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Purpose: The aim is to study the dependence of deformable based auto-segmentation of head and neck organs-at-risks (OAR) on 
anatomy matching for a single atlas based system and generate an acceptable set of contours. 
Methods: A sample of ten patients in neutral neck position and three atlas sets consisting of ten patients each in different head 
and neck positions were utilized to generate three scenarios representing poor, average and perfect anatomy matching respectively 
and auto-segmentation was carried out for each scenario. Brainstem, larynx, mandible, cervical oesophagus, oral cavity, pharyngeal 
muscles, parotids, spinal cord, and trachea were the structures selected for the study. Automatic and oncologist reference contours 
were compared using the dice similarity index (DSI), Hausdroff distance and variation in the centre of mass (COM).
Results: The mean DSI scores for brainstem was good irrespective of the anatomy matching scenarios. The scores for mandible, oral 
cavity, larynx, parotids, spinal cord, and trachea were unacceptable with poor matching but improved with enhanced bony matching 
whereas cervical oesophagus and pharyngeal muscles had less than acceptable scores for even perfect matching scenario. HD value 
and variation in COM decreased with better matching for all the structures.
Conclusion: Improved anatomy matching resulted in better segmentation. At least a similar setup can help generate an acceptable 
set of automatic contours in systems employing single atlas method. Automatic contours from average matching scenario were 
acceptable for most structures. Importance should be given to head and neck position during atlas generation for a single atlas based 
system.

Keywords: Head and neck cancer, Radiotherapy planning, Organs at risk

Introduction

Radiotherapy treatment planning is a time consuming 
process. The target volumes and organs-at-risks (OAR) are 
manually delineated for treatment plan generation. In head 
and neck cancers, accurate contour delineation is essential for 

a good treatment outcome. Manual delineation of contours 
is a cumbersome task especially in busy departments [1-
3]. It is at this stage the role of auto-segmentation in the 
planning process has become important. The concept of auto-
segmentation of OAR and clinical target volumes (CTV) has 
been introduced for faster delineation of contours and also 

http://crossmark.crossref.org/dialog/?doi=10.3857/roj.2019.00038&domain=pdf&date_stamp=2019-06-30


Head & neck atlas auto-segmentation

135www.e-roj.orghttps://doi.org/10.3857/roj.2019.00038

to reduce inter-observer variation [3,4]. Auto-segmentation 
algorithms may be atlas based, model based or hybrid based 
[4]. Predominantly all the systems use atlas based deformable 
image registration (DIR) for contour generation. DIR represents 
the transformation between two image sets where the voxels 
of the moving image set are warped to match the voxels of 
the target image set and is represented by a deformation 
vector field. Several applications of DIR are documented in 
literature [5]. In addition to contour auto-segmentation, it can 
be used to determine delivered doses and generate cumulative 
dose-volume histograms [5,6]. The commercially available 
systems predominantly employ atlas based systems are for 
auto-segmentation. Teguh et al. [7] studied atlas based auto-
segmentation of CTV and OARs for 12 patients and concluded 
that it offers high throughput but manual editing is essential. 
Daisne and Blumhofer [8] have auto-segmented OARs and 
CTV and compared it with manually delineated contours. They 
have reported significant time saving for OARs than CTV. 
Stapleford et al. [9] have shown the reduction in inter-observer 
variability in the auto-segmented contours. Thomson et al. [10] 
investigated auto-segmentation of five OARs namely parotids, 
submandibular glands, larynx, pharyngeal muscles, and cochlea 
and reported that automatic contours were inaccurate except 
for the parotid and submandibular gland. 

Immobilization is unique for each patient in head and neck 
radiotherapy. Images of the same patient acquired at different 
point of time during the course of treatment seldom match 
exactly due to weight loss and head rotation. It is difficult 
to attain a perfect match between the library and sample 
patient. Though DIR accounts for the anatomy changes, 
errors are introduced for large variations and differences in 
setup. Many studies have pointed the advantage of multi-
atlas over single-atlas based delineation [7,11,12]. Multi atlas 
based systems typically score over single atlas based method 
by accounting for mismatch in size and anatomic variation 
between the library and sample patients by generating an 
average patient from the library data. Time saving has also 
been reported with multi atlas based system [12]. However, 
some of the commercially available systems still continue to 
use single atlas methods for auto-segmentation. Anatomic 
similarity is essential for a good auto-segmentation in single 
atlas based systems. Several studies have reported on atlas 
based auto-segmentation [7-17]. But, none have determined 
the dependence of auto-segmentation on anatomic similarity 
between the sample and atlas patients. In this study, we 
have analyzed the effect of patient setup and position on 
the outcome of a single atlas based auto-segmentation. We 

have created three different levels of matching between 
the atlas and sample patients to determine (1) the relation 
between anatomy matching and OAR segmentation accuracy 
for different structures in head and neck patients, (2) the 
minimum prerequisite matching required to generate an 
acceptable set of contours. 

Methods and Materials

1. Smart segmentation module
The Smart segmentation module of Eclipse treatment 
planning system (version 13.6; Varian Medical Systems, Palo 
Alto, CA, USA) was used to generate automatic contours. 
The module utilizes a DIR-based single atlas method for 
auto-segmentation. For a sample patient, the system helps 
in identifying the suitable expert case from library data by 
estimating similarity between sample and library image sets. 
The estimated ‘similarity’ is based on the anatomic geometry 
of image sets and is generated using the intensity matching 
between image sets. The similarity is represented by a scale 
ranging from 1 to 5, with 1 denoting a least match and 5 
the best. For a given sample case, similarity value is specified 
beside each of the available library case. The user can select 
the library case with highest value. Initially, rigid registration 
is carried between sample patient and selected expert library 
patient to correct for gross errors. DIR is then performed 
to account for anatomical variations and the contours are 
propagated by deforming the expert case contours. The DIR 
utilizes a modified accelerated demons algorithm proposed 
by Wang et al. [18] where the deformation is based on the 
intensity differences between the images.  

2. Patient selection and atlas generation
Patients without gross nodal metastasis who underwent 
treatment for head and neck cancer for the first time were 
selected retrospectively. The patients were immobilized 
with five clamp head and neck thermoplastic mask (Orfit 
Industries, Wijnegem, Belgium). The institution protocol is to 
acquire a plain image followed by a contrast enhanced image 
set. Contouring and plan generation are done on the plain 
image set only. The contrast enhanced set is used only to aid 
target volume delineation. The CT images were acquired in a 
Siemens Biograph 16 slice PET-CT scanner (Siemens Medical 
Systems, Concord, CA, USA) with a slice thickness of 3 mm. 
The contours that were earlier manually delineated for plan 
generation were reviewed by an expert team of oncologists 
and taken as reference. Three atlas sets with 10 patients each 
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were created (Table 1). All patients in a given atlas set had 
similar neck position. The first atlas set (ATLASEXT) consisted of 
patients in extended neck position (defined by a sternal notch 
to chin distance in the range of 13–14 cm), while the second 
(ATLASN) and third (ATLASP) atlas sets consisted of patients in 
neutral neck position (sternal notch to chin distance in the 
range of 8–9 cm). A 10 patient sample was used to study the 
output of the auto-segmentation using the three atlas sets. 
The patients in the test sample and third atlas ATLASP were the 
same but, consisted of CT images acquired at different times. 
All patients in the third atlas set had undergone PET-CT as a 
part of imaging process for accurate gross tumour delineation. 
PET-CT image acquisition was done with the patients 
immobilized exactly as during simulation. The ATLASP included 
the CT component of PET-CT while the test sample included 
the planning CT images. The expert team also delineated the 
contours on the CT component of PET-CT.

3. Auto-segmentation
The oncologist delineated contours on the atlas image sets 
were transferred to the sample image sets using Smart 
segmentation module. Three anatomy matching scenarios 
were created using the ten test sample patients and three 
atlas sets. The first scenario (poor matching) was created by 
using the set ATLASEXT. Automatic contours were generated for 
all ten sample patients using the atlas library case with least 
similarity value of 1. In case of more than one atlas library case 
with the least similarity to any sample patient, the library case 
with large size difference was chosen for auto-segmentation. 

Poor matching scenario had a total mismatch in head and 
neck position, size and anatomy between the sample and atlas 
patients. The second scenario (average matching) was created 
by using the set ATLASN. Automatic contours were generated 
for all sample patients using the library case having a similarity 
value of 3. In case of more than one atlas library case with a 
similarity value of 3, the one with a similar size was chosen for 
auto-segmentation. Although the setup is similar, differences 
in anatomy between patient to patient and a mismatch in 
size would exist in this scenario. The third scenario (perfect 
matching) was created using ATLASP. There would be a 
maximum similarity only if both the image sets are similar. It 
is nearly impossible to generate this using multiple patients 
and the easiest way to achieve it was to use two different 
image sets of a patient in same setup, acquired in a short span 
of time. In perfect matching scenario, auto-segmentation 
was carried using data from the same patient. The automatic 
contours generated for all 10 test sample patients using each 
of the three scenarios were compared against the reference 
contours.

4. Contour evaluation
We studied the auto-segmentation of brainstem, mandible, 
larynx, cervical oesophagus, oral cavity, parotids, pharyngeal 
muscles, spinal cord, and trachea. The head and neck OAR 
delineation guidelines [19] were followed for manual 
delineation of structures. For the sake of simplicity, the 
pharyngeal muscles were contoured as a single structure, 
while larynx contours included the supraglottic, glottic, and 

Table 1. Patient characteristics of the atlas and sample patients

Characteristic ATLASEXT
ATLASN ATLASP

a)

Number of patient sample 10 10 10

Neck position Extended Neutral Neutral

Median age (yr) 64 53 59

Gender

Male 5 8 7

Female 5 2 3

T stage

T1 2 4 3

T2 8 6 7

N stage N0 N0 N0

Location Nasopharynx Oropharynx Oropharynx

Site Nasopharynx Tonsil, uvula Tonsil

Patients with early stage disease and without nodal metastasis were chosen.
a) denotes that sample and atlas patients are the same.
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subglottic regions. The oncologist contours in the test sample 
images were considered as the gold standard to which the 
automatic contours for the three scenarios were compared. 
Dice similarity index (DSI), Hausdorff distance (HD), and 
variation in the centre of mass (COM) were the metrics used 
for contour analysis [20]. DSI is a geometric volumetric 
similarity measure used to determine the degree of overlap of 
two set of contours. The value can range from 0 to 1. A value 
of ‘1’ indicates perfect overlap of contours and ‘0’ indicates 
null overlap. If ‘A’ and ‘B’ are two contours, then DSI is defined 
as

DSI =
 

2(A∩B)
(A+B)  

.

The DSI scores were determined and the scores were 
analyzed for all the three different scenarios. A DSI score 
range of 0.60 to 0.80 has been reported among physician 
drawn contours only [3]. In this study, a DSI score greater 
than or equal to 0.80 was accepted as good matching criteria 
[13,21]. HD measures the degree of mismatch between two 
image sets based on contour boundaries. It is defined as the 
maximum distance between a point in one image set and the 
corresponding point on another image set. The HD values 
were determined using Slicer 3D Software. COM is used to 
determine the absolute position of contours based on the 
three-dimensional coordinates generated by the planning 
system. A perfect match is confirmed by the same set of 
coordinates. It can help in tracking the position of one set of 
contours with respect to another and also over a period of 
time. Variation in COM of the automatic contours with respect 
to reference contours were studied.

5. Statistical analysis
All statistical analyses were carried out in Microsoft Excel 
(version 2013). Single factor analysis of variance (ANOVA) 
was used to test the significance of DSI scores. A p-value of 
less than 0.05 was considered statistically significant and less 
than 0.001 as highly significant. In addition, a post-hoc test 
using Bonferroni approach was carried out if the ANOVA test 
returned a significant difference. It uses a two sample t-test 
to ascertain exactly which of the scenarios were different by 
using three combinations namely scenario 1 versus 2, scenario 
1 versus 3, and scenario 2 versus 3.

Results

1. DSI score
Perfect matching and poor matching scenarios produced the 

best and worst results, respectively, for all studied structures. 
In contrast to other two scenarios, average matching scenario 
produced mixed results. The DSI scores for all the three anatomy 
matching scenarios are represented in Fig. 1. Amongst all 
structures, brainstem had the best DSI score irrespective of 
anatomy matching and cervical oesophagus had the least 
DSI score in all the three scenarios. In case of poor match 
scenario, brainstem contours were acceptable while mandible 
and oral cavity contours were close to acceptance criteria. 
Average matching scenario yielded good results for five of the 
nine structures studied. Scores of cervical oesophagus, larynx, 
pharyngeal muscle and trachea were below the acceptance 
threshold. Substantial improvement in automatic contours 
of mandible, oral cavity, spinal cord, and parotid contours 
with better anatomy matching were notable. Larynx and 
trachea were close to threshold while cervical oesophagus 
and pharyngeal muscles were well below the acceptable 
criteria. In perfect match scenario, all but cervical oesophagus 
and pharyngeal muscle had DSI scores greater than 0.80. 
Overall, automatic delineation of all the structures improved 
with superior anatomy matching. Fig. 2 depicts the reference 
contours and auto-segmented contours on sample patients for 
the different matching scenarios, respectively.

2. Hausdorff distance
The HD values for all three scenarios are shown in Fig. 3. 
Brainstem, spinal cord, and trachea were the only structures to 
have low HD values in poor and average matching scenarios. 
High HD values for oesophagus, larynx, and pharyngeal 
muscles were also observed. There were minor reduction in HD 
values for average matching, while significant reductions were 
noticed for perfect matching as compared to poor matching 
scenario. Perfect matching yielded the least HD scores.

Fig. 1. The mean dice similarity index (DSI) scores with error bars 
for structures from the three matching scenarios.
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3. COM variation
Fig. 4 depicts the absolute variation in the COM for the three 
matching scenarios. In case of poor matching scenario, all 
structures except brainstem had significant deviation along 
the longitudinal direction while parotids and trachea had 
large shifts in all directions. Cervical oesophagus was the 
only structure that had large deviation along lateral direction. 
In average matching scenario, cervical oesophagus, and 
pharyngeal muscles had considerable shift in COM. Overall 
shift in COM reduced with improved anatomy matching for 
all structures. Structures with high DSI scores correspondingly 
had less deviation in COM. The comparison with the results 
obtained from few other similar studies in literature are shown 
in Table 2.

4. Statistical analysis
Based on ANOVA test, the three scenarios were statistically 
different with p-value less than 0.001 for all the structures 
studied. As the ANOVA test returned a significant difference, a 
post-hoc test using Bonferroni approach was carried out. The 
p-values obtained from the ANOVA test and the post-hoc test 
is depicted in Table 3.

Discussion and Conclusion

We have studied deformable registration based auto-
segmentation for different levels of anatomy matching 
between sample patients and atlas patients using DSI scores, 
HD, and variation in COM. The effect of patient position on 
the output of auto-segmentation has not been studied before. 
Amongst the structures studied, brainstem segmentation 
was the best with the mean DSI scores greater than 0.80 

Fig. 2. Axial and sagittal views of reference and auto contours overlaid on a sample patient for the three scenarios.

Fig. 3. The mean Hausdorff distance (HD) values with error bars 
for structures from the three matching scenarios.
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and low COM variation for all three scenarios. Brainstem 
auto-segmentation was found to be less dependent on head 
position and our results were comparable with that of multi 
atlas systems [8,13,14,16]. Head and neck auto-segmentation 
challenge have also produced good results for brainstem 
with four out of five teams achieving a DSI score greater 
than 0.80 [13]. Daisne and Blumhofer [8] have shown a DSI 
score of 0.80 but for corrected auto-segmented brainstem 
contours. Intensity differences existing between brainstem and 
surrounding brain had resulted in better segmentation. The 
over estimation along the superior direction and missing parts 
of brainstem along the inferior direction were reflected in the 
HD value and shift in COM along longitudinal axis.

Being a high intensity structure surrounded by low intensity 
structures, mandible could be easily segmented. Studies have 
reported DSI values in the range of 0.78–0.98 [13,14,16]. 
Tsuji et al. [15] have shown that structures like mandible with 
clearly defined borders in CT had superior auto-segmentation 
accuracy. However in our case, a less than acceptable mean 
DSI score was obtained in the poor matching scenario because 

of huge differences in chin position between the sample and 
atlas patients and the inability of the system to handle very 
large deformation accurately. The system over estimated 
mandible in all scenarios by including teeth but the extrusion 
reduced with improved bony matching. This resulted in a high 
HD and COM variation for mandible in poor bony matching 
scenario. It is essential to have at least a similar head position 
between atlas and sample patients if not a perfect chin match, 
for an acceptable mandible contour. Accuracy of oral cavity 
automatic contours were highly influenced by mandible or 
head position. Large differences in mandible position as in 
poor matching scenario resulted in a less than acceptable 
mean DSI score for oral cavity. High HD values in poor and 
average matching scenarios were due to the overestimation 
of automatic contours in posterior and inferior direction. High 
density structures limited the extrusion of oral cavity contours 
along the superior and anterior direction. Parotid was another 
structure that required a similar head position for a good 
segmentation. The segmentation was not accurate in case of 
large differences in head position. Our parotid segmentation 
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results were comparable with multi atlas studies which have 
shown DSI values ranging from 0.71 to 0.89 [9,11,14,16]. The 
inner lobes of the parotids were partly missed in automatic 
contours resulting in high HD values in poor and average 
matching scenario. 

Larynx, spinal cord, and trachea segmentation were highly 
dependent on the neck position. Better the neck similarity 
more acceptable the automatic contours. This has also been 
shown by Barley et al. [17] who have reported that structures 
close to bony anatomy like larynx were highly dependent on 
the range of available atlas cases. In our case, the system could 
not exactly deform the structures in patient samples with 
contrasting neck position to that of atlas patients and also 
overestimated larynx and trachea at the boundaries along the 
superior-inferior direction. The relative shift in larynx contours 
along the longitudinal axis in poor match scenario resulted 
in high HD value and large shift in COM. The changes in neck 
position affecting spinal cord auto-segmentation has also been 
reported by Tsuji et al. [15]. In case of spinal cord, the contours 
were satisfactory only in average and perfect match scenarios. 
Being encompassed by bony anatomy resulted in the least 
HD value in all three scenarios. In poor matching scenario, 
the variation in COM along vertical axes were high due to 
inappropriate neck matching while lateral shifts were restricted 
due to surrounding vertebrae. Although trachea could be easily 
segmented due to surrounding intensity differences, automatic 
contours missed parts of it inferiorly and did not include 
tracheal cartilage in poor and average matching scenarios. 
Cervical oesophagus and pharyngeal muscle are relatively 
low intensity structures in a low contrast region and also 
subject to movement. Hence segmentation becomes difficult 
and thus had the least DSI score and high HD value among 
all structures. This might be due to the inherent limitation 
of intensity based deformable registration algorithms in low 
contrast regions. Pharyngeal muscle segmentation in poor 
and average matching scenarios were bad because of the 
extrusion of automatic contours into pharyngeal cavity. It has 
been shown that statistical differences were not significant 
between multi atlas and single atlas methods [11]. However in 
our case, differences were highly significant between the three 
scenarios.

An optimal extent of anatomy matching required for a 
good auto-segmentation has not been defined in literature. 
In our case, perfect match scenario produced the best results. 
However, it is practically difficult to create such a scenario 
in a clinical environment. Based on metrics analysed, results 
from the average matching scenario could be comparable Ta
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with that of multi atlas based systems for five of the nine 
structures studied [8,13,14,16,22]. Larynx and trachea may also 
be considered as their scores were close to acceptance criteria 
in the average match scenario. Only cervical oesophagus and 
pharyngeal muscle contours could not be accepted. Although 
studies have shown the superiority of multiple atlas based over 
single atlas based methods, comparable automatic contours 
for most of the studied structures can be generated by having 
at least an average matching scenario representing a similar 
setup as shown in our study. Verification and correction of 
automatic contours are necessary before plan generation 
as even studies with multi atlas based systems and model 
based systems have concluded that automatic contours still 
required manual intervention [7,8,11,12]. DIR is considered as 
the universal choice for auto-segmentation as it can account 
for anatomical variations but accurate deformation is difficult 
in case of large variations. In addition, deformable errors may 
also be introduced due to lack of uniform CT image acquisition 
parameters. Acceptable auto-segmented contours can be 
obtained with improved matching by customizing the atlases 
based on head and neck position. From this study we have 
shown that good automatic contours for all structures except 
cervical oesophagus and pharyngeal muscle could be obtained 
if there was at least a similar setup between the sample and 
atlas patients. The limitations of the study are we have used 
a small sample size of 10 patients and have not studied time 
savings by editing the automatic contours. 

In conclusion, from the study we have shown that in case of 
single atlas method, the extent of anatomy matching between 
the sample and atlas patients plays a decisive role in the auto-
segmentation process. At least a similar setup is an essential 
pre-requisite to generate an acceptable set of automatic 
contours in single atlas based systems. While generating an 

atlas importance should also be given to the head and neck 
position.
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