814 [M+ HAc-H]- PC p-36:4; or PC o-36:5;
329.2489 [M-H]- C22H34O2 1 FA 22:5;
759.5662 [M+HAc-H]- SM d34:2;

PA + T &
PA & T

816.5759 [M+HAc-H]- Phosphoserine
754.5376 [M+H]+ C42H76NO8P 1 PC 34:4;
836.618 [M+H]+ C48H86NO8P 2 PC 40:5; B
753.5475 [M+H]+ C43H77O8P 6 Phosphocholine
797.5145 [M-H]- C47H75O8P 2 Phosphoinositol
771.5181 [M-H]- C42H77O10P 0 Phosphatidylglycerol

890.7687/874.7944/
869.8343

[M+K]+_[M+Na]
+_[M+NH4]+ C54H97D5O6 8 1_TG d5 17:0/17:1/17:0; iSTD

756.553 [M+H]+ C42H78NO8P 1 Phosphoethanolamine

Complete

400.343 [M+H]+ C23H45NO4 2 AC 16:0;
885.7905/880.8353 [M+Na]+_[M+NH4]+ C55H106O6 3 TAG 52:0; TAG 16:0-18:0-18:0;

369.3513 [M+H]+ C27H44 1 3-Deoxyvitamin D3
838.7822 [M+NH4]+ TAG 49:0; TAG 16:0-16:0-17:0;
766.5727 [M+H]+ C44H80NO7P 2 Phosphocholine

Table 2. List of annotated metabolites identified with CEU mass mediator for exometabolome.
Metabolites written in italics were characterized by chemical family identification.

Treatments m/z Adducts Formula ∆m/z (ppm) Compound

PA + T &
PA

836.6165 [M+H]+ Phosphatidylcholine
835.5348 [M-H]- Glycerophospholipids
802.5609 [M-H]- Glycerophosphoserines
466.2932 [M-H]- C22H46NO7P 2 PE(17:1(9Z)/0:0)/PC(14:1(9Z)/0:0)

381.3737 [M-H]- C25H50O2 0 Pentacosenoic acid/Mycolipenic acid
(C25)

405.3214 [M-H]- C22H44O6 1 Ventosic acid

730.57 [M-H]- Phosphoethanolamin/
Glycerophosphocholines

842.5916 [M-H]- Glycerophosphoserines

572.4818/596.528 [M+Cl]- _
[M+HAc-H]- C34H67NO3 1 Ceramide d34:1;

PA + T & T

354.3014 [M-H]- C21H41NO3 0 N-palmitoyl proline/N-oleoyl alanine

547.3674 [M+H]+ C32H50O7 8

16-Glutaryloxy-1alpha,25-
dihydroxyvitamin

D3/16-Glutaryloxy-1alpha,25-
dihydroxy-20-epivitamin D3
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Table 2. Cont.

Treatments m/z Adducts Formula ∆m/z (ppm) Compound

PA + T & T

866.5909 [M+HAc-H]- C48H84NO10P 0 PC 38:5; A
628.3619 [M+HAc-H]- C30H52NO7P LPC 22:5;

398.3272 [M+H]+ C23H43NO4 2
O-palmitoleoylcarnitine/trans-

Hexadec-2-enoyl
carnitine

604.3614 [M+HAc-H]- LPC 20:3;

PA + T &
PA & T

859.6912 [M+HAc-H]- SM d41:1;
307.2637 [M-H]- C20H36O2 2 FA 20:2; (eicosadienoic acid)
787.6146 [M+H]+ Glycerophosphates
800.5814 [M+HAc-H]- PC p-34:2; or PC o-34:3;
811.6775 [M-H]- Triradylglycerols
715.5757 [M-H]- Ceramide phosphoethanolamines
814.5593 [M-H]- Glycerophosphoserines

407.3524 [M-H]- C26H48O3 2 3,4-Dimethyl-5-pentyl-2-
furanpentadecanoic acid

Complete

407.3532 [M-H]- C26H48O3 2 3,4-Dimethyl-5-pentyl-2-
furanpentadecanoic acid

407.3524 [M-H]- C26H48O3 2 3,4-Dimethyl-5-pentyl-2-
furanpentadecanoic acid

329.2489 [M-H]- C22H34O2 1 FA 22:5;

538.351 [M-H]- Glycerophosphocholines/
Glycerophosphoserines

808.5882 [M+H]+ C46H82NO8P 4 PC 38:5; B
537.4896 [M-H]- Fatty esters
376.3969 [M+H-H2O]+ C27H39D7O 5 1_Cholesterol d7 iSTD
269.2489 [M-H]- C17H34O2 1 FA 17:0; (margaric acid)

2.3. Identified Metabolic Pathways

Enrichment analysis and metabolic pathway mapping was conducted for all metabo-
lites the fully identified in the exo- and endometabolome. However, it was only possible to
obtain definitive results for a small subset of metabolites since most of them were not found
in the consulted databases (KEGG, SDMP and Lipid Maps). For the endometabolome,
metabolic pathway analysis was performed for the metabolite set of the PA + T & PA
treatments with MetaboAnalyst (Figure 6, Supplementary Table S6). Through this process,
2 possible compounds with a mass of 800.6167 m/z were determined. The first metabolite
(C00157) was identified as a phosphatidylcholine associated with 7 possible metabolic
pathways: Glycerophospholipid metabolism, Arachidonic acid metabolism, Linoleic acid
metabolism, alpha-Linolenic acid metabolism, Biosynthesis of secondary metabolites, Ret-
rograde endocannabinoid signaling, and Choline metabolism in cancer. The second one
(C00350), was identified as Phosphatidylethanolamine, which was related to the metabolic
pathways of Glycosylphosphatidylinositol (GPI) -anchor biosynthesis and Glycerophos-
pholipid metabolism. Conversely, for the PA + T & T & PA group, 2 metabolites were
found with masses of 754.5376 m/z and 836.618 m/z respectively (both with the identifier
code C00157). According to the enrichment analysis, these metabolites corresponded to
the Phosphatidylcholines or Lecithins. Lastly, the complete set of metabolites with no
control, the L-Palmitoylcarnitine metabolite was related to the metabolic pathway of Fatty
acid degradation.
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Figure 6. Enrichment analysis performed with identified metabolites for endo- and exometabolome,
each one represents a significant metabolic pathway (a) Glycerophospholipid metabolism (b) Gly-
cosylphosphatidylinositol (GPI) biosynthesis (c) Linoleic acid metabolism (d) alpha-Linolenic
acid metabolism (e) Fatty acid degradation (f) Biosynthesis of unsaturated fatty acids. In red,
metabolites identified with the analysis was highlighted. C00157 is phosphatidylcholine or
lecithin; C00350 is (3-Phosphatidyl) ethanolamine; C02990 is L-Palmitoylcarnitine and C03242 is
Dihomo-gamma-linolenate.
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For the exometabolome, the Dihomo-gamma-linolenate metabolite (C03242), related to the
metabolic pathways of Linoleic acid metabolism and biosynthesis of unsaturated fatty acids,
was identified for the PA + T & PA & T treatment group (Figure 6, Supplementary Table S6).

The metabolism related with essential acids production and lipids biosynthesis are
clearly highlight into the exo- and endometabolome lipidomic analysis. However, most
of the compounds identified with a complete chemical identity were inside the cells. That
evidence the necessity to try on the metabolite description that could support and extended
the chemical knowledge about metabolomic.

3. Discussion

In the present study, we conducted the first lipidome-wide investigation of the effects
of saturated fatty acid and tibolone treatments on a human astrocytic cell line. It covered
3843 lipid metabolites both in exo- and endometabolome extracts of astrocytic cells stimu-
lated with PA, T, PA + T, DMEM and controls. Previous studies have shown that saturated
fatty acid lipotoxicity by metabolites like PA may contribute to NDs including, AD or
PD [30] with significant up-regulation of cholesterogenic genes and oxidative metabolism.
Moreover, tibolone has been proven to have important effects in brain protection against
oxidative damage [22,24].

An extensive separation between the exo- and endometabolome composition of
metabolites was performed with PCA and PLSDA (Figures 1 and 2). Importantly, 83.9% of
the lipidomic data set in the present study were not identified. This result is related to the
lack of robust databases that can be used to determine the compound. It demonstrates the
need for further studies focused on precisely defining those metabolites which have not
been addressed so far.

Further analyses with the PCA, PLSDA and Random Forest approaches, revealed a
greater separation into 4 groups. The defined groups were: (i) all the treatments evaluated;
(ii) PA + tibolone & PA; (iii) PA + tibolone & tibolone; and (iv) PA + tibolone & tibolone &
PA. In this sense, it was found both by PCA and PLSDA that the PA + T & PA treatment,
comprised a single cluster, suggesting that the application of tibolone does not cause a
generalized effect on the abundance of the metabolites evaluated in the presence of PA
(Figure 3).

Based on dendrograms analysis (Figure 3) it is possible to state that such division
can ensure the effect of tibolone on the cells studied is different from the effect caused
by the presence of palmitic acid. Likewise, from this behavior, it is possible to infer that
treatment of tibolone and palmitic acid doesn’t show a different behavior other than the
application of palmitic acid alone, suggesting that the combination of treatments does not
have a differential effect on the exposed cells. In other words, a global neuroprotective
effect was not evidence with tibolone, nevertheless, the differences could be observed on
specific metabolites mentioned below.

Among the different metabolites present in the groups analyzed, there are some
important differences between the exo and endometabolome in the treatments. The
endometabolome under PA stimulation is characterized by several types of phospho-
ethanolamines, phosphoserines phosphocholines and glycerophosphocholines. Previous
studies have shown that during the development of neurodegeneration, there is a main-
tained calcium influx and overload in the brain which may increase the breakdown of mem-
brane phospholipides by phospholiphase A2, leading to glycerophosphocholine (GPCh),
phosphocholine (PCh), and free choline [31,32]. Other molecules detected in this analysis
are sphingolipids, a class of highly enriched lipids in the CNS, which show great diversity
and complexity. These molecules are involved in the development and function of the
CNS and alterations in its metabolism have been described in multiple NDs, including PD
and multiple sclerosis (MS) [33]. Defects in sphingolipid metabolism have been linked to
numerous neurological diseases, including Parkinson’s disease and multiple sclerosis. In
this aspect, decreased sphingomyelin levels in AD were shown to lead to an increases of
ceramide concentration which results in the release of cytochrome C and other related apop-
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totic proteins [34]. Additionally, enzyme activity and levels of sphingolipid metabolites are
typically modulated during pathophysiological conditions. Thus, plasma concentrations
may serve as biomarkers for various diseases [33].

On the other hand, in presence of tibolone, metabolites such as 16-Glutaryloxy-
1alpha,25-dihydroxyvitamin D3/16-Glutaryloxy-1alpha,25-dihydroxy-20-epivitamin D3,
which are derivatives of vitamin D3 [35], were promoted as suggested by Random For-
est analysis (Table 2). Previous studies have shown that vitamin D3 is essential for the
brain metabolism and homeostasis, demonstrating receptors in all brain cell types [36].
For instance, it has been proven that Vitamin D3 reduces the amyloid-β accumulation
and improves cognition in animal models due to its anti-inflammatory and antioxidant
properties. Moreover, a recent study in rats evidenced that lipopolysaccharide stimulation
in astrocytes enhanced the expression of vitamin D receptor and the D3 converting enzyme
Cyp27B1, leading to the suppression of the expression of proinflammatory cytokines such
as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and vascular endothelial growth
factor (VEGF) as well as decreased astrocytic activation (Jiao et al. 2017). Lastly, vitamin
D3 deficits has been related with a greater risk of dementia and cognitive impairment in
human patients [37–39].

It was also found that for the PA + T & PA treatments, the tested metabolites were
related to different metabolic pathways including, glycerophospholipid metabolism, Arachi-
donic acid metabolism, Linoleic acid metabolism and alpha-Linolenic acid metabolism
(Figure 6). Importantly, these metabolic pathways are associated with neuroinflammatory
and myelination processes [40,41]. In this sense, decreased levels in both linoleic acid (LA)
and α-linolenic acid, have been implicated to an increased vulnerability to AD, especially
in brain regions such as the middle frontal and inferior temporal gyri [42]. Moreover,
in a recent study, it was shown that the deuterated form of linoleic acid (D4-Lnn) was
able to decrease necrosis and apoptotic cell death in brain cortical cells of newborn mice,
through the inhibition of calcium ions production and ROS overproduction [17]. Similarly,
Arachidonic acid, a polyunsaturated omega-6 fatty acid, has been shown to be increased
in primary culture astrocytes following Lipopolysaccharide (LPS) inflammatory stimula-
tion [43]. Although these metabolic pathways were reported during the analysis of our
study, further research is needed to properly understand the metabolic pathways that can
be affected by PA and tibolone in both the exo and the endometabolome.

Although to our knowledge, this work is the first lipidomic analysis of human astro-
cytes in lipotoxic conditions, it has some major limitations. First, in vitro cell line models
like NHA may not reproduce aspects of astrocytic environment in the brain, which are
relevant to its response to PA and tibolone. Second, vast fraction of the identified com-
pounds has not biological information regarding their function in the brain or in human
physiology, including molecules present in both exo- and endometabolome components
such as: (3beta,24S,24′S)-fucosterol epoxide, 3beta-hydroxy-stigmast-5-en-7-one, (25R)-
5alpha,6alpha-epoxy-24R,26R-dimethyl-26,27-cyclo-cholestan-3beta-ol, heptadecynoic acid,
among others. However, our data strongly suggest the importance of some lipidic categories
affected by the PA insult, such as phosphoethanolamines, phosphoserines phosphocholines
and glycerophosphocholines. Third, for a proper understanding of the effects of the studied
lipid components in the brain it would be of great importance to develop further studies
in cocultured neuron-astrocytes systems, organoids or animal models exposed to PA and
tibolone. In this aspect, previous studies have shown that astrocytic lipid droplets have
neuroprotective functions against lipotoxicity through mitochondrial β-oxidation in re-
sponse to neuronal activity creating a detoxification \environment in a Sprague Dawley
rat model [44]. Moreover, a recent article showed that Neurotoxic reactive astrocytes are
able to induce cell death through the formation of long chain saturated lipids, suggesting a
pathogenic mechanism that could be present in neurodegeneration [45].

Finally, is important to mention that various studies have focused on the importance
of brain lipidomics in the development of neuronal pathologies such as PD, AD, MS
and schizophrenia among others [16,46–48]. Such studies have mainly addressed the



Int. J. Mol. Sci. 2022, 23, 2474 14 of 19

importance of cell membrane components such as glycherophospholipids, cholesterol, and
sphigolipids and their alterations in neurodegenerative contexts.

4. Materials and Methods
4.1. Cell Cultures

Three different lots (#0000612736, #0000565612, #0000514417) of primary Normal
Human Astrocyte (NHA) cells (Lonza, Basel, Switzerland, Catalog CC-2565) from three
different donors (2 female, 1 male) were cultured in Astrocyte Basal Medium (Lonza, Basel,
Switzerland) supplemented with SingleQuots supplements (Lonza, Basel, Switzerland).
The cells (pass 1) were seeded in 6-well plates at a confluence of 10,000 cells/cm2 and grown
for 12 days in a humidified incubator at 37 ◦C and 5% CO2. This cell line has astrocytic
morphology and expresses GFAP [49,50].

4.2. Palmitic Acid Treatment

NHA cells were seeded in 48-well plates at 5.000 cells/cm2 for 12 days, washed
with 10X PBS, and starved in free serum DMEM without L-Glutamine, phenol red and
supplements (Lonza) for 6 h. Cells were then treated with free-serum DMEM containing
2 mM PA for 24 h (Sigma, St Louis, MO, USA), 1.35% bovine serum albumin (BSA) (Sigma
Sigma, St Louis, MO, USA, lot A2153) as a carrier protein, and 2 mM carnitine (Sigma,
St Louis, MO, USA) as a transporter into the mitochondrial matrix. This concentration
induced 50% cytotoxicity in a sensitivity experiment comparing 6 concentrations from
100 µM to 2 mM for 24 h. Cells in control condition received serum-free DMEM with the
same BSA and carnitine concentrations but no palmitic acid (PA).

4.3. Tibolone Pre-Treatment

Cells were pre-treated with tibolone prior to the addition of PA. Tibolone (Lot T0827,
Sigma, St Louis, MO, USA) was dissolved in DMSO as a stock solution at 40 mM, and further
dilutions were prepared with serum-free DMEM to a final concentration of 0.000025%.
Different times and concentrations of tibolone treatment were tested, and 10 nM of tibolone
for 24 h was found to best preserve cell viability upon PA treatment.

4.4. Metabolite Extraction

For the extraction of total metabolites, we used a modified protocol by [51]. Briefly,
the culture medium was discarded and washed 2 times with 1 mL of 1X PBS at 37 ◦C
by pipetting. 1.5 mL of HPLC grade methanol at −80 ◦C was added. The cells were
gently detached with a scraper and the cell contents were transferred to a 2 mL Eppendorf.
10 µL of internal standard (norvaline dissolved in pyridine) were subsequently added and
incubated in an ice bath for 10 min with a vortex, and then chilled in liquid nitrogen for
2 times. Extracts were centrifuged at 4 ◦C, 12.000 rpm for 5 min and the supernatant was
transferred to a new tube followed by two extractions with 250 µL of cold methanol at 80%.
After that, the supernatants were combined, and the cell residues were discarded. Finally,
extracts were dried under nitrogen flow or lyophilized. Each treatment (PA, tibolone,
PA + tibolone, control) had 3 biological replicates (i.e., lots from different donors) and 2
technical replicates (i.e., samples from the same lot), for a total of 30 samples.

4.5. Derivatization of Samples/Standards

Sample preparation was performed using the protocol of Matyash V. et al. [52]. Briefly,
The dried samples are spiked with 975 uL of MeOH:MTBE and QC mix. Then, 188 uL of
water (LC grade) is added and shaked at 4 ◦C and for 6 min. Subsequently the samples
were centrifuged during 20 s at 14,000 g both phases were separated and placed in different
tubes and dried using a centrivap. The upper phase was reconstituted adding 110 uL
MeOH:Tol (9:1) + CUDA (50 ng/mL), vortexed (10 s), sonicated (5 min) and centrifuged
(2 min at 16,100 g). Then, 45 uL was placed in an amber vial with microinsert.
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4.6. Lipidomics Instrumental Analysis

Hydrophilic Interaction Liquid Chromatography Coupled to Electrospray Ionization
Quadruple Time-of-Flight Mass Spectrometry (HILIC-ESI QTOF MS/MS) was conducted
to identify and quantify the astrocytes metabolites present in baseline control and under
PA and Tibolone treatment. Analyses were performed using an Agilent 1290 Infinity LC
system (G4220A binary pump, G4226A autosampler, and G1316C Column Thermostat)
coupled to a SCIEX Triple TOF mass spectrometer. Polar compounds were separated on
an Acquity UPLC BEH Amide Column, 130Å, 1.7 µm, 2.1 mm X 150 mm maintained at
45 ◦C at a flowrate of 0.4 mL/min. Solvent pre-heating (Agilent G1316) was used. The
mobile phases consisted of: Water, 10 mM Ammonium Formate, 0.125% Formic Acid (A)
and Acetonitrile: Water (95/5, v/v), 10 mM Ammonium Formate, 0.125% Formic Acid (B).

The gradient was as follows: 0 min 100% (A); 0–2 min 100% (A); 2–7.7 min 30% (A);
7.7–9.5 min 60% (A); 9.5–10.3 min 70% (A); 10.3–12.8 min 0% (A); 12.8–16.8 min 0% (A. A
sample volume of 1 µL for positive mode and 3 µL for negative mode was used for the
injection. Sample temperature was maintained at 4 ◦C in the autosampler.

SCIEX Triple TOF 6600 mass spectrometers were operated with electrospray ionization
(ESI) performing full scan in the mass range m/z 50–1200. Number of cycles in MS1
is 1667 with cycle time of 500 ms and accumulation time 475 ms. Mass spectrometer
parameters were as follows (positive mode) Gas Temp 300 ◦C, gas pressures in psi units
with: GS1 and GS2 50 psi, CUR: 35. ISVF is 4500 V and DP and CE are 10 V and 100 V. The
Chromatographic analyses and MS analyses were conducted at West Coast Metabolomics
Center (WCMC) following a modified protocol by [26,52].

4.7. Data Processing

The metabolites of the complete profile were identified using the CEU mass mediator
algorithm. This program used the molecular weight of the metabolites to find compounds
reported in databases that had the same weight. The list was filtered using different
resources to obtain a suitable molecule and the astrocyte genome-scale metabolic model
as well as Recon 3D model were used to identify the correct molecule. The metabolomic
analysis protocol used in this research has been previously described [53].

Several tests were conducted to determine the most relevant metabolites that differen-
tiate each condition evaluated. Initially, the abundance quantification for each metabolite
was received as raw data. Normalization was applied to possible biases during the data
processing for these unwanted peak intensity differences and to stabilize the variance
within the database. There are several ways to normalize the data: sum, mean, or median.
First, however, it is essential to choose the proper method according to the data. In this
study, we used the normalization by sum, where each value in a row (metabolite abun-
dance per sample) was divided by the total sum of the row and multiplied by 100 [54].
The method was chosen for the number of measures processed and the best quality check
using graphic representation. Finally, a Shapiro-Wilk test (normality test) was applied to
determine the normality distribution of the data. Thus, a non-parametric analysis was
indicated for this purpose.

4.8. Data Analysis

Principal component analysis (PCA) is a mathematical approach used to reduce the
dimensionality of the data when responding to a multivariate data set [55]. Once the
PCAs were performed, it was impossible to identify clear differences between the groups
of data evaluated with this technique. Therefore, a cluster and discriminant analysis
were performed to differentiate the groups of data considered [53]. This analysis was
conducted using the MetaboAnalyst 5.0 platform [56,57]. Clustering analysis was mainly
used to organize samples, characterized by a set of variables, into groups. The major
purpose was to create clusters with two complementary characteristics: (i) Maximum
internal homogeneity (intra-group similarity) and (ii) High external heterogeneity (inter-
group differences). These analyzes are divided into hierarchical and non-hierarchical.



Int. J. Mol. Sci. 2022, 23, 2474 16 of 19

In both cases, similarity between samples is measured employing Euclidean or Mahalanobis
distances [53]. In this study, Euclidean distance was used. The Partial Least Squares
Discriminant Analysis (PLS-DA) was used to identify the principal components of the
independent variable. PLS-DA is usually considered a supervised version of PCA because
it achieves the reduction of dimensionality considering the classification of variables [27]
The VIP scores were calculated as a weighted sum of the squared correlations between
the PLS-DA components and the original variable [58]. This score was used to identify
the most 15 variable metabolites among the evaluated treatments to determine potential
biomarkers of the neuroprotective effects of tibolone.

4.9. Machine Learning Approach

Random forest has been widely used in microarray and single nucleotide polymor-
phism due to its simple theory, fast speed, stability, and insensitivity to noise, with little or
no overfitting [53]. This technique was used to find the most significant compounds in the
samples, thereby meaning these metabolites determine the tree’s structure. Each tree was
created using a tree classification algorithm and the most popular class-based was selected
on bootstrap sampling to perform inference among the data which is resampled [53]. The
default method for measuring the importance of a variable is the Gini score. It measures
the increase in prediction error if the values of the variable are permuted across observa-
tions [53]. It means this feature importance score provides a relative ranking of the spectral
features [59]. Therefore, the variable is more important if the Gini score is higher than the
others [53]. Relevant and important metabolites were identified using the Gini score.

4.10. Enrichment Analysis

An enrichment analysis was performed using MetaboAnalyst software [57] to identify
the metabolite pathways based on Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [29]. Additionally, other databases were used including PubChem [60], Bio-
Cyc [61] and Human metabolome database [62]. Identifiers were directly related to a
metabolic network or a biological context. For this, the metabolites with the highest Vari-
able importance in projection (VIP) were introduced in the pathway analysis package
of MetaboAnalyst. Then, the species Homo sapiens was selected using the betweenness-
centrality algorithm. Finally, a scatter plot was generated to visualize the pathways with
the greater impact.

5. Conclusions

Our findings characterize the lipidomic-wide effects of PA and tibolone in cultured
human astrocytes, underscoring the comprehensive metabolic dysregulation induced by
this saturated fatty acid. Furthermore, this work expands our understanding of the cellular
mechanisms by which saturated fatty acids may contribute to neurodegenerative changes
and suggests the importance of tibolone in the protection of astrocytic metabolism under
inflammatory conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23052474/s1.

Author Contributions: G.E.B., A.P. and J.G. conceived, designed, and coordinated the project. C.M.-J.
carried out the experimental work and initial metabolite analysis. R.C. designed and performed
computational analysis. M.Z. helped with the lipidomic data analysis. J.G. and R.C. wrote the
manuscript with help from all authors. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Pontificia Universidad Javeriana, Bogotá Colombia and
Minciencias, project ID 8845, 20304 and CTO 654-2020 to J.G. and R.C.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/ijms23052474/s1
https://www.mdpi.com/article/10.3390/ijms23052474/s1


Int. J. Mol. Sci. 2022, 23, 2474 17 of 19

Acknowledgments: We would like to acknowledge the members of the Computational and Experi-
mental Biochemistry group, whose help was indispensable for envisioning the research. We would
like to thank María Juliana Rodriguez for her suggestions and support in the computational analysis.
We are thankful to the members of the Hood-Price lab for thoughtful discussions, especially Max
Robinson’s helpful suggestions on differential expression analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Unger, R.; Orci, L. Lipotoxic diseases of nonadipose tissues in obesity. Int. J. Obes. 2000, 24, S28–S32. [CrossRef] [PubMed]
2. Savary, S.; Trompier, D.; Andreoletti, P.; le Borgne, F.; Demarquoy, J.; Lizard, G. Fatty acids-induced lipotoxicity and inflammation.

Curr. Drug Metab. 2012, 13, 1358–1370. [CrossRef] [PubMed]
3. Ford, J. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism

aging. Age 2010, 32, 231–237. [CrossRef] [PubMed]
4. Liu, L.; Martin, R.; Chan, C. Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by

sphingomyelinases. Neurobiol. Aging 2013, 34, 540–550. [CrossRef]
5. Almaguel, F.G.; Liu, J.W.; Pacheco, F.J.; Casiano, C.A.; de Leon, M. Activation and reversal of lipotoxicity in PC12 and rat cortical

cells following exposure to palmitic acid. J. Neurosci. Res. 2009, 87, 1207–1218. [CrossRef]
6. Ortiz-Rodriguez, A.; Acaz-Fonseca, E.; Boya, P.; Arevalo, M.A.; Garcia-Segura, L.M. Lipotoxic effects of palmitic acid on astrocytes

are associated with autophagy impairment. Mol. Neurobiol. 2019, 56, 1665–1680. [CrossRef]
7. Hidalgo-Lanussa, O.; Ávila-Rodriguez, M.; Baez-Jurado, E.; Zamudio, J.; Echeverria, V.; Garcia-Segura, L.M.; Barreto, G.E.

Tibolone reduces oxidative damage and inflammation in microglia stimulated with palmitic acid through mechanisms involving
estrogen receptor beta. Mol. Neurobiol. 2018, 55, 5462–5477. [CrossRef]

8. Alvarez, J.I.; Katayama, T.; Prat, A. Glial influence on the blood brain barrier. Glia 2013, 61, 1939–1958. [CrossRef]
9. Cabezas, R.; Ávila, M.; Gonzalez, J.; El-Bachá, R.S.; Báez, E.; García-Segura, L.M.; Coronel, J.C.J.; Capani, F.; Cardona-Gomez, G.P.;

Barreto, G.E. Astrocytic modulation of blood brain barrier: Perspectives on Parkinson’s disease. Front. Cell. Neurosci. 2014, 8, 211.
[CrossRef]

10. De Keyser, J.; Mostert, J.P.; Koch, M.W. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system
disorders. J. Neurol. Sci. 2008, 267, 3–16. [CrossRef]

11. Min, K.J.; Yang, M.S.; Kim, S.U.; Jou, I.; Joe, E.H. Astrocytes induce hemeoxygenase-1 expression in microglia: A feasible
mechanism for preventing excessive brain inflammation. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 1880–1887. [CrossRef]
[PubMed]
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