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Abstract

The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal
the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and
disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species
levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed
Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large
decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the
species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant
hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch
fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would
finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed
Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate
that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly
emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of
deciduous species.
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Introduction

Forests store the most carbon of any unit of the terrestrial

ecosystem [1,2], and the majority of the carbon sequestrated is

held in woody biomass [3]. Forests play a vital role in climate

change mitigation [4] and water conservation [5,6]. Also, forests

can avoid soil erosion [7], although the impact of vegetation cover

on soil erosion is not straight forward [8,9]. They provide many

ecological services including biodiversity protection, a supply of

wood and fiber, and functions related to tourism and recreation

[10]. The potential capacity of forests to sequester carbon will

obviously influence the future balance of global carbon flux;

however, this potential is largely determined by the rate of carbon

sequestration occurring in forests [11]. The aboveground carbon

sequestration rate (ACSR) of forests is an important index

reflecting the usefulness of forest ecosystems to humans. The

future dynamics of ACSR has aroused many concerns, especially

when one considers the impacts of climate change.

Human activity has altered the concentration of atmospheric

carbon dioxide in a way that will create serious consequences such

as warmer climates and irregular patterns of precipitation [12–14].

Emissions of greenhouse gas that continue at or above current

levels are likely to cause additional climatic warming in the future,

and this will transform some processes related to forest carbon

sequestration such as the productivity, species distribution, and

large alterations in nature disturbance regimes [15]. Also, the

extension of the growing season and increased rates of photosyn-

thesis which are caused by climate change will enhance forest

growth rates [16]. Climate change can change tree species

migration patterns [17], which can further affect forest carbon

sequestration [18]. The net primary productivity (NPP) of tree

species as well as their competitiveness can be changed by the

alteration of climatic conditions such as temperature, precipita-

tion, and solar irradiation [19,20], and the forest ACSR will

experience parallel impacts of higher temperatures [21]. In

addition, the changing climate will lead to changes in disturbance

regimes that will diminish the process of carbon sequestration to a

large extent. This makes exploring the rate and potential capacity

of forest carbon sequestration necessary [22,23].

Many studies focus on the process of forest carbon sequestration

under climate change, and most of which have researched the
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climate change impact on forest composition and carbon

accumulation [24–27] and the responses of forest growth to

altered climates [21,28,29]. However, relatively little research has

explored the speed of forest carbon sequestration, which is

important to those developing forest management policies.

Globally, temperate forest is a widely distributed forest type, and

its carbon flux has been significantly altered by the changing

climate [30–32]. The Lesser Khingan Mountains lie in a

transitional region between a cold temperate and a moderate

zone and these mountains are covered by typical temperate forests.

A variety of vegetation and forest communities can be found in this

area (Fig. 1), including coniferous forests, mixed broad-leaved

conifer forests, and deciduous broad-leaved forests. In the past

decade, many research studies related to the impact of climate

change on forest ecosystems have been conducted in this area [33–

35]. However, the dynamics of forest ACSR under climate change

scenarios is still unclear. Rational forest management policies,

which are designed to maintain sustainable productivity in the

future, need to carefully explore the dynamics of forest ACSR. By

assessing and understanding the future status of forest carbon

sequestration under different climate change scenarios, foresters

can make well-designed policies related to forest management.

Quantifying the complex effects on forests caused by global

climate and land use changes has proved difficult [26], but we can

use ecological models to simulate the forests dynamics. Many

previous studies have proved that ecological models have an ability

to estimate historical as well as future forest carbon pool dynamics

[36,37]. Forest landscape succession and disturbance (LANDIS)

model is a spatially explicit forest landscape model capable of

simulating forest succession under multiple natural and anthro-

pogenic disturbance regimes based on the current species

distribution, age cohorts, and individuals [38,39]. Many studies

[17,26,39–41] about forest dynamics under different conditions in

North America and China have proved that it has the ability to

detect the effects of alternative future climate scenarios on forests

[26].

In this study, we couple projected meteorological data using

Earth System Models, LANDIS Pro7.0 model and logistics model

to simulate the response of forest ACSR to climate change. The

objectives of this study were to (1) explore the dynamics of the

ACSR in four main communities and fourteen tree species of a

temperate forest in the Lesser Khingan Mountains for 200 years

starting from 2000, (2) analyze statistical discrepancies found in the

different effects of various climate change scenarios on forest

ACSR, and (3) provide useful suggestions on how to carry out

forest management in a changing climate.

Figure 1. Location of the study area and the distribution of the forest communities. A: Heilongjiang Province in Northeast China; B: study
area in Heilongjiang Province; C: The distribution of forest communities in Lesser Khingan Mountains. NF: no forest zone, BKF: Broad-leaved Korean
pine forest, LF: Larch conifer forest, SFKF: Spruce-fir Korean pine forest, PKF: Pinus sylvestris-Korean pine conifer forest, SFBF: Spruce-fir broad-leaved
forest, PPF: Planted pinus sylvestris forest, AWF: Aspen-white birch forest, WSF: White birch softwood forest, ASF: Aspen softwood forest, OSF: Oak
softwood forest, MBF: Mixed broad-leaved forest.
doi:10.1371/journal.pone.0096157.g001
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Methods

Study Area
Our study area (Fig. 1) is located in the northern part of the

Lesser Khingan Mountain region near the city of Yi Chun. This

area extends across 47.85u–48.05uN, 128.43u–129.62uE, is cov-

ered by three forestry bureaus, includes a nature reserve zone, and

has total area of about 315,000 ha. Dark brown soil, homoge-

neously distributed in this area, constitutes the typical soil of this

region. The elevation ranges between 400 m and 600 m. The

temperate continental monsoon climate experiences cold, long

winters (mean January temperature, –25uC) while summers are

warm and transitory (mean July temperature, 21uC). The average

annual precipitation (550–700 mm) mostly falls from June to

August.

The Lesser Khingan Mountains lie in a transitional zone

between a cold and a moderate temperate zone. Several conifers

and soft-hard woods coexist in this typical temperate forest.

Common species include Korean pine (Pinus koraiensis), spruce

(Picea koraiensis and P. jezoensis), Khingan fir (Abies nephrolepis), larch

(Larix gmelinii), Manchurian ash (Fraxinus mandshurica), Amur cork

(Phellodendron amurense), Mongolia oak (Quercus mongolica), black elm

(Ulmus japonica), mono maple (Acer mono), ribbed birch (Betula

costata), black birch (Betula davurica), Amur linden (Tilia amurensis),

white birch (Betula platyphylla), aspen (Populus davidiana). Korean

pine is the regionally dominant species, while spruce and Khingan

fir are dominant only in high elevation areas.

Four representative communities occur in the study area: mixed

Korean pine hardwood forests, spruce-fir forests, mixed larch

hardwood forests, and aspen-white birch forests. These four

communities are common vegetation types in the Lesser Khingan

Mountain area. The entire region has suffered severe deforestation

except in the Fenglin Natural Reserve.

LANDIS Model
LANDIS is a dynamic forest landscape model simulating forest

succession, seed dispersal, species establishment, and various types

of disturbance such as wind, fire, and timber harvesting

[39,42,43]. LANDIS Pro 7.0 is derived from an earlier version

of LANDIS, in which the landscape is represented as a grid of

cells. The cell size can be set from 10 m 610 m to as large as 500

m 6500 m. This model can simulate changes over long temporal

(e.g. .100 years) and at large spatial scales (e.g. .107 ha). Several

species were contained in every cell, and LANDIS Pro 7.0 model

grouped trees into different species age cohorts. Besides, the model

keeps track of the number of trees for each species age cohorts in

all cells [44]. The modeled landscape was divided into several land

types according to altitude, slope, climatic conditions and other

environmental factors. Species establishment coefficients (SEC)

(ranging from 0 to 1.0), which are an important input parameter in

a LANDIS model, quantify whether a specific land type favors or

works against the establishment of a selected species. Similar SECs

would be developed in modeling of the same land type [43].

LANDIS Pro 7.0 simulates seedling establishment, growth,

death, regeneration, random mortality, and vegetative reproduc-

tion on the basis of SEC and species vital attributes (Table 1) at

the scale of a single modeled cell [45]. A detailed description of

these species’ physiological process can be found and consulted in

the LANDIS Pro 7.0 user’s guide [44]. An important advance of

the latest LANDIS version is that the number of tree for each

species age cohort was added in the model. This makes it easy for

us to calculate the aboveground biomass of each tree as well as the

total biomass of the forest. At a landscape scale, LANDIS

simulates spatial processes such as seed dispersal and seedling

establishment [17]. Seed dispersal simulates the seed travel process

based on a species’ effective and maximum seed dispersal distance.

A seedling establishment algorithm starts to work when seeds

reached a particular site to decide whether a particular seed can

become established based on consideration of other species that

occur on the site and the shade tolerance rank of the seeding

species relative to the species occupying the site [17,45]. If a site is

occupied by species with a higher shade tolerance (e.g. Korean

pine), species with lower shade tolerance (e.g. aspen, white birch)

cannot spread into this site. A uniform random number from 0 to

1 will be set to compare with the SEC to decide if seeds can

become established. Only when a species’ SEC is greater than the

random number can the species become successfully established.

That means species with a high SEC will obtain high probabilities

of establishment [43].

The species’ growth curve is another essential input parameter

used to calculate species biomass in the LANDIS model. In any

outputting year, the model reads the corresponding diameter at

breast height (DBH) and then outputs biomass by applying

allometric growth equations.

Model Parameterizations
Species’ vital attributes are driving factors of succession and

dispersal in LANDIS [45]. Some other input data such as

disturbance and management parameters, species composition

maps, land type maps, and the species establishment coefficients

for each land type are also included in LANDIS [17,45,46].

Species’ growth curves and the average number of tree individuals

are specifically used to calculate the biomass of each species in the

biomass module. Growth of fourteen of the main tree species (four

conifer and ten broad-leaf species) in our study area are simulated

in LANDIS. The values of these input data were mainly compiled

from previous LANDIS parameterization, plot investigation, and

consultations with local experts [17,41,45,47,48]. With the consent

of Fenglin Nature Reserve administration, we also investigated

some plant plots (Table S1) in the reserve to test whether the

parameters of the LANDIS Pro7.0 model were generally

reasonable; our field experiments did no harm to the animals

and tree species.

We generated an initial species composition map including

species as well as age information from a forest stand inventory

map and database produced in 2000 (provided by the Forestry

Planning and Design Bureau of Heilongjiang Province, 2003).

Useful information such as stand boundaries, the relative

abundance of canopy species, and the average age of dominant

canopy species were obtained from the database. The grid format

stand maps with a resolution of 90 m690 m were converted from

vector format with the goal of reducing computational loads

during model simulations. Many previous studies in this area

revealed that single species stands occur only during early

successional stages [49–51]. On most occasions, multiple species

occur in a 90 m 690 m sized pixel. The LANDIS Pro 7.0 model

traces species age cohorts in all pixels during the process of

succession. The simulated processes of dispersal, establishment,

growth, and death were all recorded. So, the model can output

species’ aboveground biomass at the end of every simulation time

step (we set the time step at 10 years) by calculating biomass using

tree biomass equations that are embedded in the LANDIS model.

Logistics models were used to project the SEC for each species,

and this model’s input parameters are mainly environmental

variables, including slope, aspect, elevation, annual average

temperature and precipitation, topographical position index and

compound topographical index [17,52]. We used logistics models

to simulate the probability of each species’ occurrence in all cells in
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the land type every 10 years with the current and future climatic

data and output the resulting map. The mean value of the

probability of a species appearing in the cells of a specific land type

is the final SEC of this species in that land type. We modeled the

SECs of 14 species under different climatic conditions from 2000

to 2100 with 10-year increments; the initial SECs in 2000 were

generated under current climatic conditions. The SECs after 2100

were assumed to remain stable.

The development of forest and the dynamics of carbon flux

were affected by some disturbances such as land use change, CO2

fertilization, and outbreak of insect [53,54]. However, they were

not included in full research area, and they are not the main

disturbance factors in this region. Therefore, in our study, we only

considered climate change and ignored other disturbance or

management factors, and we assumed that no fire or other events

occurred in this simulation. Three types of climate change

scenarios (B1, A1B, and A2) as well as current climatic condition

were taken into account, and we attempted to compare different

impacts of climatic conditions on the forest ACSR for the next 200

years (2000–2200).

Climate Data
The current meteorological data were collected from the

Northeastern Institute of Weather in China and were compiled

for 1961–2005 from 78 weather stations. Regression models were

built between spatial position and temperature as well as

precipitation. We calculated mean annual temperature and

precipitation based on the daily temperature and precipitation.

Climate projections generated by the third version of the

Canadian Global Coupled Model (CGCM3) were used in this

study. Three different scenarios simulating different levels of

carbon emissions (B1, A1B, and A2) were adopted to produce

future climatic data. The B1 emission scenario represents the

lower emission scenario while A1B and A2 scenarios represent the

median and higher emission scenario, respectively.

We interpolated the mean annual temperature and precipita-

tion from 78 weather stations distributed throughout Northeastern

China into grids with 90 m 6 90 m resolution, indicating the

distribution of current temperature and precipitation. According

to CGCM3, the mean annual temperatures and precipitations of

all climate scenarios would increase in first 100 years (2000–2100),

and some studies believed the climates would enter into a stable

state after 2100 and fluctuate around the level in 2100 [17,55]. We

calculated the annual temperature differences between the future

warming and current climate in 2000, as projected by CGCM3,

using equation (1):

DTi,j~Tvi,j{T2000 ð1Þ

where Tv represents temperature under warming climate, T2000

represents temperature in 2000 projected by CGCM3, i represents

the year (2000, i ,2100), and j is the decade (2010, j ,2100

with a 10-year increment); therefore, DTi,j is the climate change

for year i and decade j. The projected mean annual temperature

and precipitation of each decade from 2000 to 2100 were obtained

when DTi,j was added into the initial grids. Table 2 shows the

increment of mean annual precipitation and temperature in 2100.

The current mean precipitation and temperature were

555.1624.1 mm, and –0.5460.48uC, respectively. The final

results of climatic data were adopted by the logistics models to

output SECs.

Modeling and Analyzing Approaches
This study coupled the LANDIS model and a logistics model to

simulate the forest ACSR in the Lesser Khingan Mountains

region. The logistics model was used to simulate the species’

physiological response to current and changing climate conditions,

and it outputted SECs for each time step corresponding with those

of the LANDIS model. Furthermore, the LANDIS model was

used to simulate species establishment, succession, and the process

of forest carbon sequestration using the SECs obtained from the

logistics model under the different climate scenarios. LANDIS Pro

7.0 can read SECs for every simulated time step, so the results

output for species’ biomass could reflect the effect of climate

change on forests. The current climate and three warming climate

scenarios were adopted in this study, and these results were

compared.

Carbon content coefficient (CCC) as a vital factor was applied

to convert biomass to carbon content. Results from an existing

study [56] using CCCs of several main tree species in China’s

northeastern forest region were adopted in this study (Table 1).

We used the variation of carbon content every ten years to

represent the forest ACSR; the ACSR of fourteen species as well as

four forest communities were analyzed. Equation (2) displayed the

formula used to calculate the species’ carbon sequestration rate:

ui,j~ci
: Bi,j{Bi,j{10

� �
ð2Þ

where i represents tree species and j is the decade (2010, j ,2200

with a 10-year increment). ci represents the CCC of species i. Bi,j

is biomass of species i in decade j, and ui,j is the average carbon

sequestration rate of species i in decade j. For example, uaspen,2050 is

the average forest carbon sequestration rate of aspen in the period

from 2040 to 2050. Five replicas were simulated for each climate

scenario to assess model stochasticity, and we took the average

values as the final carbon sequestration rate. We divided the total

simulation into four time periods (2000–2050, 2060–2100, 2110–

2150, and 2160–2200) and used one-way ANOVA to test the

hypothesis that differences of ACSR existed among various

climate scenarios. The LSD multiple comparison method was

used to detect the difference of ACSR under various climate

conditions. Furthermore, we conducted T-tests among the 157

measured biomass data from the plots in a natural reserve and the

value of each time step’s total biomass output from 2100 to 2200 in

our simulation. All statistics were conducted using open resource

statistical graphics and computing environment R with P,0.05

used as a test of significance [57].

Results

ACSR at Community Level
Parallel dynamics of the ACSR under current climate

conditions and three climate warming scenarios during the

simulation were detected in all four forest communities. The

ACSR of mixed Korean pine hardwood forests and mixed larch

hardwood forests fluctuated during the entire simulation (Fig. 2A,
2B). The range of variation of ACSR in the two communities were

0.84–1.87 t ha–1 10 a–1 and 1.03–4.78 t ha–1 10 a–1, respectively.

The ACSR of the two communities under all warming scenarios

was always higher than that under current climate.

The ACSR in the spruce-fir forest and aspen-white birch forest

communities initially fell, followed by a rising trend (Fig. 2C, 2D).

However, different beginning time of falling and falling ranges

existed in the ACSR of the two communities. The ACSR of

spruce-fir forests experienced a short rise before 2030. The

minimum values of the ACSR of these two communities were –

Predicting Climate Change Effect on Forest

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e96157



0.88 t ha–1 10 a–1 in the 2070s and –18.02 t ha–1 10 a–1 in the

2140s, respectively. In the spruce-fir community, the ACSR under

the warming scenarios generally was lower than that under the

current climate, especially after the year of 2140. The ACSR of

the aspen-white birch community almost tended to zero at the end

of the simulation.

ACSR at Species Level
In conifers, the ACSR of the species adapted to a warm-climate,

e.g. Korean pine (Fig. 3A), fluctuated in the first half of the

simulation under current and warming climates and varied in the

range of 0.61–0.86 t ha–1 10 a–1. The ACSR of spruce, Khingan

fir, and larch (Fig. 3) had similar dynamics, which displayed a

rising trend after an initial falling trend and finally fluctuated after

2140, and they varied in the range of 0.71–1.35 t ha–1 10 a–1,

0.26–0.79 t ha–1 10 a–1, and 0.44–0.78 t ha–1 10 a–1, respectively.

Most of them reach a minimum ACSR in the period from 2070 to

2090. The ACSR of the three conifers under warming scenarios

were relative lower than that under current climatic conditions.

The ACSR of broad-leaved tree species (Fig. 4) demonstrated

complex dynamics during the simulation. The ACSR of the

Manchurian ash, Amur cork tree, black elm, and ribbed birch

initially fluctuated and then rose rapidly and finally fell. The ranges

of the variations in these four species were 0.02–0.05 t ha–1 10 a–1,

0.01–0.03 t ha–1 10 a–1, 0.06–0.23 t ha–1 10 a–1, and 0.81–1.63

t ha–1 10 a–1, respectively. Black elm was the only specie that the

ACSR under warming climate lower than that under the current

climate. The dynamics of ACSR of Mongolia oak and Amur linden

showed a trend of rising before a sharp decline and then recovering

later in the simulation. The ACSR of these two species reached a

minimum in the 2080s and 2090s, respectively. Two unique

patterns of ACSR fluctuations existed for mono maple and black

birch in the initial and final periods of the simulation. Initially, the

ACSR of these two broad-leaved trees varied in the ranges of 0.05–

0.13 t ha–1 10 a–1 and 0.06–0.15 t ha–1 10 a–1, while the ranges of

variation in the last period were –0.47– –0.31 t ha–1 10 a–1 and –

0.05–0.12 t ha–1 10 a–1, respectively. The dynamics of the ACSR of

these pioneer species, aspen and white birch, tended to rise after an

initial fall and fluctuated around zero after 2160, and the ranges of

variation of them before 2080 were 0.10–0.92 t ha–1 10 a–1 and

0.96–4.08 t ha–1 10 a–1, respectively. The ACSR of these pioneer

species reached a minimum in the 2140s simultaneously, and the

curve of the ACSR of the two species under all climates nearly

overlapped.

Table 2. The variation values of average annual precipitation and temperature in 2100 modeled by CGCM3.

Climate scenarios DP (mm) DT (6C)

B1 65.03616.75 1.0060.07

A1B 60.2267.32 2.0060.02

A2 240.38617.30 3.2160.41

DP:Increment of precipitation in 2100 modeled by CGCM3; DT: Increment of temperature in 2100 modeled by CGCM3.

Figure 2. Forest aboveground carbon sequestration rates of different forest communities. A: Mixed Korean pine hardwood forests, B:
Spruce-fir forests, C: Mixed larch hardwood forests, and D: Aspen-white birch forests.
doi:10.1371/journal.pone.0096157.g002
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Differences of ACSR among Climate Scenarios
According to the results of variance analysis (Table 3),

significant differences (P,0.05) of ACSR existed among the

various climate scenarios in mixed Korean pine hardwood forests

at 2060–2100 and 2110–2150, and in spruce-fir forests at 2160–

2200. No significant difference of the ACSR among those climates

was identified in the other two communities. In those two periods,

the ACSR of the mixed Korean pine hardwood forests under

scenario A2 was significantly higher than that under other climates

(Fig. 5A, 5B). In the spruce-fir forest community, the ACSR

under all warming scenarios were significantly higher than that

under current climate scenario, and significant differences existed

between any two warming scenarios (Fig. 5C).

In the species level, only in the periods of 2060–2100 and 2160–

2200, significant differences of ACSR existed among various

climate scenarios (Table 3). The ACSR of all the conifers among

all climate scenarios had significant differences (P,0.05) in the last

quarter (2160–2200) of the simulation, while these differences

could be only detected in three hardwoods (Fig. 6F–J) (Amur cork

tree, Mongolia oak and black elm) in the same period. From 2060

to 2100, the ACSR of Korean pine and Amur cork under the

warming scenarios were significantly different from that under the

current climate scenario. From 2160 to 2200, the ACSR of the

species, with significant differences among climates, under the A1B

and A2 scenarios were significantly differ from that under the

current climate scenario (Fig. 6). Unique differences of ACSR

between scenario A1B and A2 was detected in spruce (Fig. 6C),

while no difference of ACSR was identified between scenario B1

and A1B in all species except spruce and Khingan fir (Fig. 6D).

Differences of ACSR between the current climate and the scenario

B1 were found in spruce, Khingan fir, and Amur cork.

Spatial Distribution of Forest Biomass
The forest total biomass under current climate and three

warming scenarios presented similar spatial patterns in 2000,

2050, 2100, and 2200 (Fig. 7). The total forest biomass of this area

is generally low except in the Fenglin Natural Reserve. Total

biomass constantly accumulated during the simulation, and it

becomes hard to detect differences in biomass between the forest

reserve zone and other locations. However, large changes in total

forest biomass accumulation can be identified during the second

half of the simulation. A decrease of simulated total biomass was

observed in most areas while it remained at a high level in Fenglin

Forest Reserve. At the end of the simulation, the total biomass

accumulation of the reserve zone was no longer higher than in

other zones. The geographic center of the spatial distribution of

total biomass tended to move north during the simulation.

Discussions

The LANDIS Pro 7.0 model is a spatially explicit model, and

plays an important role in simulating the processes of germination,

seed dispersal and establishment, and growth for various species

under various disturbance regimes. The output of species’ biomass

makes it possible to explore the dynamics of the forest ACSR.

The trends in the variation of ACSR of all communities and

species mostly occurred simultaneously among all the climate

scenarios, though some relatively large differences appeared.

At the community level, the effect of multiple climate change

scenarios appeared to involve complex processes affecting changes

in forest ACSR. The possible explanation of this phenomenon is

that usually a small increase in temperature has little impact on the

growth of Korean pine, larch, and some other broadleaf species

that are dominant species in these communities. This also

corresponds with some previous studies [58,59], which have

reported that the forest growth rate will not change until a

temperature threshold appears. The temperatures under scenario

A2 are likely to exceed this threshold while temperatures under

other scenarios are not, and this can lead to ACSR under scenario

A2 usually significantly higher than that under others. Moreover,

the mixed Korean pine hardwood community is the climax

community in this area, and it appears to be well-adapted to the

warming climates of the past decades. The general rising trend of

Figure 3. Forest aboveground carbon sequestration rates of four conifers. A: Korean pine, B: Spruce, C: Khingan fir, and D: Larch.
doi:10.1371/journal.pone.0096157.g003
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ACSR may follow that adaption. This possible inference is in

agreement with the local reality of forest distribution.

Significant differences existed between any two climate scenar-

ios in the last quarters of the simulation in the spruce-fir

community, and this community was the only one where the

ACSR decreased when climate changed from current scenario to

warming scenarios. Most likely, this community is vulnerable if the

climate becomes warmer, and much greater impact on the ACSR

may be caused by higher temperatures. The warming is not good

for the growth of Khingan fir. Nonetheless, one study found the

biomass of fir increase notably during a 6-year warming trend

[60]. However, the increase of biomass is not equal to the increase

of ACSR; the biomass will continue to increase as long as the

ACSR is greater than 0. Similar patterns in mixed larch hardwood

forests in the later period of the simulation were also remarkable;

however, the difference was that warming scenarios brought about

higher ACSR values. This probably occurred because climate

warming created a sharp increase in the abundance of broadleaf

species in this community. Broadleaf trees can adapt to higher

temperatures better than conifers and this may lead to a

northward shift of broadleaf forest [58]. This corresponds well

with the northward movement in the spatial distribution of the

forest total biomass.

The final decrease of ACSR at the end of the simulation may

suggest that the mixed larch hardwood community is a transitional

community and will eventually be replaced by hardwood

communities. Aspen and white birch are both pioneer species in

the aspen-white birch community and they occupy an extensive

range in this study area. The sharp decrease of the ACSR in the

middle of the simulation may be caused by natural mortality of

these species. According to the species vital attributes (Table 1),

aspen and white birch both live about 150 years; most individuals

died around 2150 in the simulations. The fluctuation ACSR

Figure 4. Forest aboveground carbon sequestration rates of ten broad leaved tree species. A: Manchurian ash, B: Amur cork, C: Mongolia
oak, D: Mono maple, E: Black birch, F: Black elm, G: Ribbed birch, H: Amur linden, I: Aspen, and J: White birch.
doi:10.1371/journal.pone.0096157.g004
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around zero in the last decades of the simulation suggests that this

community will eventually disappear.

At the species level, the dynamics of the ACSR display a more

complex process. The ACSR of most conifers (except Korean

pine) in the simulations demonstrated V-shaped alterations, and

differences of the ACSR among various climate scenarios emerge

late in the simulation. This may denote that the growth process of

some conifers, including spruce, Khingan fir, and larch, may

essentially stop during the simulation. It has already been proven

that many conifers, including spruce and fir, become more

vulnerable when climates become warmer [61]. The ACSR of

Khingan fir once even dropped below zero, indicating that

Khingan fir is not adapted to warm temperature, and the growth

would be restrained while climate continues to warm. Global

climate has changed as a result of hundreds of years of industrial

activity, and some other disturbances such as fire and over

exploitation have caused great destruction of forests [62]. This

may be the reason why the responses of forests, which have

already experienced climate change, appear insensitive to various

climate change scenarios. As for Korean pine, increasing

temperatures tend to accelerate the increase in ACSR, and its

position as a dominant species will undoubtedly be enhanced

under warming climatic conditions.

The ACSR of most hardwood species have experienced a rising

trend, although some of them (Manchurian ash, black elm, and

ribbed birch) decreased at the end of the simulation. This suggests

that broadleaf trees have better adaption to warm conditions and

grow at a relatively high speed. The final decrease in the ACSR of

some broadleaf species likely occurred because they approached

their natural longevity at the later time of simulation and began to

decline. The smaller initial distribution and lower competitive

ability to capture nutrients can well explain why Mono maple has

a declining trend of its ACSR [63]. The decline of the ACSR of

aspen and white birch is in agreement with the successional nature

of aspen-white birch community.

We adopted three climate change scenarios (B1, A1B, and A2)

as well as modeled the current climate conditions to detect the

different influences of these scenarios on the ACSR. However,

significant differences in the ACSR among various scenarios can

be only discovered in a small number of communities and species,

most of which existed in the last quarter (2160–2200) of the

simulation. These facts demonstrate that the effects of various

climate change scenarios on the ACSR have no effect in a

relatively short time (150 years). This does not mean that no action

should be taken to control the current high levels of greenhouse

gas emissions, because different climate change scenarios may

manifest their effects on the ACSR later than in only 150 years. In

other words, a hysteresis phenomenon exists in the process of

climate change effects on the forest ACSR in this temperate forest.

A slow response time of forests to climate change may be the real

reason of this phenomenon.

The stability of a forest ecosystem is expressed in many aspects,

such as species composition and biomass accumulation [64]. The

carbon sequestration rate and capacity are vital factors reflecting a

forest’s ability to sequester carbon. In this study, the distribution of

total biomass (Fig. 7) on a landscape scale reflects that the carbon

sequestration of forest fluctuates during the modeled time period,

and the forest displayed an extremely unstable state especially in

the last quarter of the simulation. This corresponds with dynamics

of the total forest ACSR (Fig. 8A). However, the total capacity of

the forest for aboveground carbon sequestration maintained at a

relative stable level in this landscape (Fig. 8B). This indicates that

a forest actually reaches a dynamic equilibrium based on the stable

state of a forest ecosystem when its biomass accumulation reaching

a dynamic equilibrium. The species composition and the spatial

distribution of biomass can reflect the status of a forest ecosystem

at a large time scale; however, difficulties persist in interpreting the

instantaneous status of forest growth. Reflection of the dynamics of

forest carbon flux, especially the complex temperate forest, needs

indicators that can represent the development process of forest

succession. However, traditional indexes such as stand structure,

species composition, and biomass are all static indicators. They

only reflect the state of forest carbon sequestration at some point.

ACSR displays the speed of forest carbon accumulation and

demonstrate the ability of forest carbon sequestration in a certain

period. Therefore, ACSR can express the instantaneous status of

forest growth. The ACSR supplies an indication of the proper

method to solve this problem.

Developing longtime successive forest inventory data under a

warming climate in the future is impossible, and this makes it

Figure 5. Results of multiple comparisons of the influences on communities’ aboveground carbon sequestration rate. A: Mixed
Korean pine hardwood forests in 2060–2100, B: Mixed Korean pine hardwood forests in 2110–2150, and C: Spruce-fir forests in 2160–2200.
doi:10.1371/journal.pone.0096157.g005
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difficult for landscape models to predict forests dynamics precisely

[65,66]. Applying forest inventory data collected in the field over a

short time period with a limited number of data points used to

verify the results of our 200-year simulation cannot allow for the

creation of an entirely precise model. Comparing simulation

results with other studies, including results from other models and

experiments, may provide a feasible way to verify the precision of

the LANDIS model; this method is sure to enhance the model’s

confidence [67].

The analysis of the uncertainty and sensitivity of LANDIS

model has been carried out in some studies [26,43,68]. The results

show that the output of this model is quite stable. The simulated

biomass result in this study was also unanimous, and the mean

proportional error of the biomass was less than 0.01 (Fig. 2–4).

This indicates that the uncertainty of LANDIS model is very low.

One study [69] indicates that the range of biomass accumula-

tion of mixed Korean pine hardwood in the Lesser Khingan

Mountains is 199–371 t ha–1. Yan et al. [70] used the NEWCOP

model to simulate the biomass of natural forests in the Lesser

Khingan Mountains and found that the value is about 250 t ha–1.

Our simulation provided a total biomass output of about 250

t ha–1 which is in agreement with those previous studies.

Moreover, Fenglin natural reserve is the largest and oldest reserve

in the Lesser Khingan Mountains area. Forests in this reserve have

barely obtained damage, and most of the forest communities are in

climax state. Therefore, forests in this reserve are considered to be

the future state of the forests which are distributed outside the

reserve, and the biomass accumulation in reserve is also regarded

as the upper limit of forest in the Lesser Khingan Mountains area.

The general state of forest in the Lesser Khingan Mountains area

200 years later simulated by LANDIS Pro7.0 model also has been

regarded as the climax. We have conducted T-tests among

measured biomass data for 157 plots in Fenglin natural reserve and

calculated each time step’s output of total biomass from 2100 to

2200 in our simulation; the result revealed no significant

differences (P.0.05). These facts show that the results of biomass

output of the LANDIS model conform to field reality at the

landscape scale, and the accuracy of the LANDIS model’s biomass

output can be trusted. The LANDIS model was used to evaluate

species distribution under possible warming climates in northeast

China [17]. The results showed that Korean pine thrives better

than other species under warming climatic conditions, and the

northern boundary of its range would shift northward while larch

decreased under warming climates. The hardwoods were the

dominant species in warmer conditions while conifers favored

colder circumstances. Our results are consistent with other studies

although coniferous species increased in abundance late in our

simulation. This simulated effect may occur because the restora-

tion and growth process was slowed by warming climates.

Increasing temperature and precipitation would boost the growth

rate of sugar maple and white spruce as has been reported in the

literature, while the growth rate of balsam fir decreased under the

Figure 6. Results of multiple comparisons of the influences on species aboveground carbon sequestration rate. A: Korean pine in
2060–2100, B: Korean pine in 2160–2200, C: Spruce in 21260–2200, D: Khingan fir in 2160–2200, E: Larch in 2160–2200, F: Amur cork in 2060–2100, G:
Amur cork in 2160–2200, H: Mongolia oak in 2160–2200, I: Black birch in 2060–2100, and J: Black birch in 2160–2200.
doi:10.1371/journal.pone.0096157.g006
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same conditions [71]. Sabedi & Sharma [72] pointed out that the

trend of diameter growth in jack pine and black spruce increased

and decreased under warming conditions, respectively. Though

these two species do not exist in our study area, they provide useful

information in evaluating the ACSR of conifers.

In addition, effective comparisons of our results with previous

studies such as those discussed above prove the LANDIS model

has the ability to simulate forest growth accurately; also, the

various results in comparisons provide us with clues for future

analysis and modification of the model. The prediction of trends

and the alteration of the range of forest ACSR under various

climate scenarios in this study tend to agree with previous results.

Great uncertainty exists in climate change predictions of GCMs.

Our simulation adopted the climate predictions of CGCM3

because of its applicability in northeastern China that has been

proven by many studies [73,74]. We used only annual mean

temperature and precipitation every 10-years and neglected the

climate alteration in adjacent years and for a given year; however,

this variability could affect the species’ growth, morality, and

establishment [75,76]. Nevertheless, every 10-year average annual

temperature and precipitation could reflect the trend of climate

change in this area, and the effect of climate change on the forest

carbon sequestration rate can also be interpreted appropriately by

10-year increment meteorological data.

In the LANDIS model, species establishment coefficients (SECs)

play an important role in deciding the process of forest succession.

Future SECs are simulated by the logistics model during different

climate change scenarios, and the LANDIS model read the SEC

parameters in every time-step to reflect the successive effects of

climate change. We care more about forest landscape processes,

and some processes do not get enough attention on a more

detailed level. However, these processes, such as physiological

processes, that are influenced by climate conditions are overlooked

while we only use SECs to reflect climate changes indirectly; these

physiological processes may influence the biomass accumulation of

species. Moreover, biomass equations were used to calculate

species’ biomass; however, instability existed in these equations

while applying them in different regions.

In this study, species growth curves, as input parameters in

LANDIS Pro7.0 model, were obtained from field investigation and

previous published references. These results were all based on the

historical climate, and the effect of climate condition then had

Figure 7. The spatial distribution of forest total biomass under different climates. CC: Current climate, B1S: B1 scenario, A1B: A1B scenario,
A2: A2 scenario. Unit: t ha21.
doi:10.1371/journal.pone.0096157.g007
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been coupled in the results. Many previous studies [77–79] had

explored the relationship between tree radial growth and climate

conditions; however, we did not conduct similar research, and it

might affect the final results of modelling at some extent. In future

research, making input parameters more accurate can enhance the

credibility of the simulated results.

Furthermore, an important vegetation driver, the fire, was not

considered in this study. The regime of fire disturbance would be

altered under climate change [80,81], and it would finally

influence forest carbon sequestration. Nonetheless, the purpose

of this study was to analysis forest ACSR under different climate

change scenarios, and insight was obtained from this research on

how forests response to possible climate conditions.

Model simulation is a vital tool in the research of forest

dynamics under climate change at long-time and large-scale

conditions. Although the model itself has many shortcomings, by

appropriately analyzing and verifying the model, user may greatly

improve the accuracy of the model. In addition, indigenization of

model parameters will produce excellent prospects for successful

and accurate application of the model.

Conclusions

The LANDIS Pro7.0 model is capable of modeling forest

dynamics, especially biomass change, under changing climatic

conditions. Based on the simulated results, several conclusions can

be drawn as follows. Climate warming can influence the ACSR in

the Lesser Khingan Mountains area. Mixed Korean pine

hardwood forest is the climax community in the Lesser Khingan

Mountains area, and it has higher adaption to climate warming

when compared with other communities. However, spruce-fir

forest has a decline trend while climate becomes warmer.

Differences of ACSR of various communities almost emerge

around 2140, and this expresses that a hysteresis phenomenon

exists in the process of climate change affecting temperate forests

ACSR. The ACSR of coniferous species is more strongly

influenced by climate change than is the ACSR of deciduous

species. The biomass composition of climax communities is not

stable, and ACSR can also reflect the response of forest to climate

change. The differences of ACSR among various climate change

scenarios are complex, and generally, climate change causes the

largest impact in the scenario A2.
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