&ﬁ marine drugs

Article

Dysidenin from the Marine Sponge Citronia sp. Affects the
Motility and Morphology of Haemonchus contortus Larvae

In Vitro

Kelsey S. Ramage 100, Aya C. Taki (%, Kah Yean Lum !, Sasha Hayes 1, Joseph J. Byrne 2, Tao Wang 27,
Andreas Hofmann 230, Merrick G. Ekins 14, Jonathan M. White >, Abdul Jabbar 2(0, Rohan A. Davis 1-*

and Robin B. Gasser *

check for

updates
Citation: Ramage, K.S.; Taki, A.C.;
Lum, K.Y;; Hayes, S.; Byrne, J.J.;
Wang, T.; Hofmann, A.; Ekins, M.G.;
White, ].M.; Jabbar, A.; et al.
Dysidenin from the Marine Sponge
Citronia sp. Affects the Motility and
Morphology of Haemonchus contortus
Larvae In Vitro. Mar. Drugs 2021, 19,
698. https://doi.org/10.3390/
md19120698

Academic Editors: Ali Al-Mourabit
and Sylvain Petek

Received: 5 November 2021
Accepted: 2 December 2021
Published: 9 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University,

Brisbane QLD 4111, Australia; kelsey.ramage@griffithuni.edu.au (K.S.R.); k lum@griffith.edu.au (K.Y.L.);

sasha.hayes2@griffithuni.edu.au (S.H.); merrick.ekins@qm.qld.gov.au (M.G.E.)

Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary

School, The University of Melbourne, Parkville, VIC 3010, Australia; aya.taki@unimelb.edu.au (A.C.T.);

byrnejl@unimelb.edu.au (J.J.B.); tao.wangl@unimelb.edu.au (T.W.);

a.hofmann@structuralchemistry.org (A.H.); jabbara@unimelb.edu.au (A.].)

Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 95326 Kulmbach, Germany

4 Queensland Museum, South Brisbane, QLD 4101, Australia

5 School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia;
whitejm@unimelb.edu.au

*  Correspondence: r.davis@griffith.edu.au (R.A.D.); robinbg@unimelb.edu.au (R.B.G.)

Abstract: High-throughput screening of the NatureBank marine extract library (n = 7616) using a
phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived
from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH,Cl, /MeOH
extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysi-
denin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus
larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype
and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these
rare and unique polychlorinated peptides.

Keywords: Haemonchus contortus; parasitic nematode; nematocidal; marine natural products;
NatureBank; biodiscovery; extract library; sponge; Citronia; dysidenin; dysideathiazole

1. Introduction

Parasitic nematodes cause significant disease in livestock and affect hundreds of
millions of livestock animals, such as sheep, goats, cattle and deer worldwide [1,2]. In
most parts of the world, Haemonchus contortus (order Strongylida) is one of the most
impactful parasites of small ruminants due to its blood feeding activity and pathogenic
effects, leading to anaemia, reduced wool production and sometimes death [1,2]. Like most
other strongylid nematodes, H. contortus is transmitted orally via the ingestion of grass
contaminated with infective third-stage larvae (L3s). Following ingestion by the ruminant
host, L3s exsheath (to become xL3s) and then develop to dioecious fourth-stage larvae
(L4s) and adults within the stomach (abomasum) [2]. While a relatively small number of
anthelmintic (antihelminth) drugs and a recently developed vaccine (Barbervax) against H.
contortus are currently in use, resistance to anthelmintics has been widely reported in this
and related parasites, and the efficacy of the vaccine can vary [3,4]. The heavy reliance on
anthelmintic agents in parasite control programs, despite growing resistance, means that
there is an imperative to discover and develop novel anthelmintics.

Some of our previous anthelmintic discovery work has identified nematocidal/
nematostatic candidates in natural product extracts derived from plants or marine in-
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vertebrates [5,6]. To expand our biodiscovery efforts, we recently screened a collection of
extracts (n = 7616) derived from marine invertebrates isolated from Australian waters in an
established high throughput screening (HTS) assay for in vitro activity against Haemonchus
contortus larvae [7]. We identified 58 active extracts that markedly reduced larval motility,
achieving an overall “hit rate” of ~0.8% [7]. Of these 58 extracts, 16 significantly inhibited
larval development and /or induced abnormal larval phenotypes. The majority of active
extracts (54) were from sponges. 'H NMR fingerprinting was employed to dereplicate
hits and to prioritise 29 samples for future chemical investigations. Herein, we report the
chemical and biological investigations of a singleton hit extract from a species of Citronia
that was identified in our HTS effort. Citronia is a poorly studied genus of sponge, with
only two natural product chemistry papers reported to date. In one study, dysinosin A was
isolated from Citronia astra, and found to act as a potent inhibitor of the blood coagulation
cascade factor VIla and an inhibitor of the serine protease thrombin [8]; in a subsequent
investigation, citronamides A and B were isolated from the same sponge species and shown
to have antifungal activity [9]. This paper constitutes the first investigation of anthelmintic
activity from this sponge genus.

2. Results and Discussion
2.1. Bioassay-Guided Fractionation of the Citronia Extract

In order to identify the marine natural product(s) responsible for the anthelmintic
activity of the extract from Citronia sp., we initiated an extraction and bioassay-guided
fractionation investigation. The freeze-dried, ground Citronia specimen was sequentially
extracted with n-hexanes, CH,Cl,:MeOH (8:2) and MeOH. The highly lipophilic hexane-
soluble extract was discarded, and all the CH,Cl, and MeOH extracts were combined and
fractionated by reversed-phase C1g HPLC (H,O/MeOH/0.1% TFA) (Figure S1) [10], which
yielded 60 fractions that were then evaluated for anthelmintic activity in the established
xL3 motility assay [11].

Fractions 50 to 55 and 57 each caused limited motility reduction (<59%), but induced
a curved (Cur) phenotype, with fraction 50 also inducing an eviscerated (Evi, lethal)
phenotype in ~33.3% of larvae. C;g HPLC fractionation (HO/MeOH/0.1% TFA) of
fraction 50 yielded two major hexachlorinated compounds. Comparison of 1D NMR,
UHPLC-MS (Figures S1-S8) and specific rotation data identified these compounds as the
previously reported Dysideidae-derived metabolites, dysidenin (1) and dysideathiazole
(2) (Figure 1) [12-14]; both compounds have had their absolute configurations determined,
albeit via convoluted paths. For example, whilst the crystal structure of dysideathiazole (2)
was first reported in the original isolation paper by Unson et al. [12], the data obtained did
not allow unambiguous absolute configuration assignments to be made. However, chemical
degradation of dysideathiazole and subsequent heavy atom derivatisation studies resulted
in the absolute stereochemistry being determined for this molecule [12,13]. Fortuitously,
during our isolation studies X-ray quality crystals of 2 were obtained. Subsequent low
temperature data using Cu-Ka radiation out to higher resolution (20 = 154.6°), gave a high-
quality structure with a Flack parameter of 0.002(12) that enabled the absolute configuration
of the natural product to be assigned (i.e., 25, 55 and 7S); our data agreed favourably with
the earlier assignment [12,14]. The thermal ellipsoid plot for dysideathiazole (2) is presented
in Figure 2, which depicts 50% ellipsoids. Furthermore, from our studies it was noted that
crystal packing for dysideathiazole is characterised by infinite chains of molecules related
by a 2; screw axis extending down the a-axis and held together by N-H ... O hydrogen
bonds and N ... Cl halogen bonds (Figure S8).
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Figure 2. ORTEP drawing of dysideathiazole (2).

2.2. Biological Evaluation of Dysidenin (1) and Dysideathiazole (2) Purified from Citronia

The two purified compounds, dysidenin (1) and dysideathiazole (2) (cf. Figure 1),
were tested at a concentration of 100 pM for their anthelmintic effect on xL3s (in transition
to L4s) and on in vitro-raised L4s. Although neither of the two compounds significantly
reduced xL3 motility at 72 h, 1 inhibited larval development (from xL3 to L4) by 58% and
induced abnormal phenotypes in 65% of worms (43% Cur, 14% Evi and 8% skinny (Ski)) at
168 h (Table 1). However, 2 did not induce developmental inhibition or phenotypic change,
indicating that the active component within fraction 50 is dysidenin (1). When tested on
in vitro-raised L4s, dysidenin (1) and dysideathiazole (2) reduced their motility by 61%
and 25%, respectively, after 72 h of incubation (Table 1). Both compounds 1 and 2 induced
a Ski phenotype in 50% and 28% of in vitro-raised L4s (Table 1), with ICsy values of 31
and 62 uM, respectively. This phenotype has previously been associated with damage of
subcuticular musculature and mitochondria [15]. In addition, all L4s exposed to 100 uM of
1 exhibited marked destruction of somatic (gut and muscle) cells and tissue disintegration
(Figure 3). Additional work is needed to evaluate the effect of these pure compounds
on adult females and males of H. contortus isolated from, or in, an infected host animal
(e.g., sheep).

This is the first report of anthelmintic activity of extracts from Citronia, and of dysi-
denin (1) and dysideathiazole (2) from any species other than Dysidea herbacea [12,13],
although evidence of other biological activity has been reported for these polychlori-
nated peptides. Previous studies [16-19] demonstrated that dysidenin (1) and its C-5
epimer isodysidenin reduce iodide transport into thyroid tissues through an incomplete,
reversible inhibition of mammalian sodium iodide symporters. Published findings [16,17]
suggest that these two compounds may be pseudo-competitive for iodide in these sym-
porters. Some moderate, but non-selective, inhibitory activity has been reported for dysi-
denin towards platelet-type 12-human lipoxygenase [20]. More recently, dysidenin (1)
has been shown to inhibit bone morphogenetic protein-induced alkaline phosphatase in
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C2C12(R206H) mouse leg muscle cells with an ICsp value of 2.3 uM, but no toxicity to
mammalian cells (up to 21.4 uM) has been observed [21]. While an LDsg of 5 mg/L (in
water) was reported for the guppy fish (Lebistes reticulatus) [22] as evidence for ‘general’
toxicity, the methodology employed was not described by the authors, such that this claim
warrants re-investigation.

The phenotypic changes induced here by dysidenin (1) in H. contortus larvae, par-
ticularly the lethal Evi phenotype in xL3s, and the somatic tissue disintegration and cell
destruction in L4s, suggest that this compound has a unique mechanism of action, which
requires future elucidation.

Table 1. In vitro-activities of dysidenin (1) and dysideathiazole (2) against exsheathed third-stage larvae (xL3) and against
in vitro-raised fourth-stage larvae (L4) of Haemonchus contortus. Maximum inhibitory values of each compound on the
larval motility after 72 h incubation, the larval (xL3) development (in transition to L4) after 168 h and induced abnormal
phenotypes at 72 h (in vitro-raised L4s) or 168 h (xL3s/L4s) are presented in reference to the values of control compound
(monepantel) obtained under the same assay condition. Three independent experiments were conducted in all cases.

xL3s In Vitro-Raised L4s
Motility Development Abnormal Phenotype(s) Motility Abnormal Phenotype
Inhibition Inhibition Detected Inhibition Detected
(72 h) (168 h) (168 h) (72 h) (72 h)
Dysidenin (1) nd 58% Cur (43%), Evi (14%), Ski (8%) 61% Ski (50%)
Dysideathiazole (2) nd nd nd 25% Ski (28%)
Monepantel 81% 100% Coi (90%) 70% Ski (78%)

nd, not detectable; Cur, curved; Coi, coiled; Evi, evisceration; or Ski, skinny (phenotypes).

DMSO Dysidenin (1)

100 pm

DMSO Dysidenin (1)

o E 20 pm

Figure 3. Photomicrographs of in vitro-raised fourth-stage larvae (L4s) of Haemonchus contortus treated with 100 pM
of dysidenin (1) compared with a negative (DMSO-only) control, captured at 200-times (top) and 1000-times (bottom)
magnification. Somatic (gut and muscle) cell destruction and tissue disintegration are visible (bottom right).
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3. Materials and Methods
3.1. Chemistry Procedures

Melting points were measured using a Cole-Parmer apparatus (Antylia Scientific,
Chicago, IL, USA) and were uncorrected. Specific rotations were recorded using a JASCO
P-1020 polarimeter (Japan Spectroscopic Company, Tokyo, Japan). NMR spectra were
recorded at 25 °C on a Bruker AVANCE III HD 800 MHz NMR spectrometer (Bruker,
Billerica, MA, USA), equipped with a cryoprobe. The 'H and '3C chemical shifts were
referenced to solvent peaks for CDCl3 (811 7.26, ¢ 77.16). LRESIMS data were recorded
on a Dionex Ultimate 3000 RS UHPLC (Thermo Fisher Scientific, Waltham, MA, USA)
coupled to an ISQEC single quadruple ESI mass spectrometer (Thermo Fisher Scientific).
Davisil Cqg-bonded silica (35-70 um, 60 A) were used for pre-adsorption prior to reversed-
phase HPLC. The chromatography resin with pre-adsorbed material was packed into
a stainless-steel guard Davisil cartridge (10 x 30 mm) and then attached to an HPLC
column prior to fractionation. A Dionex Ultimate LC system was used for HPLC separa-
tions. Betasil Cyg-bonded silica (5 pm, 100 A, 150 x 21.2 mm; Thermo Fisher Scientific) or
Luna Cyg-bonded silica (5 um, 90-110 A, 250 x 10 mm; Phenomenex, Torrance, CA, USA)
columns were used for reversed-phase HPLC separations. The ground sponge material
was extracted at room temperature by continuous agitation using an orbital shaker (Bioline,
Edwards Instrument Company, Narellan, NSW, Australia) set at 200 rpm. Solvents were
removed from crude marine extracts with a Buchi R-144 rotary evaporator and from HPLC
fractions using a GeneVac XL4 centrifugal evaporator. All solvents used for chromatogra-
phy, mass spectrometry and polarimetry were HPLC grade and sourced from Honeywell
Burdick & Jackson or Lab-Scan and were HPLC grade; H,O was filtered using an Arium®
Pro VF ultrapure water system (Sartorius, Gottingen, Germany).

3.2. Collection of Sponge Material

The sponge Citronia sp. was collected by SCUBA diving (1.8 m) from Ribbon Reef,
Queensland, Australia, in November 2005. The sponge sample was immediately frozen
at —20 °C upon collection and subsequently transported to the Griffith Institute for Drug
Discovery, where the material was freeze-dried and ground into a fine powder and then
stored in the NatureBank biota repository. A voucher specimen of Citronia sp. (QM G325135;
operational taxonomic unit—OTU3186) has been deposited at the Queensland Museum,
South Brisbane, Queensland, Australia.

3.3. Fractionation of the Citronia Extract

The freeze-dried and ground specimen of Citronia sp. (900 mg) was sequentially
extracted with n-hexane (21 mL), CH,Cl,:MeOH (8:2, 21 mL) and MeOH (39 mL) at room
temperature. The n-hexane extract was discarded, since it contained highly lipophilic
(log p > 5) material, while all CH,Cl, and MeOH extracts were combined and dried to
give a crude extract (279 mg). Half of this extract was pre-adsorbed to C;g-bonded silica
(~1 g) and then packed into a guard cartridge for separation using a Cyg-bonded silica
Betasil HPLC column. Isocratic solvent conditions of 90% H,O (0.1% trifluoroacetic acid,
TFA)/10% MeOH (0.1% TFA) were employed for the first 10 min, followed by a linear
gradient to 100% MeOH (0.1% TFA) over 40 min, and a final isocratic condition of 100%
MeOH (0.1% TFA) for additional 10 min at a flow rate of 9 mL/min, collecting at 1 min
intervals. In total, 60 fractions were collected.

From each of the 60 fractions, aliquots (2000 nge/pL) were transferred into a 384-well
microtitre plate and tested in an established high throughput assay for H. contortus (see
Section 3.6. Of the fractions that contained anthelmintic entities (nos. 50-55 and 57), the
most abundant fraction (no. 50; 21 mg) was further purified by HPLC using a Cig-bonded
silica Luna column with isocratic solvent conditions of 90% H,O (0.1% TFA)/10% MeOH
(0.1% TFA), employed for the initial 10 min, followed by a linear gradient to 100% MeOH
(0.1% TFA) over 40 min, and, lastly, 100% MeOH (0.1% TFA) for additional 10 min at
a flow rate of 4 mL/min; 1 min fractions were collected. This yielded the previously
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described marine natural products dysidenin (1, 3.0 mg, 0.33% dry wt, tg = 35-36 min) and
dysideathiazole (2, 2.0 mg, 0.22% dry wt, tg = 33-34 min), in high purity (>95%).
Dysidenin (1): White amorphous solid; [«]%" —89.0° (c 0.365, CHCl3), lit. [a],
—98° (¢ 0.5, CHCl3) [12], 'H and '3C NMR and UHPLC-MS data (see Figures S2-54).
Dysideathiazole (2): Clear needles (25% EtOAc/75% n-hexane); M = 461.04 g/mol;
mp 178-182 °C, lit. mp 176-177 °C [12], [oc]g1~3 —58.8° (c 0.17, CHCly), lit. [a], —78.8°
(c 2.07, CHCl3) [12]; 'H and '3C NMR and UHPLC-MS data (see Figures S5-S7).

3.4. X-ray Crystallography Analysis of Dysideathiazole

Intensity data for dysideathiazole (2) were collected using an Oxford Diffraction
Synergy diffractometer with Cu-Ko radiation. An Oxford Cryosystems cooling device
maintained the temperature at 100.0 K throughout the experiment. The structure was
solved by direct methods and difference Fourier synthesis [23]. Hydrogen atoms were
placed in their idealized positions and included in subsequent refinement cycles. Hydrogen
atoms attached to heteroatoms were located from different Fourier maps and freely refined
with isotropic displacement parameters. Thermal ellipsoid plots were generated in Mercury
within the WINGX suite of programs [24,25]. The absolute configuration of dysideathiazole
(2) was confirmed directly by the experiments detailed by Parson et al. [26].

Dysideathiazole (2): T = 100.0(10) K, A = 1.54184 A, Orthorhombic, space group P
212121 a = 9.4921(1), b = 10.4893(1), ¢ = 19.7454(1) A, V = 1965.96(2) A3, Z = 4,
D, =1.558 Mg M3 11 (Cu-K o) = 9.001mm !, F(000) = 936, crystal size 0.31 x 0.19 x 0.13 mm?.
Omax = 77.30°, 68906 reflections measured, 4143 independent reflections (Rint = 0.0649) with
Riinal = 0.0246 [I > 2 o(I), 4099 reflections] and wR(F?) = 0.0651 (all data), GOOF = 1.015.
Absolute structure parameter: 0.002(12).

3.5. Preparation of Parasitic Nematode Larvae for Bioassays

The anthelmintic effects of fractions and purified compounds were tested on larvae
of H. contortus (Haecon-5 strain). L3s were produced and stored using a well-defined
protocol [11]—approved by the animal ethics committee of the University of Melbourne
(permit no. 1714374). For use in the assay, L3s were exsheathed and sterilised by incubation
in 0.15% (v/v) sodium hypochlorite (NaClO) at 38 °C for 20 min [27] and then washed five
times in sterile saline by centrifugation at 500x g (5 min) at room temperature (2224 °C).
After the last wash, exsheathed L3s (i.e., xL3s) were suspended in Luria-Bertani broth
(LB) containing 100 IU/mL of penicillin, 100 pug/mL of streptomycin and 0.25 pg/mL of
amphotericin B (Fungizone; Thermo Fisher Scientific)—designated LB*. In vitro-raised L4s
were produced by culturing xL3s for 168 h in LB* at 38 °C, 10% (v/v) CO; and a relative
humidity of >90%.

3.6. Bioassay for the Assessment of Anthelmintic Activity of Citronia Extract-Fractions

Individual fractions (1 = 60) (Section 3.3) were tested for their anthelmintic effect on
larvae (xL3s) of H. contortus using an established bioassay [11]. The assay was performed
in triplicate. In brief, fractions in 40 pL of LB* (2000 uge/pL) were dispensed into the wells
of sterile 368-well flat-bottom microtitre plates (cat. no. 3680; Corning, Corning, NY, USA)
containing 80 xL3s; quadruplicate wells with no compound (LB* + 0.6% DMSO; negative
control) or monepantel (Zolvix; Elanco, Greenfield, IN, USA), moxidectin (Cydectin; Virbac,
Carros, France), monepantel /abamectin (Zolvix Plus; Elanco, Greenfield, IN, USA) and
compound MIPS-0018666 (abbreviated here as M-666; ref. [28]) as positive-controls (20 uM).
The motility of xL3s was measured at 90 h, and the development and phenotypic alterations
of xL3s at 168 h. At 168 h, larvae in individual wells were fixed with 40 uL of 1% iodine
and microscopically examined using a M80 light microscope (Leica, Wetzlar, Germany) at
60-times magnification to assess their development based on the presence or absence of
a well-developed pharynx [27], as well as their morphology (phenotype) [7,11]. At 168 h,
xL3s exposed to LB* with <0.6% DMSO are expected to reach the L4 stage in vitro within
168 h [10].
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3.7. Bioassay for the Evaluation of Anthelmintic Activity of Purified Compounds

The compounds, dysidenin (1) and dysideathiazole (2) were individually tested for
their anthelmintic effect on larvae (xL3s or in vitro-raised L4s) of H. contortus using an
established bioassay [27]. Each assay was performed in triplicate on three different days. In
brief, compounds were serially diluted in 50 pL of LB* (18-points, 2-fold dilution, 100 pM
to 0.76 nM) and dispensed into the wells of sterile 96-well flat-bottom microtitre plates
(cat. no. 3596; Corning) containing 300 xL3s or L4s; with six wells with no compound
(LB* + 0.25% DMSO; negative control). A plate containing serial dilutions of monepantel
(positive control) was prepared in the same manner. The motility of larvae was measured
at 72 h, and the development and phenotypic alterations of xL3s at 168 h. At 168 h, larvae
in individual wells were fixed with 25 uL of 1% iodine and microscopically examined using
a DM1000 LED microscope (Leica, Wetzlar, Germany) at 100-times magnification to assess
their development based on the presence or absence of a well-developed pharynx [27], as
well as their morphology (phenotype) [7,11].

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/md19120698/s1, Figure S1: C18 HPLC chromatogram of the Citronia sp. extract with
anthelmintic activity. Figure S2: 1H NMR (800 MHz) spectrum of dysidenin (1) in CDCI3. Figure S3:
13C NMR (200 MHz) spectrum of dysidenin (1) in CDCI3. Figure S4: UHPLC-MS data for dysidenin
(1). Figure S5: 1H NMR (800 MHz) spectrum of dysideathiazole (2) in CDCI3. Figure S6: 13C NMR
(200 MHz) spectrum of dysideathiazole (2) in CDCI3. Figure S7: UHPLC-MS data for dysideathiazole
(2). Figure S8: Crystal packing drawing of dysideathiazole (2).
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